Razzer: Finding Kernel Race Bugs thro
ugh Fuzzing

Dae R. Jeong® Kyungtae Kim* Basavesh Shivakumar* Byoungyoung Lee#* Insik Shint

TKorea Advanced Institute of Science and Technology
tSeoul National University
*Purdue University

SEQUL NATIONAL UNIVERSITY
Department of Electrical and PURDUE

Computer Engineering UNIVERSITY

School of
KAIST — Computing

22

Kernel Vulnerabillity

A B g

Attacker can control the entire system

Fuzzing: Focused to Extend Coverage

* Fuzzing
* One of the most practical approaches in finding vulnerabilities

« Coverage-guided fuzzing
* It gathers interesting inputs that extend code coverage.
 The more coverage, the more vulnerabilities

Race Bugs

* Assumption: Race condition between two threads

« Race condition occurs if following three conditions meet
* Two instructions access the same memory location
At least one of two is a write instruction
* These two are executed concurrently

* |If a race occurs, the computational results may vary depending
on the execution order

« Arace vulnerability is caused by the execution order unintended by dev
elopers.

Inefficient Fuzzing for Race Bugs

* Traditional fuzzers are inefficient to find race bugs

* Instructions should be executed within a specific time window
» Called as race window

« Execution orders are not determined by the fuzzer
» Execution orders are determined by the kernel scheduler

Inefficient Fuzzing for Race Bugs: Examp
le

file_name is longer than

strepy(buf, file_name);‘ the all ted buff
e allocated buffer

Buffer overflow!

Thread 1 | Thread 2
Syscall: open() : Syscall: rename()

|
A len = strlen(file_name); |
buf = kmalloc(len); :
Race :

window : ‘ strcpy(file_name, longer _name);
|
|
|
|
|
|
I

Inefficient Fuzzing for Race Bugs: Syzkall
er

« Syzkaller

* A kernel syscall fuzzer developed by Google

« Run Syzkaller to find three race bugs with limited set of syscalls
« CVE-2016-8655
« CVE-2017-17712
« CVE-2017-2636

 None of CVEs was found within 10 hours
 Traditional fuzzing is inefficient to find race bugs
 Razzer can find all of them within 7~30 minutes

Our approach: Razzer

Code coverage

e

Thread interleaving

len = strlen(file_name);

buf = kmaIIoc(Ien);\

strcpy(file_name, longer_name);

N

strcpy(buf, file_name);

Our approach: Razzer

Thread 1 Thread 2

Syscall: open() Syscall: rename()

--F--X--- len = strlen(file_name); | |-
buf = kmalloc(len);

Race
window

VL - strepy(buf, file_name); |-

Buffer overflow!

HE EE I S S S S S S S B B S S S . ..
I
)]
—
)
@)
©
<
~
-
Ic?
-
Q
3
@
)
>
Q
D
|1
>
Q
3
2

Design Overview

Offline ana Online
lysis testing

(e " A
Over-approximated I I Multi-thread I I

code Q data races l l input l l
A LLLEN LLLEN

Static analysis Single-thread Multi-thread
fuzzing fuzzing

Design Overview

Over-approximated

code Q data races
A

Static analysis

11

Static Analysis

* |dentifying instructions that may race
« Teaching Razzer where to install breakpoints to trigger race

* Inclusion-based points-to analysis
» Also known as Andersen-style points-to analysis

* This static analysis certainly has false positives
* Next phases (fuzzing) takes care of this issue because it is “fuzzing”

Static Analysis: Example

Razzer identified 3.4M race candidates over the entire Linux kernel

len = strlen{file_name);

buf = kmalloc(len); _
...'... erte

strcp longer_name);

Read _...-="

strcpy (buf

13

Design Overview

(S I ST
Over-approximated I I Multi-thread

data races . . input

Single-thread
fuzzing

Single-thread Fuzzing

Thread 1

Single-thread Syscall: open()
input

len = strlen(file_name);

buf = kmalloc(len);

opénO

rename() strcpy(buf, file_name);

Syscall: rename()

strcpy(file_name, longer_name);

Transformation to Multi-thread Input

Thread 1 Thread 2

strcpy(file_name,
longer _name);

Design Overview

(| (2)
Multi-thread I I

input . .

Multi-thread
fuzzing

Multi-thread Fuzzing

Guest VM

Hypervisor

CPU1

CPU 2

Thread 1

Hype'rcall
Syscall n

len = strlen(file_name);
buf = kmalloc(len);

strcpy(buf, file_name)

strcpy(bufl file_name); |

Thread 2 g
Hypercall

strcpy(file_name,
longer_name);

Syscall
m -

strcp}(file_name, |other_name);

Two threads access the same memory
=» A race condition is occurred

Thread 1

Thread 2

Implementation

 Static analysis
» Implemented using SVF which is based on LLVM compiler suite

* Single-thread/Multi-thread fuzzing
* Implemented based on Syzkaller

» Deterministic scheduler
* Implemented using QEMU/KVM
» Exposing hypercall interfaces to support per-core breakpoint

Kernel crash summary Crash type

KASAN: slab-out-of-bounds write in tty_insert_flip_string_flag Use-After-Free
WARNING in __static_key_slow_dec Reachable Warning
]

E V a I u a t I O n Kernel BUG at net/packet/af_packet.c:LINE! Reachable Assertion
WARNING in refcount_dec Reachable Warning
unable to handle kernel paging request in snd_seq_oss_readq_puts Page Fault

P 30 n eW ra CeS I n th e LI n u X ke rn el KASAN: use-after-free Read in loopback_active_get Use-After-Free
KASAN: null-ptr-deref Read in rds_ib_get_mr Null ptr deref

° 1 5 We re fIXGd KASAN: null-ptr-deref Read in list_Iru_del Null ptr deref
BUG: unable to handle kernel NULL ptr dereference in corrupted Null ptr deref

KASAN: use-after-free Read in nd_jump_root Use-After-Free

U s e -afte r-free KASAN: use-after-free Read in link_path_walk Use-After-Free

BUG: unable to handle kernel paging request in __inet_check_established =~ Page Fault

KASAN: null-ptr-deref Read in ata_pio_sector Null ptr deref
WARNING in ip_recv_error Reachable Warning
WARNING in remove_proc_entry Reachable Warning
KASAN: null-ptr-deref Read in ip6gre_exit_batch_net Null ptr deref

H ea p Ove rfl OW KASAN: slab-out-of-bounds Write in __register_sysctl_table Heap overflow

KASAN: use-after-free Write in skb_release_data Use-After-Free
D o u b I e free KASAN: invalid-free in ptlock_free Double free

Kernel BUG at lib/list_debug.c:LINE! Reachable Assertion
INFO: trying to register non-static key in __handle_mm_fault Reachable INFO
BUG: soft lockup in vmemdup_user Soft lockup
WARNING in sg_rq_end_io Reachable Warning
BUG: soft lockup in snd_virmidi_output_trigger Soft lockup
KASAN: null-ptr-deref Read in smc_ioctl Null ptr deref
KASAN: null-ptr-deref Write in binderf_update_page_range Null ptr deref
WARNING in port_delete Reachable Warning

KASAN: null-ptr-deref in inode_permission Null ptr def

Evaluation: Comparison with Syzkaller

 Run Razzer and Syzkaller with limited set of syscalls

« Razzer found race bugs 23~85 faster than Syzkaller
» Razzer found 3 race bugs within short time

» Syzkaller didn’t find 3 race bugs within 10 hours

Race bugs

Syzkaller

Found

of exec

Time

CVE-2016-8655 29 M 10 hrs X 1,170 K 26 min v
CVE-2017-17712 37 M 10 hrs X 807 K 18 mins v
CVE-2017-2636 5SM 10 hrs X 246 K 7/ mins v

Conclusion
* Razzer, a new fuzzer focusing on race bugs
« Taming non-deterministic behavior of races

« Combining static analysis and fuzzing

« Source code (by May 25, 2019)

* https://github.com/compsec-snu/razzer

Thank you

Dae R. Jeong
threeearcat@gmail.com

KAIST School of

— Computing

Computer Engineering UNIVERSITY

(P&) Department of Electrical and PURDUE
A ;

