
SoK: General Purpose Frameworks
for Secure Multi-party Computation

Marcella
Hastings

Brett
Hemenway

Daniel
Noble

Steve
Zdancewic

University of Pennsylvania

1 / 20

Secure Multi-party Computation (MPC)

Compute an arbitrary function among mutually distrustful parties

I Set beet prices at
auction [BCD+09]

I Input: Beet quantities
and prices

I Output: Market clearing
price

I Compute statistics on
sensitive data
[LVB+16,BLV17]

I Input: Salary and payroll
data from 150 companies

I Output: Financial statistics
and analytics

2 / 20

Secure Multi-party Computation (MPC)

Compute an arbitrary function among mutually distrustful parties

I Set beet prices at
auction [BCD+09]

I Input: Beet quantities
and prices

I Output: Market clearing
price

I Compute statistics on
sensitive data
[LVB+16,BLV17]

I Input: Salary and payroll
data from 150 companies

I Output: Financial statistics
and analytics

2 / 20

Secure Multi-party Computation (MPC)

Compute an arbitrary function among mutually distrustful parties

I Set beet prices at
auction [BCD+09]

I Input: Beet quantities
and prices

I Output: Market clearing
price

I Compute statistics on
sensitive data
[LVB+16,BLV17]

I Input: Salary and payroll
data from 150 companies

I Output: Financial statistics
and analytics

2 / 20

Motivating end-to-end frameworks for MPC

I Custom one-off solutions are unsustainable

I Protocols assumed impractical until Fairplay [MNPS04]

I Performance improvements rapidly advanced state-of-the-art
I OT extension [YKNP03]
I Free XOR gates [KS08]
I Half-gates [ZRE15]
I AES-NI

3 / 20

Motivating end-to-end frameworks for MPC

I Custom one-off solutions are unsustainable

I Protocols assumed impractical until Fairplay [MNPS04]

I Performance improvements rapidly advanced state-of-the-art
I OT extension [YKNP03]
I Free XOR gates [KS08]
I Half-gates [ZRE15]
I AES-NI

3 / 20

Motivating end-to-end frameworks for MPC

I Custom one-off solutions are unsustainable

I Protocols assumed impractical until Fairplay [MNPS04]

I Performance improvements rapidly advanced state-of-the-art
I OT extension [YKNP03]
I Free XOR gates [KS08]
I Half-gates [ZRE15]
I AES-NI

3 / 20

Modern General-Purpose Frameworks

function
description

compiler runtime

Framework

function input

function
output

I Who are frameworks designed for?

I Can the languages express complex, interesting functions?

I Are the protocols appropriate for practical settings?

I Has software development moved beyond “research code”?

4 / 20

Modern General-Purpose Frameworks

function
description

compiler runtime

Framework

function input

function
output

I Who are frameworks designed for?

I Can the languages express complex, interesting functions?

I Are the protocols appropriate for practical settings?

I Has software development moved beyond “research code”?

4 / 20

Contributions

Survey

I Surveyed 9 frameworks and 2 circuit compilers

I Recorded protocol, feature, implementation details

I Evaluated usability criteria

Open-source framework repository

I Three sample programs in every framework

I Docker instances with complete build environments

I Documentation on compilation and execution

github.com/mpc-sok/frameworks

5 / 20

github.com/mpc-sok/frameworks

Contributions

Survey

I Surveyed 9 frameworks and 2 circuit compilers

I Recorded protocol, feature, implementation details

I Evaluated usability criteria

Open-source framework repository

I Three sample programs in every framework

I Docker instances with complete build environments

I Documentation on compilation and execution

github.com/mpc-sok/frameworks

5 / 20

github.com/mpc-sok/frameworks

Findings

Most frameworks are in good shape!

I Diverse set of threat models and protocols

I Expressive high-level languages

I Accessible, open-source, and compilable

Room for improvement

I Engineering limitations

I Barriers to usability

6 / 20

Findings

Most frameworks are in good shape!

I Diverse set of threat models and protocols

I Expressive high-level languages

I Accessible, open-source, and compilable

Room for improvement

I Engineering limitations

I Barriers to usability

6 / 20

Frameworks: A brief overview

Protocol
family Parties Se
m

i-h
on

es
t

M
al

ic
io

us

EMP-toolkit [WMK17] GC 2

Obliv-C [ZH15] GC 2 #

ObliVM [LWNHS15] GC 2 #

TinyGarble [SHSSK15] GC 2 #

Wysteria [RHH14] MC 2+ #

ABY [DSZ15] GC,MC 2 #

SCALE-MAMBA - Hybrid 2+

Sharemind [BLW08] Hybrid 3 #

PICCO [ZSB13] Hybrid 3+ #

Frigate [MGCKT16] - 2+ - -
CBMC-GC [HFKV12] - 2+ - -

GC = Garbled Circuit MC = Multi-party circuit-based

7 / 20

Frameworks: A brief overview

Protocol
family Parties Se
m

i-h
on

es
t

M
al

ic
io

us

EMP-toolkit [WMK17] GC 2

Obliv-C [ZH15] GC 2 #

ObliVM [LWNHS15] GC 2 #

TinyGarble [SHSSK15] GC 2 #

Wysteria [RHH14] MC 2+ #

ABY [DSZ15] GC,MC 2 #

SCALE-MAMBA - Hybrid 2+

Sharemind [BLW08] Hybrid 3 #

PICCO [ZSB13] Hybrid 3+ #

Frigate [MGCKT16] - 2+ - -
CBMC-GC [HFKV12] - 2+ - -

GC = Garbled Circuit MC = Multi-party circuit-based

8 / 20

Garbled circuit protcols
Introduced by [Yao82, Yao86]

garble evaluate
function
output

runtime

I Function represented as Boolean circuits

I Typically semi-honest, 2-party

9 / 20

Frameworks: A brief overview

Protocol
family Parties Se
m

i-h
on

es
t

M
al

ic
io

us

EMP-toolkit [WMK17] GC 2

Obliv-C [ZH15] GC 2 #

ObliVM [LWNHS15] GC 2 #

TinyGarble [SHSSK15] GC 2 #

Wysteria [RHH14] MC 2+ #

ABY [DSZ15] GC,MC 2 #

SCALE-MAMBA - Hybrid 2+

Sharemind [BLW08] Hybrid 3 #

PICCO [ZSB13] Hybrid 3+ #

Frigate [MGCKT16] - 2+ - -
CBMC-GC [HFKV12] - 2+ - -

GC = Garbled Circuit MC = Multi-party circuit-based

10 / 20

Multi-party circuit-based protcols
Introduced by [GMW87, BGW88, CCD88]

. . .

. . .

. . .

I Functions represented as Boolean or arithmetic circuits

I Data represented as linear secret shares

I Various threat models and protocol types
(information-theoretic or cryptographic)

11 / 20

Frameworks: A brief overview

Protocol
family Parties Se
m

i-h
on

es
t

M
al

ic
io

us

EMP-toolkit [WMK17] GC 2

Obliv-C [ZH15] GC 2 #

ObliVM [LWNHS15] GC 2 #

TinyGarble [SHSSK15] GC 2 #

Wysteria [RHH14] MC 2+ #

ABY [DSZ15] GC,MC 2 #

SCALE-MAMBA - Hybrid 2+

Sharemind [BLW08] Hybrid 3 #

PICCO [ZSB13] Hybrid 3+ #

Frigate [MGCKT16] - 2+ - -
CBMC-GC [HFKV12] - 2+ - -

GC = Garbled Circuit MC = Multi-party circuit-based

12 / 20

Inner product: Illustrating language abstractions

Frigate: standard (C-style) abstraction

i n t r e s u l t = 0 ;
f o r (i n t i =0; i<LEN ; i ++) {

r e s u l t = r e s u l t + (A . data [i] ∗ B . data [i]) ;
}

PICCO: custom primitive, high level abstraction

i n t r e s u l t = A @ B ;

13 / 20

Inner product: Illustrating language abstractions

Frigate: standard (C-style) abstraction

i n t r e s u l t = 0 ;
f o r (i n t i =0; i<LEN ; i ++) {

r e s u l t = r e s u l t + (A . data [i] ∗ B . data [i]) ;
}

PICCO: custom primitive, high level abstraction

i n t r e s u l t = A @ B ;

13 / 20

Inner product: Illustrating language abstractions

ABY: Low-level access

s h a r e ∗A, ∗B ;
A = c i r c−>PutMULGate (A, B) ;
A = c i r c−>P u t S p l i t t e r G a t e (A) ;
f o r (u i n t 3 2 t i = 1 ; i < LEN ; i ++) {

A−>s e t w i r e i d (
0 , c i r c−>PutADDGate (A−>g e t w i r e i d (0) ,

A−>g e t w i r e i d (i))) ;
}
A−>s e t b i t l e n g t h (1) ;
s h a r e ∗ r e s u l t = c i r c−>PutOUTGate (A, ALL) ;

14 / 20

Software engineering

Complicated, non-trivial build systems

I Set up certificate authority or PKI

I Compile specific OpenSSL version from source

I No dependency lists, manual search for compile errors

I Estimated time: 1-2 weeks per framework

Significant software projects

I Cryptographic protocols

I Distributed communication
I Interfacing with other systems

I ObliVM: We couldn’t return more than 32 bits

15 / 20

Software engineering

Complicated, non-trivial build systems

I Set up certificate authority or PKI

I Compile specific OpenSSL version from source

I No dependency lists, manual search for compile errors

I Estimated time: 1-2 weeks per framework

Significant software projects

I Cryptographic protocols

I Distributed communication
I Interfacing with other systems

I ObliVM: We couldn’t return more than 32 bits

15 / 20

Software engineering

Complicated, non-trivial build systems

I Set up certificate authority or PKI

I Compile specific OpenSSL version from source

I No dependency lists, manual search for compile errors

I Estimated time: 1-2 weeks per framework

Significant software projects

I Cryptographic protocols

I Distributed communication
I Interfacing with other systems

I ObliVM: We couldn’t return more than 32 bits

15 / 20

Documentation

I Language documentation: How do I write secure code?

I Code samples: What does a working example look like?

I Code documentation: How does this example work?

I Online support: Where can I ask questions?

I Open-source: Can I run this without buying something?

Half the frameworks have no more than 3 of these /

16 / 20

Limited language documentation is frustrating

I CBMC-GC:

Arguments must be called INPUT <var>

I ObliVM:

alice and bob are reserved keywords

I Wysteria: Language docs don’t account for parser limitations

I EMP-toolkit: ≈1 comment per 600 lines of code

i n t mpc main (i n t a l i c e , i n t bob) {
return a l i c e ∗ bob ;

}

$ make
[...]
Uncaught exception: Unknown literal: 33. Did you forget to return
a value or assign a value to a OUTPUT variable?

17 / 20

Limited language documentation is frustrating

I CBMC-GC: Arguments must be called INPUT <var>

I ObliVM:

alice and bob are reserved keywords

I Wysteria: Language docs don’t account for parser limitations

I EMP-toolkit: ≈1 comment per 600 lines of code

i n t mpc main (i n t INPUT al i ce , i n t INPUT bob) {
return INPUT al i ce ∗ INPUT bob ;

}

$ make
[. . .]
Gates: 5648 with 1986 Non-XOR and 0 LUTs
Depth: 151 with 32 Non-XOR

17 / 20

Limited language documentation is frustrating

I CBMC-GC: Arguments must be called INPUT <var>

I ObliVM:

alice and bob are reserved keywords

I Wysteria: Language docs don’t account for parser limitations

I EMP-toolkit: ≈1 comment per 600 lines of code

i n t main (i n t a l i c e , i n t bob){
s e c u r e i n t r e s u l t = a l i c e ∗ bob ;
return r e s u l t ;

}

$./run-compiler 12345 multiply.lcc
[ERROR] Error: Parsing Error Encountered ” ”alice” ”alice ”” at
line 3, column 21.
Was expecting one of: 〈 IDENTIFIER 〉 ... ”[” ... ”@” ... ”¡” ...

17 / 20

Limited language documentation is frustrating

I CBMC-GC: Arguments must be called INPUT <var>

I ObliVM: alice and bob are reserved keywords

I Wysteria: Language docs don’t account for parser limitations

I EMP-toolkit: ≈1 comment per 600 lines of code

i n t main (i n t aaaaa , i n t bbb){
s e c u r e i n t r e s u l t = aaaaa ∗ bbb ;
return r e s u l t ;

}

$./run-compiler 12345 multiply.lcc
[INFO] The program type checks
[INFO] Compiling mult3.lcc succeeds
[INFO] Compilation finishes successfully.

17 / 20

Limited language documentation is frustrating

I CBMC-GC: Arguments must be called INPUT <var>

I ObliVM: alice and bob are reserved keywords

I Wysteria: Language docs don’t account for parser limitations

I EMP-toolkit: ≈1 comment per 600 lines of code

17 / 20

Limited language documentation is frustrating

I CBMC-GC: Arguments must be called INPUT <var>

I ObliVM: alice and bob are reserved keywords

I Wysteria: Language docs don’t account for parser limitations

I EMP-toolkit: ≈1 comment per 600 lines of code

17 / 20

Documentation appreciation and recommendations

Frameworks with excellent documentation
I ABY: 35-page language guide; only slightly out-of-date

I SCALE-MAMBA: 100+ pages of documentation

I Sharemind: Auto-generated language guide online

Two recommendations for maintainers
I Multiple types of documentation drastically increase usability
I Online resources are sustainable and reduce workload

I Produces a living FAQ
I Allows users to interact

18 / 20

Documentation appreciation and recommendations

Frameworks with excellent documentation
I ABY: 35-page language guide; only slightly out-of-date

I SCALE-MAMBA: 100+ pages of documentation

I Sharemind: Auto-generated language guide online

Two recommendations for maintainers
I Multiple types of documentation drastically increase usability
I Online resources are sustainable and reduce workload

I Produces a living FAQ
I Allows users to interact

18 / 20

What’s next for MPC?

Engineering and usability challenges aside, MPC is in good shape!

Usability challenges have been acknowledged (IARPA HECTOR)

Consider working with programming languages researchers

Our repository is actively maintained!

19 / 20

SoK: General Purpose Frameworks
for Secure Multi-party Computation

Marcella
Hastings

Brett
Hemenway

Daniel
Noble

Steve
Zdancewic

University of Pennsylvania

github.com/mpc-sok/frameworks

20 / 20

github.com/mpc-sok/frameworks

