Exploiting Correcting Codes: On the Effectiveness of ECC Memory Against Rowhammer Attacks

Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, Herbert Bos

Grad students who have no life. Which is most of them I think. Get enough grad students, and you can parallelize some of the gathering of data.

13604 posts | registered 12/22/2003

Rowhammer (RH) causes bits to flip

- Exploit to escalate privilege [Seaborn '15]
- Exploit to escape sandboxes [Seaborn '15, Gruss '18]
- Exploit to compromise confidentiality [Razavi '16]
- Exploit different targets:
 - Desktop computers (browser, local shell etc.)
 - On phones [van der Veen '17], on GPUs [Frigo '18]
 - Over the network [Tatar '18, Lipp '18]

code1a: mov (X), %eax mov (Y), %ebx clflush (X) clflush (Y) mfence jmp code1a

Previous RH attacks are on non-server memory

Previous RH attacks are on non-server memory

ECCploit, RH on server (ECC) memory

Overview

1) Challenges for RH on ECC memory

- 2) Single-bit flips on ECC memory
 - 1) Causing them
 - 2) Observing them
- 3) Reverse engineering of ECC functions
- 4) Performance of Rowhammer on ECC memory

What makes the exploitation of ECC memory difficult?

USE MORE PART FLIPS

1 bit flipped

2 bits flipped

3 bits flipped

1 bit flipped

Corrected by ECC

2 bits flipped

3 bits flipped

3 bits flipped

Q: How to get from one bit flip to three bit flips without hitting two bit flips?

A: Templating bit flips on ECC memory (ECCploit)

2. Combine them to cause silent corruptions (same ECC)

Challenge: observing a single bit flip

Challenge: observing a single bit flip

ECC correction is observable

Word offset inside row

A: Templating bit flips on ECC memory (ECCploit)

2. Combine them to cause silent corruptions (same ECC)

Challenge: finding a suitable 3 bit flip that cause silent corruptions

Challenge: finding a suitable 3 bit flip that cause silent corruptions

Challenge: finding a suitable 3 bit flip that cause silent corruptions

Reverse engineering the ECC implementation

ECC errors reveal the ECC function

Fault injection on the memory bus

Cold-boot attack

ECC errors reveal the ECC function

Fault injection on the memory bus

Cold-boot attack

CPU writes data and control bits

*ptr = data; ControlBits = ECC(data);

ECC bits are stored next to data

CPU writes data and control bits

*ptr = data; ControlBits = ECC(data);

ECC bits are stored next to data

CPU reads data and checks control bits

We can reconstruct the ECC function by observing ECC errors

We can reconstruct the ECC function by observing ECC errors

We can reconstruct the ECC function by observing ECC errors

ECCploit attack

- 1) Recover the ECC function (offline)
- 2) Template the memory
 - 1) Avoid crashes by triggering only single-bit flips
 - 2) Knowing the ECC function, combine single bit flips in undetectable bit flips
- 3) Massage the memory
- 4) Run the Exploit

How long it takes to template ECC memory for Rowhammer?*

*On our setup

How long it takes to template ECC memory for Rowhammer?*

- If a perfect side channel (bit granularity) it takes:
 - 32 minutes for PTE or code change
 - 2 hours for the RSA key attack

How long it takes to template ECC memory for Rowhammer?*

- If a perfect side channel (bit granularity) it takes:
 - 32 minutes for PTE or code change
 - 2 hours for the RSA key attack
- If a typical side channel (word granularity) it takes:
 - 19 hours for PTE or code change
 - 3 days for RSA key attack

Error Correcting Codes: Only Slow Down Rowhammer Attacks

https://vusec.net/projects/eccploit

