Poster: Scalable Bias-Resistant Distributed Randomness

Ewa Syta*, Philipp Jovanovic!, Eleftherios Kokoris Kogias!, Nicolas Gailly',
Linus GasserT, Ismail Khofﬁi, Michael J. Fischer§, Bryan Ford!

*Trinity College, USA, Ecole Polytechnique Fédérale de Lausanne, Switzerland, iUniversity of Bonn, Germany, §Yale University, USA

I. INTRODUCTION

Bias-resistant public randomness is a critical component
required in many (distributed) protocols. Tor hidden services
depend on a fresh random value generated each day for protec-
tion against popularity estimations and DoS attacks. Anytrust-
based systems such as Herbivore, Dissent, and Vuvuzela use
bias-resistant public randomness for scalability by sharding
participants into smaller groups. TorPath critically depends
on public randomness for setting up consensus groups. Public
randomness can be used to select parameters for cryptographic
protocols or standards transparently, like in the generation of
elliptic curves where adversaries should not be able to stir the
process to select curves with weak security parameters Voting
systems, elections, polls, lotteries, and some Byzantine agree-
ment algorithms also critically depend on public randomness
and illustrate its importance.

The process of generating public random values, however,
is not trivial because sources of good randomness (in terms
of entropy) are difficult to obtain for regular users. NIST
deployed a publicly-accessible randomness beacon that pro-
vides hardware-generated random output and addresses the
challenge of producing good randomness in terms of entropy.
The beacon’s design assumes that everyone trusts NIST which
is not a reasonable assumption, though, especially given issues
such as the Dual EC DRBG debacle.

II. GOALS

In this work we are concerned with the important comple-
mentary challenge of producing good sources of randomness
in terms of trust. Having an approach to public random-
ness without a trusted party is attractive, especially in a
collaborative setting, where a significant number of users
wishes to participate. Proposals discussing such approaches
utilize Bitcoin, slow cryptographic hash functions, lotteries, or
financial data as sources for public randomness.

Our goal is to provide unpredictable and unbiasable public
randomness in the familiar ¢-of-n threshold security model
already widely-used in threshold cryptography and Byzantine
consensus protocols. Generating public randomness is hard,
however, because active adversaries may behave dishonestly
in order to bias public random choices toward their advantage,
e.g., by manipulating their own explicit inputs or by selectively
injecting failures. While dealing with those issues is relatively
straightforward [2] for small values of n ~ 10, we address
scalability challenges of using large values of n ~ 1000 for
enhanced security in real-world scenarios.

III. DESIGN

In this section we describe three solutions to bias-resistant
public randomness: RandShare, a motivational example that
lays the foundation for our other proposals, RandHound, a
client/server protocol that addresses RandShare’s scalability
issues, and RandHerd, an efficient, distributed randomness
beacon that utilizes RandHound for setup and reconfiguration.

At first, designing a protocol to produce a public random
value seems straightforward among a group of n clients, one
of which is honest and can contribute a “good” random input.
We could collect random inputs r1, - - - , 7, from n clients and
XOR them together, but the last client to provide his input can
first look at everyone’s inputs and then completely decide the
output. We can require clients to send commitments first, then
reveal the corresponding random inputs. Again, however, if the
last client to reveal does not like the output of the protocol,
it can either send a bad opening or refuse to reveal, forcing
everyone to abort and re-run the protocol, until the output is
favorable to the obstinate client. Applying a secret sharing
scheme [4] to each client’s input such that it can be recovered
so long ¢ out of n clients cooperate, brings us one step closer
to addressing this active attack but it assumes a trusted dealer.
To eliminate the trusted dealer, RandShare uses a verifiable
secret sharing scheme [1]. This results in a scheme that is
secure against active disruptions and has been used in various
ways before [2] but has a O(n?) complexity.

A. RandHound

For the rest of the paper we assume that out of n servers
fewer than one-third are maliciously colluding.

RandHound switches to a client/server model, in which a
client invokes the services of a set of RandHound servers to
produce a random value (Figure 1). RandHound addresses
the scalability issues of RandShare by sharing secrets not
directly among all other servers but only within smaller groups
of servers. The client first arranges the servers into disjoint,
balanced groups for scalability. Application of the pidgeon-
hole principle ensures the unpredictability and unbiasability
of RandHound’s final output even if some subgroups are
compromised, e.g., due to biased grouping. Then, each server
pre-shares its random input among only the members of its
group instead of the full group of n servers (out of which
t < k are sufficient to reconstruct the secret). This reduces
the communication and computational overhead from O(n?)
to O(nc?), where c is the average (constant) size of a group.

RandHound consists of randomness generation and ran-
domness verification phases. During randomness generation,



Client

PVSS Group

Fig. 1. An overview of the RandHound design.

the client works with RandHound servers to produce a random
string Z which is publicly verifiable through a log L, or
transcript, where the client documents the run of the protocol
by recording the messages he sends and receives. The tran-
script serves as a third party verifiable proof of the produced
randomness. During randomness verification, any external
verifier can check the validity of Z against the transcript L.
RandHound’s randomness generation consists of three inquiry-
response phases between the client and the servers followed
by the client’s randomness recovery.

1) Initialization (Client). The client broadcasts a session
configuration C consisting of all participants’ public keys,
server groupings, a timestamp and a session identifier.

2) Share Distribution (Server). Each server chooses its
random input and creates shares for members of the same
group using step 1 of PVSS [3], a publicly verifiable
secret sharing scheme, and sends encrypted shares to the
client together with the NIZK proofs of correctness.

3) Secret Commitment (Client). To tolerate server failures,
the client selects and commits to a subset of secret inputs
from each group that contribute to the final random string
Z, and asks servers to co-sign his choice using CoSi [6],
an efficient co-signing protocol that produces a collective
Schnorr signature under an aggregate public key.

4) Secret Acknowledgment (Server). Each server acknowl-
edges the client’s commitment by participating in CoSi
preventing client’s equivocation.

5) Decryption Request (Client). After a successful CoSi
run, the client requests the decryption of the secrets.

6) Share Decryption (Server). Each server decrypts the
shares received from the client using step 2 of PVSS.

7) Randomness Recovery (Client). The client combines the
recovered secrets to produce the final random output Z
by performing step 3 of PVSS.

B. RandHerd

RandHound’s design offers a scalability and performance
improvements but it is still not efficient enough to run fre-
quently, e.g., once a minute, a rate comparable to NIST’s
randomness beacon. RandHerd is a collective randomness
authority or cothority [6] that uses RandHound for bootstrap-
ping or occasional reconfiguration, but then produces random-
ness at frequent intervals much more efficiently. RandHerd

TSS Group 1

TSS Group 2 TSS Group 3

—— CoSi-Tree ——— Server-to-Server

Fig. 2. An overview on the RandHerd design

reduces communication and computational overhead from
RandHound’s O(c?n) to O(c?logn) given a group size c.

RandHerd runs continually and need not be initiated by any
client, but requires stateful servers (Figure 2). No single or
sub-threshold group of failing or malicious servers can halt
the protocol, or predict or significantly bias its output. Clients
can check the trustworthiness of any published beacon output
with a single, efficient check of one collective signature [6].

The RandHerd protocol consists of RandHerd-Setup, which
performs one-time setup, and RandHerd-Round, which pro-
duces successive random outputs.

1) RandHerd-Setup. RandHerd first invokes RandHound
to divide the set of servers securely into uniformly
random groups. Then, it uses TSS-CoSi, a threshold-
based witness cosigning protocol [5], [6] , to generate
and endorse a short-term aggregate public key used to
produce and verify individual random outputs.

2) RandHerd-Round. To produce each random output
at regular intervals, RandHerd generates a collective
Schnorr signature (¢,7) on some input w using TSS-
CoSi and outputs 7 as randomness. All RandHerd groups
contribute to each output ensuring honest members’
participation, but each group’s contribution requires the
participation of only a threshold of members, which
improves availability. Each of RandHerd’s random out-
puts doubles as a collective Schnorr signature [5], [6],
which clients can validate efficiently against the group’s
aggregate public key.

REFERENCES

[1] P. Feldman. A practical scheme for non-interactive verifiable secret
sharing. In FOCS, 1987.

[2] T. P. Pedersen. A threshold cryptosystem without a trusted party. In
Eurocrypt, 1991.

[3] B. Schoenmakers. A simple publicly verifiable secret sharing scheme and
its application to electronic voting. In CRYPTO.

[4] A. Shamir. How to share a secret. 1979.

[5] D.R. Stinson et al. Provably secure distributed Schnorr signatures and a
(t, n) threshold scheme for implicit certificates. In ACISP, 2001.

[6] E. Syta, et al. Keeping Authorities “Honest or Bust” with Decentralized
Witness Cosigning. In IEEE Symposium on Security and Privacy, 2016.


http://dedis.cs.yale.edu/dissent/papers/witness-abs
http://dedis.cs.yale.edu/dissent/papers/witness-abs

	Introduction
	Goals
	Design
	RandHound
	RandHerd

	References

