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Measuring and Analyzing Search Engine 
Poisoning of Linguistic Collisions 



Search Rank Dominates Web Traffic 
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Google and the Google logo are registered trademarks of Google LLC, used with permission. 

  51% of traffic from web 
search 

  90% of users click 
search results returned 
on the first page 

Source: Search Engine Land and ProtoFuse 
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  Users make mistakes when typing searches 
–  adoeb (a misspelling of adobe)  

Searches with Misspelled Keywords 
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Auto-Correction and Auto-Suggestion 
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Showing results for … 
•  High confidence 

Misspelling 

Including results for… 
•  Medium confidence 

Misspelling 

Did you mean… 
•  Low confidence 

Misspelling 

adoeb adobec adube 
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Linguistic-Collision Misspellings 

In Esperanto:  
“chilis” 

Google	and	the	Google	logo	are	registered	trademarks	of	Google	LLC,	used	with	permission.	
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Cilis  
(misspelling 
of Cialis) 
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Study Scope 
  Analyzed languages 

–  English and Chinese 
  Search engines 

–  Google and Baidu 
  Target keywords 

–  Alexa 10k domains (English only)  
–  13 selected categories 
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Keyword Categories 
  4 spam-related categories: drugs, adult, gambling, 
software 
–  English examples: Cialis, poker 
–  Chinese examples: 大麻, 麻將 

  9 other categories: cars, food, jewelry, women’s clothing, 
men’s clothing, cosmetics, baby products, daily 
necessities, defense contractors 
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Our Approach 
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Target 
Keywords 

Misspelling 
Candidates 

Non-Auto- 
Corrected 
Results 

Results Showing 
Malicious 
Websites 

1. Misspelling 
    Generation 

2. Non-Auto-Corrected 
    Identification 

3. Blacklist 
    Validation 

Measuring	and	Analyzing	Search	Engine	Poisoning	of	Linguistic	Collisions	



English Misspelling Generation 
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Damerau-Levenshtein edit distance one 
–  Insert: ciallis 
–  Replace: ciolis (Limited to adjacent keys on QWERTY) 
–  Transpose: cailis 
–  Delete: cialis 

  Vowel replacement 
–  a, e, i, o, u, y 
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  Brute-force checking is too time-consuming 
  Dictionaries have poor coverage 

  Using character-level Recurrent Neural Network (RNN) 
to predict 
–  Training with existent words 
    from dictionaries 

Predicting Linguistic Collision Misspellings 

10	

C I A L 

S 

I 
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Chinese Misspelling Generation 
  Pinyin input 

–  Method for typing Chinese words with the English alphabet 

Damerau-Levenshtein edit distance one 
  Same pinyin or different tones 

–  MáJiàng: 麻將 (tile-based game) 
    or 麻酱 (sesame sauce) 
  Fuzzy pinyin 
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Crawling Framework 
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Input	
Keywords	

Public	Blacklist	

Search	
Results	

Search	
Volumes	

Language	Types	
Measuring	and	Analyzing	Search	Engine	Poisoning	of	Linguistic	Collisions	



Overall Statistics 
  1.77M misspelling candidate keywords queried 

  1.19% of linguistic-collision misspellings have search 
results with blacklisted URLs on the first page (10 results 
per page) 
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Prevalence: English Search Poisoning 
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  Drugs, adult, 
and gambling 
categories 
targeted at 4x 
the rate of 
others 
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Prevalence: Chinese Search Poisoning 
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  Auto-corrected 
cases exhibit 
lower poisoning 
than English. 
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Results on Alexa List 
  Alexa 1k 

–  Exhaustive search to compare with RNN results 
–  RNN is 2.84x more efficient than random sampling 
  Alexa 10k 

–  Used RNN to generate  
    linguistic collision candidates 
–  Attackers exhibit activity  
    across the long tail of domains 
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Traffic Breakdown per Device Types 

English		 Chinese	

Device	Type	
Original	
Keywords	

Misspellings	
Targeted	by	
Attackers	

Original	
Keywords	

Misspellings	
Targeted	by	
Attackers	

Desktop	 36.05%	 11.96%	 39.74%	 21.22%	

Mobile	 56.56%	 84.56%	 60.26%	 78.78%	

Tablet	 7.40%	 3.48%	 ----	 ----	
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  English data from Google Adwords 
  Chinese data from Baidu Index 



Top English Malicious Domains 

Domain	Name	
#	of	Poisoned	
Searches	 #	of	URLs	 Traffic	Monetization	

*.0catch.com	 732	 109	 malvertising		

*.atspace.name	 63	 17	 malvertising		

hdvidzpro.me	 58	 58	 malvertising		

wanna████.com	 49	 48	 malvertising		

theunderweardrawer.co.uk	 40	 38	 malvertising		
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Linguistic Collision Languages 
All	Results	 Drugs	 Gambling	 Adult	Terms	

English	 57.44%	 English	 49.28%	 English	 66.44%	 English	 81.67%	
Arabic	 2.76%	 Latin	 3.69%	 Spanish	 2.69%	 French	 1.96%	

Spanish	 1.66%	 Spanish	 2.82%	 Norwegian	 2.14%	 Spanish	 1.30%	
Hindi	 1.56%	 Italian	 2.47%	 Italian	 1.78%	 Indonesia	 1.05%	
Italian	 1.53%	 Romanian	 2.25%	 French	 1.68%	 Polish	 0.79%	
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  Languages identified by Google Translate 



Conclusion 
  First investigation into linguistic collisions for English and 
Chinese 

  1.19% of linguistic-collision misspellings have search 
results with blacklisted URLs on the first page 

  Certain categories are more heavily targeted and mobile 
users are more likely to search poisoned terms 
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Q&A 
 
 

Thank you! 
 

matthew.joslin@utdallas.edu 
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Collisions: Statistics 
  Non-auto-corrected: 

–  15.16% English 
–  7.69% Chinese 

  Misspelling methods: 
–  Wrong vowel: 22.85% (English) 
–  Same pronunciation: 18.21% (Chinese) 
–  Fuzzy pinyin: 17.63% (Chinese) 
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