Hard Drive of Hearing: Disks that Eavesdrop with a Synthesized Microphone

Andrew Kwong, Wenyuan Xu, Kevin Fu

andrewkwong.org, usslab.org, spqr.eecs.umich.edu, kevinfu@umich.edu

IEEE Symposium on Security and Privacy 2019 Grand Ballroom B -- 1:10Pm

Sensors Intrude on Privacy

- Accelerometers can leak keystrokes [1], gyroscopes can leak voice [2], etc.
- What is the threat from devices never intended to be sensors in the first place?

Accelerometers: [1] Marquardt et al., CCS '11, "(sp)iPhone..." Gyroscopes: [2] Michalevsky et al., Usenix Security '14, "Gyrophone..."

Hard Drive as a Microphone?

Challenges:

- HDDs are not designed as microphones
- Large quantity of self-noise
- Low signal-to-noise ratio

Contributions

HDD as a microphone

- Used SNReval measurements to evaluate extracted speech quality
- Used Shazam to recognize song recovered through HDD

Mitigations

- Ultrasonic aliasing
- Firmware signatures

Threat Model

Firmware Resident Malware

- Drive firmware can be flashed from software Flashing:
- MITM attacks (POODLE, LOGJAM, DROWN)
- Any compromise granting root access to a machine

Andrew Kwong (https://andrewkwong.org)

MUST READ: IT strategy: How an investment in diversity can boost your business

Apple's T2 security chip disconnects a MacBook's microphone when users close the lid

Feature only available for MacBook Pro and MacBook Air models released in 2018.

By Catalin Cimpanu for Zero Day | October 30, 2018 -- 20:00 GMT (13:00 PDT) | Topic: Security

http://stahlke.org/dan/phonemute/

HDD as a microphone

- Head stack assembly actuates the read/write head as the disk spins beneath it
 - Head follows a track
 - can tolerate only tiny errors
- Position Error Signal(PES):
 - Head's offset from center
 of current track

Head Tracking

- Utilizes Feedback-Control Loop to keep head on track
- Generates PES by reading out magnetic burst from servo sectors
 - Fixed number of servo sectors per track

Similarities to Microphone

Microphone:

- Output measures diaphragm displacement
- Sound waves displace diaphragm

HDD:

- PES measures read/ write head displacement
- Sound waves displace write head?

PES approximates microphone output??

https://www.instructables.com/id/Simplified-Electronics-Microphone-DIY-How-It-Works/

Andrew Kwong (https://andrewkwong.org)

Measuring the PES

- Under our threat model, attacker would read it through firmware resident malware
 - Zaddach et al. [3] developed HDD firmware malware
- Proof of concept: suffices to read PES by tapping a debug pin
 - Used serial diagnostic port to output PES

HDD Malware: [3] Zaddach et al., ACSAC '13

Sampling Rate

frequency_sampling = frequency_rotation * num_servo_sectors_per_track

= 120 Hz * 288

= 34,560 Hz

Nyquist-Shannon Sampling theorem:

- need sample at 2x the frequency of signal
 Audible sound: 20 Hz-20 kHz
- Male fundamental: 85-180 Hz
- Female fundamental: 156-255 Hz
- POTS: 8 kHz

demo

Experimental Setup

Speech Recovery

Must recover speech from PES readings

- PES values approximate instantaneous air pressure readings
- Wrote normalized PES values to WAV file

Noise from:

- Platter eccentricity
- Thermal drift
 - Errors 300X width of track
- turbulence

Andrew Kwong (https://andrewkwong.org)

Signal Analysis

 Harvard Sentence male speaker with drive enclosed in case and fan powered at max (42W)

Quantitative Measures

PESQ MOS: Perceptual Evaluation of Speech Quality.

- •Estimates intelligibility of speech
- •Baseline: 1.7dB
- •From exposed HDD: 1.4 dB
- •Inside external hard drive enclosure: 1.6 dB

Enclosure actually improved results!

·Container presents a larger surface area to oncoming waves

Speech Sample

Transcription:

- Paint the sockets in the wall dull green.
- The child crawled into the dense grass.
- Bribes fail where honest men work.
- Trample the spark, else the flames will spread.

Shazam Recognition

 Played Iron Maiden's "The Trooper" at hard drive

Success, but ...

Required higher volume (90 dBA), filtering didn't work

- Noise-gating discrimination errors ruined spectral fingerprint
- Recovered audio extremely poor
- Still enough information to be recognized

Potential Improvements

Multiple Hard drives

- Make use of signal averaging
- White noise averages to zero, signal averages to itself

Use auto-correlation to find repetitions of same utterance, average them

Mitigations

- Ultrasonic masking can protect deployed systems
- Sign firmware!
 - Zaddach et al. [3] didn't find signatures in use in any HDDs they examined

[3] [HDD Malware, ACSAC '03]

Conclusion

Our research sheds light on overlooked threat of devices that weren't designed as sensors

Defenses for already deployed systems are challenging

Hard drives can approximate crude microphones

П	
Ľ	ر سا

Other Applications: other devices, such as printers; mechanical coupling

Shipments of hard and solid state disk (HDD/SSD) drives worldwide from 2015 to 2021 (in millions)

www.statista.com/statistics/285474/hdds_and-siglobal-shipments-2012-2017/23

Granularity

- PES is a 16-bit value
- Granularity: 1/(2^12) of a track
- Only get 8 bits from AMUX pin
- Chose bits 3-10

•

•

•

Accessibility to MCU

- Proof-of-Concept attack demonstrates what an attacker with firmware-resident malware can do
- First confirmed MCU's access to PES

8	🕒 Fi	le Edit	Log Configuration	Control signals	View	Help	
3 s	igma i	NRRO	= +4.99E-0 %	track			
**E	nd						
F3	4>U10	0D					
000	00.0,	WFT	23D (+1.3E+1	8)			
000	FF:59	0009	0800			- + +	
001	FFIE	FFDI	0005			- * +	
002	FEAD	0046	0023				
004	FF73	FFFF	0084				
005	FF3C	0001	0084				
006	FFOA	FFB1	0029			- * +	
007	FEA8	FF6C	0017				
800	FF96	002C	00C1				
009	FF31	FFC6	0057				
00A	FEE0	FF94	0052				
00B	FF03	FFC5	0090				
00C	FF3B	FFFO	009B				
00D	FF69	FFFF	00A3				
OOE	FF9D	0037	00E1				
OOF	FF75	0021	00BA				
010	FF75	0019	00B1				
011	FFB0	003F	00C7			- 1* +	
012	FF38	FFE5	007C			- * +	
013	FEE7	FFAO	005C			- * +	
014	FF36	FFF5	00B1				
015	FECF	FF8/	0047			- * +	
016	FFUS	FFB6	0076				
019	FFOU	0000	01081			- + +	
010	FFDA	00000	0131			-1 * +	
013	0005	0007	0151			- * +	
01B	FF9A	0040	0053				
010	FF85	0010	0083				
01D	FF3D	FFC1	0056				
01E	FF13	FF97	0027				
01F	FF95	0016	009A				
020	FFBA	004F	0108				
021	FFEA	009E	0161				
022	FFFF	0082	011C				
023		00AE	0130				
024	FF5B	FFDD	0065				
025	FFOF	FFBF	0066				

Frequency Response

26

Spectral Analysis

- Heavy bands of persistent noise around 8 kHz and 1900 kHz
- Responds well to 2.5 kHz tone

Reading PES

Andrew Kwong (https://andrewkwong.org)

Digital Signal Processing

- Linearly filtering out 8 kHz and 1.9 kHz removes the heaviest bands of noise
- Made use of spectral noise gating for further filtering
 - Find noise thresholds at smaller sub-bands, only pass frequencies above the threshold

