
Poster: IDE Plugins for Secure Coding
Aniqua Z. Baset

University of Utah
aniqua@cs.utah.edu

Tamara Denning
University of Utah

tdenning@cs.utah.edu

Abstract—Many vulnerabilities in products and systems could
be avoided if better secure coding practices were in place. There
exist a number of Integrated Development Environment (IDE)
plugins which help developers check for security flaws while they
code. In this work, we present a review of such plugins. We
believe that this work lays the groundwork for future research
in this area by synthesizing the information necessary to orient
researchers choosing to tackle this underexplored space.

I. INTRODUCTION

Many vulnerabilities in today’s consumer products result
from common, well-documented coding errors. These weak-
nesses have been well-known for many years; however, they
can still regularly be found in new systems. This is not
necessarily a reflection on developers’ intentions or training.
After all, security is rarely a developer’s primary task and there
are many ways to introduce security flaws; for example, there
are 471 vulnerability listings in CWE (Common Weakness
Enumeration) that correspond to types of buffer overread and
overwrite errors [1]. The general situation is exacerbated by
the fact that many apps and Internet-of-Things devices are
now developed by smaller, newer companies that might have
less of an infrastructure for checking code security than larger
companies with a longer history of code development.

Both static and dynamic analysis tools have been developed
to detect security flaws in code (e.g., [2], [3], [4], [5]). These
tools normally come with their own command-line or graphi-
cal interfaces to run analyses and display results. This requires
developers to move back and forth between their coding
environment (e.g., IDE) where they program, and the tool’s
interface, where they separately check for security problems.
This overhead oftentimes contributes to lower adoption of
security tools [6]. In recent years static analysis for security
has become available via IDE plugins, providing a more
seamless experience. These plugins allow developers to check
security flaws in their code from within their IDE, since they
present their results in the IDE like regular compiler errors.
This in-situ security analysis and feedback can help developers
detect flaws in the earlier stages of software development. In
this work we synthesize information on such security IDE
plugins.

II. SECURITY PLUGINS IN THE WILD

We gathered security plugin information in four ways.
First, we searched the plugin lists and marketplaces for four
of the most prominent IDEs: Eclipse, IntelliJ IDEA, Visual
Studio, and Netbeans IDEs. Second, we looked for plugins

in forum discussions like StackExchange. Third, we checked
lists of static security analysis tools (e.g., [7], [8]) to determine
whether any of them have support for IDE integration. Fourth,
we searched for security plugins developed in the academic
literature.

We list the available IDE security plugins in Table I. We ex-
clude some IDE plugins from our list that do not present results
within the IDE. For example, the Eclipse plugin for Coverity
uploads the code to a server; once the server-side analysis
is complete the result is presented via the developer’s online
account. In contrast, we do include Checkmarx CxSAST,
Fortify, and Veracode: while the analysis is performed on a
server, the results are presented in the IDE similar to the
other listed plugins. We also exclude Contrast since the Eclipse
plugin version of it has been discontinued [9].

As evident from Table I, security plugins are available
for most mainstream IDEs and languages/platforms, with the
partial exception of Ruby and Android. We find only two
plugins for Ruby (Checkmarx CxSAST, Veracode) and among
all the plugins only Lint and FindBugs are available for
Android Studio. We failed to find plugins for text-based editors
such as Vim and Sublime.

Among the plugin listings we encountered for different
IDEs, only the Eclipse marketplace reports on number of
installations. Considering the installation numbers and their
ranks in the marketplace, security plugins do not seem as
popular as security researchers might hope. Only exception
is Findbugs, it has very high installation numbers and is
ranked #13 in the Eclipse marketplace in terms of installation
numbers. We posit that this high popularity is due to the
variety of features it offers beyond input-related vulnerability
checking.

We have observed differences in quality and thoroughness
in analysis reporting among plugins. Some plugins provide
details in their report such as possible attacks, how the problem
in code can lead to those attacks, examples of vulnerable
and secure code, and risk ratings. Other plugins only mention
the name of the possible attack or provide brief description
of the attack. Besides pointing out the problem areas, some
plugins also suggest possible mitigation strategies. However,
in most cases these detailed reporting techniques serve to
educate the developer on the identified attack and are not quick
fixes specific to the code. To provide flexibility, some plugins
also allow users to temporarily turn off particular warnings or
to select/unselect specific vulnerability checks. Prior research
suggests that such customization options make plugins more



TABLE I: IDE plugins available for security checks
Plugin IDE Language and/or Platform Availability Source Introduced Last update
Android Lint [10] AS, Eclipse Java, XML, Android Free Open — —
ASIDE [11], [12] Eclipse Java, PHP Free Open Feb’13 Sept’14
CodeDX* [13] Eclipse, VS Java, .NET, Android Commercial Closed Jan’15 Feb/Mar’16
Codepro AnalytiX [14] Eclipse Java, JSP, XML Free — Feb’05 Oct’10
Cppcheclipse [15] Eclipse C/C++ Free Open Oct’09 Feb’16
Checkmarx CxSAST§ [16] Eclipse, VS, IntelliJ Java, .NET, Python, Ruby, C/C++, C#, JS Commercial Closed — —
ESVD [17], [18] Eclipse Java Free Closed July14 Nov’16
Findbugs [19] Eclipse, NB, IntelliJ, AS Java, Android Free Open — —
Fortify [20] Eclipse, VS C/C++, Java, .NET, PHP, JS, Python Commercial Closed — Feb/Mar’17
FxCop [21] VS .NET Free Closed — —
Goanna Studio [22] Eclipse, VS C/C++ Commercial Closed — —
Klocwork Insight‡ [23] Eclipse, IntelliJ, VS Java, C/C++, C# Commercial Closed — —
LAPSE+ [24], [25] Eclipse Java Free Open Mar’11 Mar’11
SecureAssist [26] Eclipse, VS, IntelliJ Java, PHP, .NET Commercial — — —
SensioLabsInsight [27] PHPStorm PHP Both Closed Oct’14 Jan’17
SonarLint [28] Eclipse, VS, IntelliJ Java, JS, PHP, .NET, Python Free Open Oct’15 Feb’17
SSVChecker* [29], [30] Eclipse C/C++, Python, PHP Free Closed May’10 Nov’16
Veracode [31] Eclipse, VS, IntelliJ Java, C/C++, C#, .NET, Python, Ruby, JS,

PHP, Android
Commercial Closed — Feb’17

VS = Visual Studio, IntelliJ = IntelliJ IDEA, NB = NetBeans, AS = Android Studio, JS = JavaScript
*Runs multiple analysis tools and present the combined results, §Previous version: CxSuite, ‡Previous version: Klocwork Solo
ASIDE, ESVD, LAPSE+, and SSVChecker are academic. The standalone version of Findbugs is also from academic work [32].

usable [6].

III. CONCLUSION

IDE plugins that check for vulnerabilities can help increase
the security of code. We find that there is a lack of information
on these plugins about specific vulnerability checks and detec-
tion accuracy, which may contribute to lower adoption among
developers. In addition to more complete information, we
would like for security benchmarking information to be made
available for each plugin so that the developer and security
communities at large can better evaluate such plugins.

REFERENCES

[1] “Cisco 2015 midyear security report. http://www.cisco.com/assets/
global/UK/events/switchup\ challenge/pdf/cisco-msr-2015.pdf.”

[2] “Coverity: Static code analysis. https://www.synopsys.com/software-
integrity/products/static-code-analysis.html#.”

[3] “Cppcheck. http://cppcheck.sourceforge.net/.”
[4] “Purifyplus. http://teamblue.unicomsi.com/products/purifyplus/.”
[5] “Valgrind. http://valgrind.org/.”
[6] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t

software developers use static analysis tools to find bugs?” in Software
Engineering (ICSE), 2013 35th International Conference on. IEEE,
2013, pp. 672–681.

[7] “List of tools for static code analysis. https://en.wikipedia.org/wiki/List
of tools for static code analysi.”

[8] “Owasp: Static code analysis. https://www.owasp.org/index.php/Static
Code Analysis.”

[9] “Contrast. https://marketplace.eclipse.org/content/contrast-eclipse.”
[10] “Lint. https://developer.android.com/studio/write/lint.html.”
[11] “Aside. https://www.owasp.org/index.php/OWASP\ ASIDE\ Project.”
[12] J. Xie, B. Chu, H. R. Lipford, and J. T. Melton, “Aside: Ide support for

web application security,” in Proceedings of the 27th Annual Computer
Security Applications Conference. ACM, 2011, pp. 267–276.

[13] “Codedx. http://codedx.com/ide-integration-helps-developers-adopt-
application-security-testing-tools/.”

[14] “Codeproanalytix. https://developers.google.com/java-dev-
tools/codepro/doc/.”

[15] “Cppcheclipse. https://marketplace.eclipse.org/content/cppcheclipse.”
[16] “Checkmark cxsast. https://www.checkmarx.com/technology/static-

code-analysis-sca/.”
[17] “Esvd. https://marketplace.eclipse.org/content/early-security-

vulnerability-detector-esvd.”
[18] L. S. M. de Souza, “Early vulnerability detection for supporting

secure programming,” Master’s thesis, Departamento de Informtica,
Pontifcia Universidade Catlica do Rio de Janeiro, 2015. [Online].
Available: http://thecodemaster.net/wp-content/uploads/2015/06/early-
vulnerability-detection-for-supporting-secure-programming.pdf

[19] “Findbugs. https://androidbycode.wordpress.com/2015/02/13/static-
code-analysis-automation-using-findbugs-android-studio/.”

[20] “Fortify. https://marketplace.eclipse.org/content/hpe-security-fortify-
demand-plugin.”

[21] “Fxcop. https://msdn.microsoft.com/en-us/library/bb429476(v=vs.80)
.aspx.”

[22] “Goanna studio. https://marketplace.eclipse.org/content/goanna-studio-
static-analysis-cc.”

[23] “Klockwork. http://www.klocwork.com/products-services/klocwork/
static-code-analysis.”

[24] “Lapse+. https://code.google.com/p/lapse-plus/.”
[25] P. M. Pérez, J. Filipiak, and J. M. Sierra, “Lapse+ static analysis security

software: Vulnerabilities detection in java ee applications,” in Future
Information Technology. Springer, 2011, pp. 148–156.

[26] “Secureassist. https://www.cigital.com/resources/datasheets/
secureassist-datasheet/.”

[27] “Sensiolabsinsight. https://plugins.jetbrains.com/plugin/7589?pr=.”
[28] “sonarlint. http://www.sonarlint.org/eclipse/index.html.”
[29] “Ssv checker. https://marketplace.eclipse.org/content/ssvchecker.”
[30] J. Dehlinger, Q. Feng, and L. Hu, “Ssvchecker: unifying static security

vulnerability detection tools in an eclipse plug-in,” in Proceedings of
the 2006 OOPSLA workshop on eclipse technology eXchange. ACM,
2006, pp. 30–34.

[31] “Veracode. https://www.veracode.com/.”
[32] “Findbugs. http://findbugs.sourceforge.net/.”


