
A classic locked-room mystery.
Eve was in the false branch

of a conditional the whole time,
how could she do it?

Creative Commons Attribution-ShareAlike 4.0
Mozilla Research | DePaul University | U. California San Diego

The Code
That Never Ran

Craig Disselkoen,
Radha Jagadeesan,

Alan Jeffrey,
James Riely

Introduction

Spectre

Optimizations

Simplified Spectre

Results

Experiments

Conclusions

3 January 2018

A day out at the Tate Modern

The Code
That Never Ran

Craig Disselkoen,
Radha Jagadeesan,

Alan Jeffrey,
James Riely

Introduction

Spectre

Optimizations

Simplified Spectre

Results

Experiments

Conclusions

3 January 2018

A day out at the Tate Modern

The Code
That Never Ran

Craig Disselkoen,
Radha Jagadeesan,

Alan Jeffrey,
James Riely

Introduction

Spectre

Optimizations

Simplified Spectre

Results

Experiments

Conclusions

3 January 2018

A day out at the Tate Modern

The Code
That Never Ran

Craig Disselkoen,
Radha Jagadeesan,

Alan Jeffrey,
James Riely

Introduction

Spectre

Optimizations

Simplified Spectre

Results

Experiments

Conclusions

Spectre

Attacks bypass run-time security checks.

Can bypass array bounds checks,
and read whole process memory.

Can be exploited from JS,
so evil.ad.com can read your bank.com data.

Attacks speculative evaluation
hardware optimization.

The Code
That Never Ran

Craig Disselkoen,
Radha Jagadeesan,

Alan Jeffrey,
James Riely

Introduction

Spectre

Optimizations

Simplified Spectre

Results

Experiments

Conclusions

Optimizations in hardware

A lie we tell programmers:
“computers execute instructions one after the other.”

x := x + 1; y := 1

has execution:

R x 1 W x 2 W y 1

Shared-memory concurrency leaks the abstraction

Resulted in entire research area: weak memory models (e.g. Pugh et al.; C11)

The Code
That Never Ran

Craig Disselkoen,
Radha Jagadeesan,

Alan Jeffrey,
James Riely

Introduction

Spectre

Optimizations

Simplified Spectre

Results

Experiments

Conclusions

Optimizations in hardware

A lie we tell programmers:
“computers execute instructions one after the other.”

x := x + 1; y := 1

has execution where W y 1 might happen first:

R x 1 W x 2 W y 1

Shared-memory concurrency leaks the abstraction

Resulted in entire research area: weak memory models (e.g. Pugh et al.; C11)

The Code
That Never Ran

Craig Disselkoen,
Radha Jagadeesan,

Alan Jeffrey,
James Riely

Introduction

Spectre

Optimizations

Simplified Spectre

Results

Experiments

Conclusions

Optimizations in hardware

A lie we tell programmers:
“computers execute instructions one after the other.”

x := x + 1; y := 1

has execution:

R x 1 W x 2 W y 1

Shared-memory concurrency leaks the abstraction

Resulted in entire research area: weak memory models (e.g. Pugh et al.; C11)

The Code
That Never Ran

Craig Disselkoen,
Radha Jagadeesan,

Alan Jeffrey,
James Riely

Introduction

Spectre

Optimizations

Simplified Spectre

Results

Experiments

Conclusions

Optimizations in hardware

A lie we tell programmers:
“computers execute instructions one after the other.”

x := x + 1; y := 1

has execution:

R x 1 W x 2 W y 1

Shared-memory concurrency leaks the abstraction

Resulted in entire research area: weak memory models (e.g. Pugh et al.; C11)

The Code
That Never Ran

Craig Disselkoen,
Radha Jagadeesan,

Alan Jeffrey,
James Riely

Introduction

Spectre

Optimizations

Simplified Spectre

Results

Experiments

Conclusions

Optimizations in hardware

and compilers

Another lie we tell programmers:
“only one branch of an if is executed.”

if (x) { y := 1; z := 1 } else { y := 2; z := 1 }

has execution:

R x 1 W y 1 W z 1

W y 2 W z 1

No language-level model for this!

As weak memory models are to OOO, so what is to speculation?

The Code
That Never Ran

Craig Disselkoen,
Radha Jagadeesan,

Alan Jeffrey,
James Riely

Introduction

Spectre

Optimizations

Simplified Spectre

Results

Experiments

Conclusions

Optimizations in hardware

and compilers

Another lie we tell programmers:
“only one branch of an if is executed.”

if (x) { y := 1; z := 1 } else { y := 2; z := 1 }

has execution where W z 1 might happen before W y 1:

R x 1 W y 1 W z 1

W y 2 W z 1

No language-level model for this!

As weak memory models are to OOO, so what is to speculation?

The Code
That Never Ran

Craig Disselkoen,
Radha Jagadeesan,

Alan Jeffrey,
James Riely

Introduction

Spectre

Optimizations

Simplified Spectre

Results

Experiments

Conclusions

Optimizations in hardware

and compilers

Another lie we tell programmers:
“only one branch of an if is executed.”

if (x) { y := 1; z := 1 } else { y := 2; z := 1 }

has execution where W y 2 might happen, then get rolled back:

R x 1 W y 1 W z 1

W y 2 W z 1

No language-level model for this!

As weak memory models are to OOO, so what is to speculation?

The Code
That Never Ran

Craig Disselkoen,
Radha Jagadeesan,

Alan Jeffrey,
James Riely

Introduction

Spectre

Optimizations

Simplified Spectre

Results

Experiments

Conclusions

Optimizations in hardware and compilers

Another lie we tell programmers:
“only one branch of an if is executed.”

if (x) { y := 1; z := 1 } else { y := 2; z := 1 }

has execution where W z 1 might happen first:

R x 1 W y 1 W z 1

W y 2

W z 1

No language-level model for this!

As weak memory models are to OOO, so what is to speculation?

The Code
That Never Ran

Craig Disselkoen,
Radha Jagadeesan,

Alan Jeffrey,
James Riely

Introduction

Spectre

Optimizations

Simplified Spectre

Results

Experiments

Conclusions

Optimizations in hardware and compilers

Another lie we tell programmers:
“only one branch of an if is executed.”

if (x) { y := 1; z := 1 } else { y := 2; z := 1 }

has execution:

R x 1 W y 1 W z 1

W y 2

W z 1

No language-level model for this!

As weak memory models are to OOO, so what is to speculation?

The Code
That Never Ran

Craig Disselkoen,
Radha Jagadeesan,

Alan Jeffrey,
James Riely

Introduction

Spectre

Optimizations

Simplified Spectre

Results

Experiments

Conclusions

Simplified Spectre

Imagine a SECRET, protected by a run-time security check:

if canRead(SECRET) { . . . use SECRET . . . } else { . . . }

For attacker code canRead(SECRET) is always false

, e.g.

R y 1 W x 2

RSECRET1 W x 1

is an execution of if y { if canRead(SECRET) { x := SECRET } else { x := 2 } }.

Attacker goal: learn if SECRET is 0 or 1.

The Code
That Never Ran

Craig Disselkoen,
Radha Jagadeesan,

Alan Jeffrey,
James Riely

Introduction

Spectre

Optimizations

Simplified Spectre

Results

Experiments

Conclusions

Simplified Spectre

Imagine a SECRET, protected by a run-time security check:

if canRead(SECRET) { . . . use SECRET . . . } else { . . . }

For attacker code canRead(SECRET) is always false, e.g.

R y 1 W x 2

RSECRET1 W x 1

is an execution of if y { if canRead(SECRET) { x := SECRET } else { x := 2 } }.

Attacker goal: learn if SECRET is 0 or 1.

The Code
That Never Ran

Craig Disselkoen,
Radha Jagadeesan,

Alan Jeffrey,
James Riely

Introduction

Spectre

Optimizations

Simplified Spectre

Results

Experiments

Conclusions

Simplified Spectre

Imagine a SECRET, protected by a run-time security check:

if canRead(SECRET) { . . . use SECRET . . . } else { . . . }

For attacker code canRead(SECRET) is always false, e.g.

R y 1 W x 2

RSECRET1 W x 1

is an execution of if y { if canRead(SECRET) { x := SECRET } else { x := 2 } }.

Attacker goal: learn if SECRET is 0 or 1.

The Code
That Never Ran

Craig Disselkoen,
Radha Jagadeesan,

Alan Jeffrey,
James Riely

Introduction

Spectre

Optimizations

Simplified Spectre

Results

Experiments

Conclusions

Simplified Spectre

A very simplified Spectre attack:

if canRead(SECRET) { a[SECRET]:= 1 }
else if touched (a[0]) { x := 0 }
else if touched (a[1]) { x := 1 }

with execution

R SECRET1 W a[1] 1 magic! W x 1

Information flow from SECRET to x , if there’s an implementation of “magic”.

Narrator: there was one.

The Code
That Never Ran

Craig Disselkoen,
Radha Jagadeesan,

Alan Jeffrey,
James Riely

Introduction

Spectre

Optimizations

Simplified Spectre

Results

Experiments

Conclusions

Simplified Spectre

A very simplified Spectre attack:

if canRead(SECRET) { a[SECRET]:= 1 }
else if touched (a[0]) { x := 0 }
else if touched (a[1]) { x := 1 }

with execution

R SECRET1 W a[1] 1 magic! W x 1

Information flow from SECRET to x , if there’s an implementation of “magic”.

Narrator: there was one.

The Code
That Never Ran

Craig Disselkoen,
Radha Jagadeesan,

Alan Jeffrey,
James Riely

Introduction

Spectre

Optimizations

Simplified Spectre

Results

Experiments

Conclusions

Results

Formalization of pretty pictures as partially ordered multisets (Gisher, 1988).

Compositional semantics based on weak memory models (e.g. C11).

Examples modeling Spectre, Spectre mitigations,
PRIME+ABORT attack on transactional memory. . .

and a new family of attacks on compiler optimizations.

The Code
That Never Ran

Craig Disselkoen,
Radha Jagadeesan,

Alan Jeffrey,
James Riely

Introduction

Spectre

Optimizations

Simplified Spectre

Results

Experiments

Conclusions

Results

Formalization of pretty pictures as partially ordered multisets (Gisher, 1988).

Compositional semantics based on weak memory models (e.g. C11).

Examples modeling Spectre, Spectre mitigations,
PRIME+ABORT attack on transactional memory. . .
and a new family of attacks on compiler optimizations.

The Code
That Never Ran

Craig Disselkoen,
Radha Jagadeesan,

Alan Jeffrey,
James Riely

Introduction

Spectre

Optimizations

Simplified Spectre

Results

Experiments

Conclusions

Modeling an attack on compiler optimizations
An attacker running two threads (initially x = y = 0):

y := x || if (y ==0) { x := 1 }
else if (canRead(SECRET)) { x := SECRET }
else { x := 1; z := 1 }

If SECRET is 1, there is an execution:

R x 1

W y 1 R y 1

W x 1

W z 1

If SECRET is 2, there is no execution (due to cyclic dependency):

R x 1

W y 1 R y 1

W x 1 W x 2

W z 1

The Code
That Never Ran

Craig Disselkoen,
Radha Jagadeesan,

Alan Jeffrey,
James Riely

Introduction

Spectre

Optimizations

Simplified Spectre

Results

Experiments

Conclusions

Implementing attacks on compiler optimizations

Spectre and Prime+Abort are implemented.

Can we implement the attacks on compiler optimizations?

Yes, under unrealistic assumptions:
I SECRET is a constant known at compile-time
I canRead(SECRET) is a run-time check

The Code
That Never Ran

Craig Disselkoen,
Radha Jagadeesan,

Alan Jeffrey,
James Riely

Introduction

Spectre

Optimizations

Simplified Spectre

Results

Experiments

Conclusions

Implementing attacks on compiler optimizations

Spectre and Prime+Abort are implemented.

Can we implement the attacks on compiler optimizations?

Yes

, under unrealistic assumptions:
I SECRET is a constant known at compile-time
I canRead(SECRET) is a run-time check

The Code
That Never Ran

Craig Disselkoen,
Radha Jagadeesan,

Alan Jeffrey,
James Riely

Introduction

Spectre

Optimizations

Simplified Spectre

Results

Experiments

Conclusions

Implementing attacks on compiler optimizations

Spectre and Prime+Abort are implemented.

Can we implement the attacks on compiler optimizations?

Yes, under unrealistic assumptions:
I SECRET is a constant known at compile-time
I canRead(SECRET) is a run-time check

The Code
That Never Ran

Craig Disselkoen,
Radha Jagadeesan,

Alan Jeffrey,
James Riely

Introduction

Spectre

Optimizations

Simplified Spectre

Results

Experiments

Conclusions

Implementing an attack on load/store reordering

Main attacker thread: x := 1; if (canRead(SECRET)) { x := SECRET; }r := y ;

When SECRET 6= 1, gcc generates:

mov canReadSecret(%rip), %eax
mov $1, x(%rip)
test %eax, %eax
je label1
mov $0, x(%rip)

label1:
mov y(%rip), %eax

Writes x then reads y

When SECRET = 1, gcc generates:

mov canReadSecret(%rip), %eax
mov y(%rip), %eax
mov $1, x(%rip)

Conditional has been eliminated!
Reads y then writes x

Forwarding thread x := y allows attacker to spot the reordering

The Code
That Never Ran

Craig Disselkoen,
Radha Jagadeesan,

Alan Jeffrey,
James Riely

Introduction

Spectre

Optimizations

Simplified Spectre

Results

Experiments

Conclusions

Implementing an attack on load/store reordering

Main attacker thread: x := 1; if (canRead(SECRET)) { x := SECRET; }r := y ;

When SECRET 6= 1, gcc generates:

mov canReadSecret(%rip), %eax
mov $1, x(%rip)
test %eax, %eax
je label1
mov $0, x(%rip)

label1:
mov y(%rip), %eax

Writes x then reads y

When SECRET = 1, gcc generates:

mov canReadSecret(%rip), %eax
mov y(%rip), %eax
mov $1, x(%rip)

Conditional has been eliminated!
Reads y then writes x

Forwarding thread x := y allows attacker to spot the reordering

The Code
That Never Ran

Craig Disselkoen,
Radha Jagadeesan,

Alan Jeffrey,
James Riely

Introduction

Spectre

Optimizations

Simplified Spectre

Results

Experiments

Conclusions

Implementing an attack on load/store reordering

Main attacker thread: x := 1; if (canRead(SECRET)) { x := SECRET; }r := y ;

When SECRET 6= 1, gcc generates:

mov canReadSecret(%rip), %eax
mov $1, x(%rip)
test %eax, %eax
je label1
mov $0, x(%rip)

label1:
mov y(%rip), %eax

Writes x then reads y

When SECRET = 1, gcc generates:

mov canReadSecret(%rip), %eax
mov y(%rip), %eax
mov $1, x(%rip)

Conditional has been eliminated!
Reads y then writes x

Forwarding thread x := y allows attacker to spot the reordering

The Code
That Never Ran

Craig Disselkoen,
Radha Jagadeesan,

Alan Jeffrey,
James Riely

Introduction

Spectre

Optimizations

Simplified Spectre

Results

Experiments

Conclusions

Implementing an attack on load/store reordering

Main attacker thread: x := 1; if (canRead(SECRET)) { x := SECRET; }r := y ;

When SECRET 6= 1, gcc generates:

mov canReadSecret(%rip), %eax
mov $1, x(%rip)
test %eax, %eax
je label1
mov $0, x(%rip)

label1:
mov y(%rip), %eax

Writes x then reads y

When SECRET = 1, gcc generates:

mov canReadSecret(%rip), %eax
mov y(%rip), %eax

mov $1, x(%rip)

Conditional has been eliminated!
Reads y then writes x

Forwarding thread x := y allows attacker to spot the reordering

The Code
That Never Ran

Craig Disselkoen,
Radha Jagadeesan,

Alan Jeffrey,
James Riely

Introduction

Spectre

Optimizations

Simplified Spectre

Results

Experiments

Conclusions

Implementing an attack on load/store reordering

Main attacker thread: x := 1; if (canRead(SECRET)) { x := SECRET; }r := y ;

When SECRET 6= 1, gcc generates:

mov canReadSecret(%rip), %eax
mov $1, x(%rip)
test %eax, %eax
je label1
mov $0, x(%rip)

label1:
mov y(%rip), %eax

Writes x then reads y

When SECRET = 1, gcc generates:

mov canReadSecret(%rip), %eax
mov y(%rip), %eax

mov $1, x(%rip)

Conditional has been eliminated!
Reads y then writes x

Forwarding thread x := y allows attacker to spot the reordering

The Code
That Never Ran

Craig Disselkoen,
Radha Jagadeesan,

Alan Jeffrey,
James Riely

Introduction

Spectre

Optimizations

Simplified Spectre

Results

Experiments

Conclusions

Implementing an attack on load/store reordering

Small delay between write x and read y : increases probability of round trip

gcc will reorder across 30 straight-line instructions

Repeat to leak multiple bits, error correction

Bitwise accuracy 99.99% at 300Kbps

The Code
That Never Ran

Craig Disselkoen,
Radha Jagadeesan,

Alan Jeffrey,
James Riely

Introduction

Spectre

Optimizations

Simplified Spectre

Results

Experiments

Conclusions

Implementing an attack on dead store elimination

A similar attack targets dead store elimination

Works on clang + gcc

Bitwise accuracy 99.99% at 1.2Mbps

The Code
That Never Ran

Craig Disselkoen,
Radha Jagadeesan,

Alan Jeffrey,
James Riely

Introduction

Spectre

Optimizations

Simplified Spectre

Results

Experiments

Conclusions

Contributions

A compositional model of program execution that includes speculation.

Examples including existing information flow attacks on branch prediction
and transactional memory, and new attacks on optimizing compilers.

Experimental evidence that the new attacks can be carried out,
but only against compile-time secrets.

(Phew, we failed to mount attacks on JIT compilers.)

https://github.com/chicago-relaxed-memory/spec-eval

https://github.com/chicago-relaxed-memory/spec-eval

	Introduction
	Spectre
	Optimizations
	Simplified Spectre
	Results
	Experiments
	Conclusions

