
VUDDY: A Scalable Approach for Vulnerable Code
Clone Discovery

Seulbae Kim, Seunghoon Woo, Heejo Lee∗, Hakjoo Oh
Department of Computer Science and Engineering

Korea University
Seoul, Korea

{seulbae, seunghoonwoo, heejo, hakjoo oh}@korea.ac.kr

Abstract—The ecosystem of open source software (OSS) has
been growing considerably in size. In addition, code clones - code
fragments that are copied and pasted within or between software
systems - are also proliferating. Although code cloning may
expedite the process of software development, it often critically
affects the security of software because vulnerabilities and bugs
can easily be propagated through code clones. These vulnerable
code clones are increasing in conjunction with the growth of OSS,
potentially contaminating many systems. Although researchers
have attempted to detect code clones for decades, most of these
attempts fail to scale to the size of the ever-growing OSS code
base. The lack of scalability prevents software developers from
readily managing code clones and associated vulnerabilities.
Moreover, most existing clone detection techniques focus overly
on merely detecting clones and this impairs their ability to
accurately find “vulnerable” clones.

In this paper, we propose VUDDY, an approach for the scalable
detection of vulnerable code clones, which is capable of detecting
security vulnerabilities in large software programs efficiently
and accurately. Its extreme scalability is achieved by leveraging
function-level granularity and a length-filtering technique that
reduces the number of signature comparisons. This efficient
design enables VUDDY to preprocess a billion lines of code in
14 hour and 17 minutes, after which it requires a few seconds to
identify code clones. In addition, we designed a security-aware
abstraction technique that renders VUDDY resilient to common
modifications in cloned code, while preserving the vulnerable
conditions even after the abstraction is applied. This extends the
scope of VUDDY to identifying variants of known vulnerabilities,
with high accuracy. In this study, we describe its principles
and evaluate its efficacy and effectiveness by comparing it
with existing mechanisms and presenting the vulnerabilities it
detected. VUDDY outperformed four state-of-the-art code clone
detection techniques in terms of both scalability and accuracy,
and proved its effectiveness by detecting zero-day vulnerabilities
in widely used software systems, such as Apache HTTPD and
Ubuntu OS Distribution.

I. INTRODUCTION

During the last few years, the number of open source
software (OSS) programs has increased at a rapid pace. Re-
search published in literature showed that open source software
projects have linear to quadratic growth patterns [1], [2], [3].
In practice, the number of registered open source projects in
SourceForge [4] increased from 136 K to 430 K between
October 2009 and March 2014. GitHub [5] announced that
its 10 millionth repository had been created in December
2013, with most of the repositories being software projects.

∗Heejo Lee is the corresponding author.

Meanwhile, they currently have over 85 million projects, in
March 2017.

The considerable increase in the number of OSS programs
has naturally led to an increase in software vulnerabilities
caused by code cloning, thereby posing dire threats to the
security of software systems. Code cloning, the act of copying
and pasting portions of other software, can be useful if it is
properly exploited [6], [7]. However, in practice, code cloning
is often regarded as a bad programming practice because
it can raise maintenance costs [8], reduce quality [9], [10],
produce potential legal conflicts, and even propagate software
vulnerabilities [11], [12], [13]. In particular, as OSS programs
are widely used as codebase in software development, (e.g.,
libraries), code cloning is becoming one of the major causes
of software vulnerabilities. For example, the OpenSSL Heart-
bleed vulnerability (CVE-2014-0160) has affected several
types of systems (including websites, web servers, operating
system distributions, and software applications), because the
affected system either used the whole OpenSSL library or
cloned some part of the library for use in their systems.

Moreover, the lifecycle of vulnerabilities exacerbates such
problems. Even if a vendor were to release a patch imme-
diately after the discovery of vulnerability in the original
program, it would take time for the patch to be fully deployed
through every program that cloned the vulnerable code of
the original program [14]. For example, in April 2016, the
“Dogspectus” ransomware was disclosed. This ransomware
exploits a bug in the Linux kernel named “futex local privilege
escalation vulnerability” (CVE-2014-3153) to deliver drive-
by-download malware to the mobile devices that run an
unpatched Android operating system (versions 4.0.3 to 4.4.4).
Another example, the Dirty COW vulnerability (CVE-2016-
5195), which exploits a race condition for privilege escalation,
was found in the memory subsystem of the Linux kernel in
October 2016. What makes this vulnerability outrageous is that
this bug was already fixed in 2005, but the fix was undone
due to another problem raised by the fix. As shown in the
examples, old, vulnerable code fragments that are supposed to
be eliminated, are ceaselessly re-emerging in various locations
for a variety of reasons.

Many researchers have proposed code clone detection tech-
niques to address clone-related problems. However, to our
surprise, few techniques are suitable for accurately finding
vulnerability in a scalable manner. For example, lexical tech-

niques such as CCFinder [15] have the disadvantage of high
complexity as it uses a suffix tree algorithm to measure the
similarity between token sequences of programs. In addition,
its parameter replacement strategy is so aggressive that it
introduces a significant number of false positives. Similarly,
approaches that transform code into abstract data structures
(e.g., abstract syntax trees) have to apply expensive tree-
matching operations or graph mining techniques for similarity
estimation [16], [17]. Although such an approach would be
capable of discovering code fragments with similar syntactic
patterns, this does not guarantee accurate vulnerability de-
tection because two code fragments with identical abstract
syntax trees do not necessarily contain the same vulnerability.
Notable exceptions are ReDeBug [18] and SourcererCC [19].
ReDeBug aims to achieve both accuracy and scalability by
applying hash functions to lines of code and later detecting
clones by comparing hash values. However, as we show in
this paper, ReDeBug is still not satisfactory both in terms of
accuracy and scalability when it comes to finding vulnerable
code clones in massive code bases. For example, when testing
an Android smartphone (15 MLoC), ReDeBug requires half
an hour, and has 17.6 % false positives. SourcererCC uses a
bag-of-tokens strategy to manage minor to specific changes in
clones, which impairs the accuracy from a security perspec-
tive. For example, SourcererCC detects clones in which the
sequence of code is changed, or statements are inserted. As
a result, it misleadingly detects a patched code fragment as a
clone of an unpatched code fragment.

In this paper, we present VUDDY (VUlnerable coDe clone
DiscoverY), a scalable approach for code clone detection. This
approach is specifically designed to accurately find vulnerabil-
ities in a massive code base. To achieve the goal of highly
scalable yet accurate code clone detection from a security
perspective, we use the functions in a program as a unit for
code clone detection. Since a function delivers both syntactic
and symbolic information of the code, we are able to guarantee
high accuracy in detecting clones with respect to security
issues. Moreover, by applying carefully designed abstraction
and normalization schemes to functions, clones with common
modifications (e.g., variable names) can be detected, which in
turn enables VUDDY to identify unknown vulnerabilities, as
well. In addition, a clever classification of functions based on
the length of a function body considerably reduces the search
space, and thus enables VUDDY to work scalably even on a
massive code base. With this design, VUDDY accomplishes an
unprecedented balance between high scalability and accuracy.

In addition, we present a detailed explanation of the princi-
ples and implementation of VUDDY, as well as the application
of the proposed approach for the detection of vulnerabilities.
We further propose a method to collect CVE vulnerabilities in
an automated way. From 9,770 vulnerability patches obtained
from eight well-known Git repositories (e.g., Google Android),
we retrieved 5,664 vulnerable functions that address 1,764
CVEs. Our evaluation involves empirically measuring the per-
formance of VUDDY and then evaluating the practical merits
of VUDDY by demonstrating the vulnerabilities detected from
a pool consisting of real-world open source software. This pool

includes 25,253 active C/C++ projects collected from GitHub,
Linux kernels, and the Android OS of a smartphone that
was released in March 2016. The results show that VUDDY
preprocesses the 172 M functions (in 13.2 M files, 8.7 BLoC)
of the 25,253 projects in 4 days and 7 hours, then identifies
133,812 vulnerable functions in approximately 1 second for
each project. VUDDY is twice faster than ReDeBug, while
having no false positive with Android firmware. Meanwhile,
ReDeBug had 17.6 % false positives.

The contributions of this study include:
• Scalable clone detection: We propose “VUDDY,” an

approach to scalable yet accurate code clone detection,
which adopts a robust parsing and a novel fingerprinting
mechanism for functions. VUDDY processes a billion
lines of code in 14 hours and 17 minutes, which is an
unprecedented speed.

• Vulnerability-preserving abstraction: We present an ef-
fective abstraction scheme optimized for detecting un-
known vulnerable code clones. This allows VUDDY to
detect unknown vulnerable code clones, as well as known
vulnerabilities in a target program. Owing to this design,
VUDDY detects 24 % more vulnerable clones which are
unknown variants of known vulnerabilities.

• Automated vulnerability acquisition: We introduce a fully
automated method for acquiring known vulnerable func-
tions from Git repositories, by taking advantage of secu-
rity patch information.

• Open service: We have been servicing VUDDY as a form
of open web service at no charge, since April 2016. In
practice, VUDDY is being used by many in the open
source community and by IoT device manufacturers, for
the purpose of examining their software. In the past 11
months, 14 billion lines of code have been queried to our
open service, and 144,496 vulnerable functions have been
detected. Please see https://iotcube.net/

The remainder of this paper is organized as follows. Sec-
tion II clarifies the taxonomy and summarizes existing ap-
proaches concerning code clone detection. Section III presents
the problem and goal. Section IV describes the principles
of our proposed approach, VUDDY. In Section V, we ex-
plain how VUDDY is applied to vulnerability discovery. In
Section VI, we discuss issues regarding the implementation
of VUDDY. Then in Section VII, we describe various ex-
periments conducted for evaluating the scalability, time, and
accuracy of VUDDY against the most competitive techniques
on real-world programs. Section VIII compares VUDDY with
ReDeBug, the most competitive technique, in detail. A quali-
tative evaluation is given through case studies in Section IX.
Section X presents a discussion, and Section XI offers the
conclusion and future work.

II. TAXONOMY AND RELATED WORK

A. Taxonomy
To avoid confusion concerning the various taxonomies

adopted in other research, we use the following well accepted
([20], [21], [22], [23]) definitions of the types of code clones.
• Type-1: Exact clones. These code fragments are dupli-

cated without any change, i.e., are unmodified.

• Type-2: Renamed clones. These are syntactically identi-
cal clones except for the modification of types, identifiers,
comments, and whitespace. VUDDY covers Type-1 and
Type-2 clones.

• Type-3: Restructured clones. Further structural mod-
ification (e.g., deletion, insertion, or rearrangement of
statements) is applied to renamed clones to produce
restructured clones.

• Type-4: Semantic clones. These are clones that could be
syntactically different, but convey the same functionality.

For the purpose of making VUDDY optimized for detecting
security-related clones, we devotedly designed VUDDY to be
able to detect Type-1 and Type-2 clones, which is the right
scope that retains the context while allowing minor changes
that frequently occur after code cloning. In the following
sections, we explain why two former types of clones properly
handle the security-aware context, and how approaches for
detecting Type-3 and Type-4 clones sacrifice accuracy, and
lead to increased false positive rate.

We also specify a granularity unit which refers to the scale
of a code fragment, which is referenced throughout this study.
• Token: This is the minimum unit the compiler can

understand. For example, in the statement int i = 0;
five tokens exist: int, i, =, 0, and ;.

• Line: This represents a sequence of tokens delimited by
a new-line character.

• Function: This is a collection of consecutive lines that
perform a specific task. A standard C or C++ function
consists of a header and body. A header includes a return
type, function name, and parameters, and a body includes
a sequence of lines that determine the behavior of the
function.

• File: This contains a set of functions. A file may in fact
contain no functions. However, most source files usually
contain multiple functions.

• Program: This is a collection of files.
In summary, a program is a collection of files that contain

functions, and a function is a collection of lines that are
composed of tokens. Code cloning can occur with any of
the listed granularity units. VUDDY take a function as its
processing granularity.

B. Related work

Rataan et al. reviewed an extensive amount of research on
code clone detection, and reported more than 70 techniques
published in 11 journals and 37 conferences and workshops
[23]. In this section we review some of the representative
techniques which can be grouped into five categories based
on the clone granularity level: set of tokens, set of lines, set
of functions, files, or a hybrid of others. The selection of the
granularity level greatly affects the ensuing clone detection
process, and contributes greatly to scalability and accuracy.

1) Token-level granularity: Techniques that adopt token-
level granularity lexically analyze a program in order to
transform it into a sequence, or bag, of tokens. The token
sequences are then compared for similarity comparison. The
best-known of these are CCFinder [15] and CP-Miner [24].

In CCFinder, the similarity of the sequence of lexical com-
ponents, i.e., tokens, is measured by a suffix-tree algorithm,
which is computationally expensive and consumes a large
amount of memory.

CP-Miner parses a program and compares the resulting
token sequences using the “frequent subsequence mining”
algorithm known as CloSpan [25]. Due to CloSpan’s heuristics
for improved efficiency, CP-Miner can scale to the size of
moderately large code bases such as the Linux kernel, by con-
suming less memory space. However, the mining complexity
of CP-Miner is still O(n2) in the worst case where n is the
number of LoC, and their experiment showed that CP-Miner
requires a similar amount of execution time as CCFinder.

Aside from scalability issues, the two aforementioned tech-
niques generate a high false positive rate caused by their
aggressive abstraction, and filtering heuristics. Although the
developers of CP-Miner claim that CP-Miner detects 17 to 52
percent more clones than CCFinder, Jang et al. [18] revealed
that the false positive rate for reported code clones was 90 %
for CP-Miner. This implies that this design does not guarantee
sufficient reliability to be useful for vulnerability detection.

2) Line-level granularity: ReDeBug [18] takes a set of
lines as its processing unit. It slides a window of n (4,
by default) lines through the source code and applies three
different hash functions to each window. The code clones
between files are detected by means of membership checking
in a bloom filter, which stores the hash values of each window.
Although the line-based window sliding technique enables
ReDeBug to detect some of the Type-3 clones, ReDeBug
cannot detect Type-2 clones in which variables are renamed or
data types are changed. Consequently, ReDeBug misses many
vulnerable clones with slight modifications. Moreover, the use
of a line-level granularity leads to a limited information of the
context, and it eventually introduces many false positive cases.
In terms of performance, this approach adequately scales to
30 K SourceForge projects (922 MLoC), but it required 23.3
hours to process files and build a hash database.

3) Function-level granularity: SourcererCC [19] attempts
to detect Type-3 clones by using the bag-of-tokens tech-
nique. It parses all of the functions, and creates an index
consisting of the bag-of-tokens of each function. Then, it
infers the similarity of functions by applying an Overlap
function which is computed as the number of tokens shared
by two functions. If the similarity between the two functions
exceeds a predetermined threshold, they are deemed as a clone
pair. They reduced the number of similarity computations, by
using filtering heuristics that assign more weight to frequent
tokens in the bag to achieve large-scale clone detection. In
their experiment, SourcererCC detected code clones from 100
MLoC in approximately 37 hours, whereas it required 78
hours for CCFinder to execute for the same code base, despite
CCFinder detecting fewer clones than SourcererCC. However,
as a tradeoff for detecting Type-3 clones, their applicability
for vulnerability detection is badly damaged. In many cases,
vulnerabilities are suppressed by inserting a single if statement.
However, SourcererCC cannot distinguish between patched
(i.e., an if statement inserted) and unpatched (i.e., without an
if statement, and thus vulnerable) code fragments.

Yamaguchi, et al. proposed a method named vulnerability
extrapolation [26], and its generalized extension that exploits
patterns extracted from the abstract syntax trees (ASTs) of
functions to detect semantic clones [27]. When extracted
ASTs are embedded in a vector space, their semantics can
be identified by the latent semantic analysis technique. In
particular, they perform a singular value decomposition on
the embedded vectors, and obtain the structural patterns of
functions. Although their method is capable of detecting Type-
4 clones, they rely heavily on expensive operations, and the
accuracy of detection is not precisely given in their analysis.

We must note that techniques that adopt a considerably high
level of abstraction (e.g., a function into a bag-of-tokens, or
into syntax trees) might be effective for detecting clones, but
they are not suitable for accurately detecting vulnerable code
clones, because security issues are very context sensitive.

4) File-level granularity: DECKARD [17] builds ASTs for
each file, then extracts characteristic vectors from the ASTs.
After clustering vectors based on their Euclidean distance,
vectors that lie in proximity to one another within the Eu-
clidean space are identified as code clones. Such tree-based
approaches require extensive execution time, as the subgraph
isomorphism problem is a well-known and time-consuming
NP-Complete problem [28]. Furthermore, DECKARD does
not guarantee sufficient scalability to handle the Debian Linux
OS Distribution, according to Jang, et al. [18]. In addition, it
was pointed out [29] that DECKARD has a 90 % false positive
rate, which again suggests that code fragments with similar
abstract trees are not necessarily clones.

FCFinder [30] removes comments, redundant whitespace,
line breaks, and carriage returns, and then computes the MD5
hash value of each preprocessed file. It creates a hash table
in which the hash values and corresponding files constitute
keys and values, respectively. The overlapping hash values are
regarded as file clones. In contrast to DECKARD, FCFinder
demonstrates extensive scalability. It detected 915 K file clones
from FreeBSD ports collection, which contains over 7 K soft-
ware projects, and required 17.16 hours to complete its work.
This extended scalability results from their design choice to
adopt file-level granularity. However, for the same reason, their
approach is not resilient to minor or major changes within files.

5) Hybrid granularity: Some techniques leverage a com-
bination of various approaches. VulPecker [31] is a system
for automatically checking vulnerability containment. It char-
acterizes a vulnerability with a predefined set of features, then
selects one of the existing code-similarity algorithms (e.g.,
[12], [18], [24]) which is optimal for the type of vulnerable
code fragment. As it takes advantage of a variety of algorithms,
it could detect 40 vulnerabilities which are not registered in the
National Vulnerability Database (NVD). However, it required
508.11 seconds to check the existence of CVE-2014-8547 in
project Libav 10.1 (0.5 MLoC), which makes it improper to
be used against massive open source projects.

III. PROBLEM AND GOAL STATEMENT

A. Problem formulation
1) Clone detector: First, we define a clone detector. For-

mally, let F be the set of all functions in a program (e.g., a

C program). Let V ⊆ F, and T ⊆ F be a set of vulnerable
functions, and a set of target functions, respectively. Then, a
clone detector C is a function of the type:

C : F→ {0, 1} (1)

which takes a program and returns 1 (i.e., vulnerable) or 0.

Definition 1 (Completeness). A clone detector C is complete
with respect to V and T iff

∀f ∈ T : f ∈ V ⇒ C(f) = 1. (2)

2) Abstract clone detector: Now, we denote the set of
abstract functions by F̂, which is generated from F by applying
an abstraction function α:

α : F→ F̂ (3)

such that α is deterministic for ∀f, f ′ ∈ F:

f = f ′ ⇒ α(f) = α(f ′). (4)

With V ⊆ F being a set of vulnerable functions, we can
define the abstract clone detector Ĉ : F → {0, 1} in terms of
the abstraction function α:

ĈV (f) ≡ ∃f ′ ∈ V : α(f ′) = α(f) (5)

Obviously, the abstract clone detector Ĉ is complete:

∀f ∈ F : f ∈ V ⇒ Ĉ(f) = 1. (6)

B. Goals
The goals of this research are as follows:

1) Designing a clone detector C that satisfies completeness.
2) Designing an abstraction function α and associated ab-

stract clone detector Ĉ, which is effective in detecting
Type-1 and Type-2 code clones of known vulnerabilities.

With a given vulnerable function f , Ĉ should detect its
abstract clones f ′, such that Ĉ(f) = Ĉ(f ′) = 1. This implies
that Ĉ completely detects exact clones of vulnerability, as
well as clones in which variable names, identifiers, data types,
comments, and whitespace are modified.

Type-3 and Type-4 code clones have characteristics which
make us exclude them from the scope of our abstract clone
detector Ĉ. Most importantly, Type-3 and Type-4 code clones
can be subjective to the loss of syntactic information which
are crucial for a vulnerability to be triggered, because security
vulnerabilities are often very sensitive to the constants and the
order of statements. For example, vulnerability that leverages
race condition in the keyctl_read_key function in securi-
ty/keys/keyctl.c of the Linux kernel before 4.3.4 (CVE-2015-
7550) was fixed by merely changing the order of statements
within the function1. This incident implies that if the order
information is lost after abstraction, the vulnerable condition
is lost as well. Moreover, constants, referring to fixed values
that do not change during the execution of a program, are key
elements in many types of vulnerabilities. Intuitively, even a

1See commit b4a1b4f5047e4f54e194681125c74c0aa64d637d in the Linux
kernel source tree.

PREPROCESSING

S1. Function

retrieval

CLONE DETECTION

Program

S2. Abstraction

and normalization

S3. Fingerprint

generation

Functions

Preprocessed

functions

Fingerprint

dictionary

S5. Hash

lookup

S4. Key

lookup

found

Report clone

found

Fingerprint

dictionary

of vulnerabilities

Fingerprint

dictionary

of target

programs

Fig. 1: Two stages of VUDDY: preprocessing and clone
detection.
slight modification of the value of constants, (e.g., assigning 0
instead of 1 for a flag variable which is later used for initiating
an input sanitation sequence) may suppress a vulnerability, or
rather introduce a new vulnerability. For example, the denial-
of-service (DoS) flaw (CVE-2012-0876) in the Expat XML
parser (xmlparse.c) [32] is patched by changing the constant
value 0 in the problematic function, hash(), into a salt
variable. In that sense, if the abstraction function α does not
preserve constants, it will not be able to preserve vulnerability
and cause false positive.

IV. THE PROPOSED METHOD: VUDDY
In this section, we describe the main ideas and principles

behind VUDDY (VUlnerable coDe clone DiscoverY), which
is a scalable approach to code clone detection that can be
seamlessly applied to the massive OSS pool.

Based on the aforementioned goals, we propose two-stage
modeling of VUDDY: preprocessing and clone detection. The
preprocessing stage includes three substeps:

S1. Function retrieval
S2. Abstraction and normalization
S3. Fingerprint generation

Then in the clone detection stage, VUDDY conducts:
S4. Key lookup
S5. Hash lookup

Fig. 1 illustrates the overall stages and substeps of VUDDY.
Once preprocessing is complete, the resulting fingerprint
dictionary can be permanently reused, unless some portion
of the program is changed. In addition, if a user specifies
the changed portion, only the difference can be applied to
the fingerprint in a very short time, rather than having to
completely regenerate the fingerprint. This efficient design
enables VUDDY to perform real-time clone detection.

A. Preprocessing
S1. Function retrieval: VUDDY begins by retrieving

functions from a given program by using a robust parser.

VUDDY then performs a syntax analysis to identify formal
parameters, data types in use, local variables, and function
calls. This supplementary information is used in the next stage:
abstraction and normalization.

S2. Abstraction and normalization: In this stage, an
abstraction and normalization feature is offered. Blindly gen-
erating a fingerprint with an original function will lead to
the omission of renamed (Type-2) clones, and cause false
negatives. Thus, we establish abstraction rules to transform
the function body strings before generating its fingerprint.

We fashioned four levels of abstraction which makes our
approach resilient to common code modifications, while pre-
serving vulnerability. Fig. 2 shows the transformation of a
sample function at varying abstraction levels. Here, higher
levels of abstraction include subordinate levels.
• Level 0: No abstraction. Do not abstract the code, for

detecting exact (Type-1) clones.
• Level 1: Formal parameter abstraction. Gather formal

parameters from the arguments of the function header,
and replace every occurrence of the parameter variables
inside the body with a symbol FPARAM. Then, the code
clones that modify the parameter names are captured.

• Level 2: Local variable abstraction. Replace all local
variables that appear in the body of a function with
a symbol LVAR. From this level onwards, VUDDY is
tolerant to modifications of the names of variables in
copy-pasted functions, which is a common practice.

• Level 3: Data type abstraction. Replace the data types
with a symbol DTYPE. The data types include not only
standard C data types, and qualifiers, but also user-
defined types. However, modifiers (e.g., unsigned) are not
replaced because for certain types of vulnerabilities, the
signedness of a variable matters. After level 3 abstrac-
tion, code clones of which the variable types have been
changed (e.g., “int” to “static int”) can be detected.

• Level 4: Function call abstraction. Replace the name
of every called function with a symbol FUNCCALL.
Researchers have pointed out that function calls and
shared APIs are typical causes of recurring vulnerabilities
[12], [27], [33]. This procedure is necessary for detecting
cloned functions with similar API usage.

With the abstraction scheme, VUDDY completely detects
Type-2 vulnerable code clones. Cases in which abstraction is
highly effective and critical for detecting vulnerable clones are
introduced in section IX.

The abstracted function body is then normalized by remov-
ing the comments, whitespaces, tabs, and line feed characters,
and by converting all characters into lowercase. This guar-
antees that the performance, especially the detection accu-
racy, of VUDDY is not affected by syntactically meaningless
modifications. For example, if a function is inlined after
cloning, or if comments in a function are greatly changed, code
normalization still enables VUDDY to detect the function.

S3. Fingerprint generation: VUDDY generates finger-
prints for the retrieved function bodies that are abstracted and
normalized. A fingerprint of a function is represented as a

Level 0: No abstraction.
1 void avg (float arr[], int len) {
2 static float sum = 0;
3 unsigned int i;
4 for (i = 0; i < len; i++);
5 sum += arr[i];
6 printf("%f %d",sum/len,validate(sum));
7 }

Level 1: Formal parameter abstraction.
1 void avg (float FPARAM[], int FPARAM) {
2 static float sum = 0;
3 unsigned int i;
4 for (i = 0; i < FPARAM; i++)
5 sum += FPARAM[i];
6 printf("%f %d",sum/FPARAM,validate(sum);
7 }

Level 2: Local variable name abstraction.
1 void avg (float FPARAM[], int FPARAM) {
2 static float LVAR = 0;
3 unsigned int LVAR;
4 for (LVAR = 0; LVAR < FPARAM; LVAR++)
5 LVAR += FPARAM[LVAR];
6 printf("%f %d",LVAR/FPARAM,validate(LVAR));
7 }

Level 3: Data type abstraction.
1 void avg (float FPARAM[], int FPARAM) {
2 DTYPE LVAR = 0;
3 unsigned DTYPE LVAR;
4 for (LVAR = 0; LVAR < FPARAM; LVAR++)
5 LVAR += FPARAM[LVAR];
6 printf("%f %d",LVAR/FPARAM,validate(LVAR));
7 }

Level 4: Function call abstraction.
1 void avg (float FPARAM[], int FPARAM) {
2 DTYPE LVAR = 0;
3 unsigned DTYPE LVAR;
4 for (LVAR = 0; LVAR < FPARAM; LVAR)
5 LVAR += FPARAM[LVAR];
6 FUNCCALL("%f %d",LVAR/FPARAM,FUNCCALL(LVAR));
7 }

Fig. 2: Level-by-level application of abstraction schemes on a
sample function.

2-tuple. The length of the normalized function body string
becomes one element, and the hash value of the string becomes
the other. Fig. 3 shows the fingerprinting of example functions.

After fingerprinting, VUDDY stores the tuples in a dictio-
nary that maps keys to values, where the length values (i.e.,
the first element of a tuple) are keys, and the hash values that
share the same key are mapped to each key. Fig. 4 shows how
the example functions of Fig. 3 are classified and stored in a
dictionary.

In the dictionary shown in Fig. 4, the two functions in Fig. 3
(sum and increment) are classified under the same integer
key, because the length of their abstracted and normalized
bodies are identical as 20. The fingerprint of the other function
(printer) is assigned to another key, 23, in the dictionary. In
practice, we ignore functions of which the lengths are shorter
than 50, to prevent VUDDY from identifying short functions
as clones. Intuitively, short functions are hardly vulnerable by
themselves. Further discussion on a proper threshold setting
is provided in subsection V-A.

B. Clone detection

VUDDY detects code clones between two programs, by
performing at most two membership tests for each prepro-

Original: int sum (int a, int b) {
return a + b;

}
Preprocessed: returnfparam+fparam;
Length: 20
Hash value: c94d99100e084297ddbf383830f655d1
Fingerprint: {20, c94d99100e084297ddbf383830f655d1}
Original: void increment () {

int num = 80;
num++; /* no return val */

}
Preprocessed: dtypelvar=80;lvar++;
Length: 20
Hash value: d6e77882a5c55c67f45f5fd84e1d616b
Fingerprint: {20, d6e77882a5c55c67f45f5fd84e1d616b}
Original: void printer (char* src) {

printf("%s", src);
}

Preprocessed: funccall("%s",fparam);
Length: 23
Hash value: 9a45e4a15c928699afe867e97fe839d0
Fingerprint: {23, 9a45e4a15c928699afe867e97fe839d0}

Fig. 3: Example functions and corresponding fingerprints.

20: {
‘c94d99100e084297ddbf383830f655d1’,
‘d6e77882a5c55c67f45f5fd84e1d616b’

}
23: {

‘9a45e4a15c928699afe867e97fe839d0’
}

Fig. 4: A dictionary that stores the fingerprints of the example
functions. A set containing two hash values is mapped to the
key 20, which is the length value, and another set is mapped
to the key 23.

cessed, length-classified fingerprint dictionary: a key lookup,
and a subsequent hash lookup. This approach is based on the
fact that two identical functions are required to have the same
lengths after abstraction and normalization, even if variables
are renamed and comments are changed.

S4. Key lookup: VUDDY performs the first membership
testing, by iterating over every key in a source dictionary, and
looking for the existence of the key (i.e., the length of the
preprocessed function) in the target fingerprint dictionary. If
the key lookup fails, then VUDDY concludes that there is no
clone in the target program. If it succeeds to find the existence
of the same integer key, then it proceeds to the next substep:
Hash lookup.

S5. Hash lookup: As a last substep of clone detection,
VUDDY searches for the presence of the hash value in the
set mapped to the integer key. If the hash value is discovered,
then the function is considered to be a clone.

For example, when comparing dictionary A and B, VUDDY
iterates S4 over every key in dictionary A, searching for the
key in dictionary B. For each key shared by dictionary A and
B, VUDDY performs S5 to retrieve all shared hash values,
which are the clones we are looking for.

This design of VUDDY accelerates the process of clone
searching by taking advantage of the following two facts:

1) The time complexity of an operation that checks the
existence of a value from a set of unique elements is
O(1) on average, and O(n) in the worst case.

2) It is guaranteed that even in the worst case, n is small
because of the length classification. For example, the
fingerprint dictionary of Linux kernel 4.7.6 (stable kernel
released on Sep. 30, 23K files with over 15.4 MLoC)
only contains 5,245 integer keys, and among the hash sets
associated to the keys, the largest set has 1,019 elements.
The average number of elements of the hash sets is 67.85,
the median is 5, and the mode (the value that occurs most
often) is 1. This implies that most of the hash set will
have only one element.

The efficiency of VUDDY in terms of discovering code
clones from large programs is further evaluated in section VII.

V. APPLICATION: VULNERABILITY DETECTION

In this section we describe the application of VUDDY to
detect vulnerabilities from small to massive real-world pro-
grams. To obtain vulnerable functions from reliable software
projects when establishing a vulnerability database, we lever-
aged the Git repositories of well-known and authoritative open
source projects: Google Android, Codeaurora Android Project,
Google Chromium Project, FreeBSD, Linux Kernel, Ubuntu-
Trusty, Apache HTTPD, and OpenSSL. Then, by using the
general clone detection procedure explained in section IV,
VUDDY searches for the code clones of vulnerable functions
from a target program.

A. Establishing a vulnerability database
The process of collecting vulnerable code and establishing

a vulnerability database is fully automated. The process of
reconstructing vulnerable functions out of Git commit logs
consists of the following steps:

1) git clone repository. This is to download specified
Git repository into a local directory.

2) git log --grep=‘CVE-20’ for each repository.
This searches the commits regarding Common Vulner-
ability and Exposures (CVEs) [34]. This works for any
general keywords, such as vulnerability types, or vulner-
ability names. If it is required to collect certain types of
bugs, such as buffer overflow, the keyword for grep would
be “buffer overflow.” Well-known vulnerability names,
such as Heartbleed, can also be queried.

3) git show the searched commits. This shows the full
commit log that contains a description of the vulnerability
related to CVE, as well as a security patch information
in unified diff format. Diffs have a dedicated line for
recording file metadata, in which reference IDs to old
and new files addressed by the patch are written.

4) Filter irrelevant commits. The steps listed could fetch
commits that are inappropriate for vulnerability detection.
For example, some commits have the keyword “CVE-
20” in their message, which is actually “Revert the patch
for CVE-20XX-XXXX.” Merging commits or updating
commits which usually put all the messages of associated
commits together are another problem, particularly if one
of the commits happens to be a CVE patch. In such cases,
our automated approach would end up retrieving a benign

function. Thus, commits which revert, merge, or update
are discarded in this step.

5) git show the old file ID. This shows the old, un-
patched version of the file. We then retrieve the vulnerable
function from the file.

Listing 1 is the patch for CVE-2013-4312, found in the
Codeaurora Android repository. This patch adds lines 9 and 10
to ensure that the per-user amount of pages allocated in pipes
is limited so that the system can be protected against memory
abuse. The file metadata in line 2 indicate the references to
the old file (d2cbeff) and the new file (19078bd), and line
5 conveys information about the line numbers of the affected
portion in the file.

We could retrieve the old function, namely the vulnerable
version of the function, by querying “git show d2cbeff”
to the cloned Git object, obtaining the old file, and parsing
the relevant function. Listing 2 is the retrieved vulnerable
function, which includes both the vulnerable part, and the
context around it.

Listing 1: Patch for CVE-2013-4312.
1 diff --git a/fs/pipe.c b/fs/pipe.c
2 index d2cbeff..19078bd 100644
3 --- a/fs/pipe.c
4 +++ b/fs/pipe.c
5 @@ -607,6 +642,8 @@ void free_pipe_info(struct

pipe_inode_info *pipe)
6 {
7 int i;
8 + account_pipe_buffers(pipe, pipe->buffers, 0);
9 + free_uid(pipe->user);

10 for (i = 0; i < pipe->buffers; i++) {
11 struct pipe_buffer *buf = pipe->bufs + i;
12 if (buf->ops)

Listing 2: Snippet of the vulnerable function retrieved from
the patch for CVE-2013-4312.

1 void free_pipe_info(struct pipe_inode_info *pipe)
2 {
3 int i;
4 for (i = 0; i < pipe->buffers; i++) {
5 struct pipe_buffer *buf = pipe->bufs + i;
6 if (buf->ops)

Applying the same method to 9,770 vulnerability patches,
we collected 5,664 vulnerable functions that address 1,764
unique CVEs. These vulnerable functions have well-known
vulnerabilities such as buffer overflow, integer overflow, input
validation error, permission-related vulnerabilities, and others.
The shortest vulnerable function consists of 51 characters after
abstraction and normalization. Single-lined functions (e.g., a
guard function which returns by calling another function) are
excluded from the database, since these functions frequently
cause false positives when our abstraction is applied.

B. Vulnerability detection

The application of VUDDY for vulnerability detection does
not require any supplementary procedure. VUDDY processes
the functions in the vulnerability database in the same way as
it does with a normal program, then discovers vulnerability

in the target program by detecting code clones between the
vulnerability database and the program.

Here, we can determine which vulnerability VUDDY is
capable of discovering. As illustrated in Fig. 5(a), if set K
is the set of every known vulnerability, then K ⊂ V where
V is the set consisting of all vulnerabilities. Naturally, we
can regard U, the set of unknown vulnerabilities, and K as
being disjoint, so that K ∪ U = V and K ∩ U = φ. If a
clone detector C only considers exact (Type-1) clones, then
the coverage of C is K. However, by the use of our abstraction
strategy, the coverage of an abstract clone detector Ĉ can also
cover vulnerabilities in K′ as depicted in Fig. 5(b), which is
a set of abstract vulnerabilities. This means that VUDDY can
detect known vulnerabilities, as well as variants of the known
vulnerabilities, which are in K′, where |K′∩U| > 0. K′∩U is
the set of unknown code clones discovered by VUDDY. The
examples are provided in subsection IX-C.

K U

V

(a) K and U are disjoint

U

V

UK’

(b) K′ and U intersect
Fig. 5: Relationship between known, unknown and variants of
known vulnerabilities.

VI. IMPLEMENTATION

We implemented VUDDY2 in Python 2.7.11, and the robust
parser with the ANTLR parser generator 4.5.3 [35]. In this
section, we discuss issues related to the implementation.

A. Generating a robust parser
One intuitive approach for obtaining functions from a

program and analyzing their syntax is to use a compiler.
However, the use of parsers integrated in compilers is evidently
restricted to the occasions when a working build environment
is available. In addition, even if we succeed to replicate the
working environment, the source code may not be complete
or may contain syntax errors, which blights the whole parsing
procedure [36], [37]. Thus, we ensure that our method is
feasible and sufficiently general to be used in practice by
generating and utilizing a robust parser for C/C++ based on
the concept of fuzzy parsing with the utilization of island
grammars [38], [39]. This parser does not require a build
environment or header information, which means it is able to
parse an individual file, and does not fail when it encounters
syntactic errors during parsing. Even when a broken or partial
code is given, it parses as much as it understands.

B. Selection of hash function
Any hash function can be used for fingerprint generation.

However, we impose three constraints that need to be con-
sidered in order to maximize the scalability and speed of

2Our implementation is available at https://iotcube.net/

our approach. First, to prevent two or more different and
irrelevant functions from having the same hash value, it is
necessary to avoid hash collision as much as possible. Second,
building the smallest possible fingerprint dictionary requires
us to choose a hash function that produces the fewest possible
bits of hash values. Third, to minimize the hashing time, the
chosen function needs to be fast, and its implementation well-
optimized. For VUDDY, we selected the MD5 hash algorithm,
which completed hashing 20 million randomly generated al-
phanumeric strings with their size ranging from 51 to 1,000
bytes, in only 15 seconds without collision. Non-cryptographic
hash algorithms such as CityHash [40], MurmurHash [41], and
SpookyHash [42] were also considered, but they required a
similar amount of time for the experiment. Thus, we decided
to adopt MD5 which is provided as a built-in method of
the Python Hashlib package, rather than taking unidentified
risks by using third party hash libraries. Although we are
aware that the MD5 hash algorithm suffers from cryptographic
weaknesses [43], two facts make MD5 sufficient: Our use of
MD5 is not for cryptography; and VUDDY is designed such
that hash collision occurs only when two different functions
have identical lengths. Note that we exclude the use of fuzzy
hash algorithms, which produce similar hash values for similar
plaintexts, as distinguishing slightly modified clones from
semantically changed code presents another problem.

C. Dictionary implementation

The fingerprint dictionary is a crucial data structure in the
implementation of VUDDY because it dramatically reduces
the search space of possible clones and thus expedites the
whole process. As previously stated, a dictionary is an asso-
ciative container that maps keys to values. We chose to use
the built-in dictionary data structure of Python, with which the
average time complexity is O(1) for the in operation to check
the existence of an element among the keys of a dictionary,
regardless of the number of elements.

VII. EVALUATION

We proceed to evaluate the efficacy and effectiveness of
VUDDY in two aspects: scalability and accuracy, by compar-
ing VUDDY with other state-of-the-art techniques.

A. Experimental setup and dataset

System environment: We evaluated the execution and detec-
tion performance of VUDDY by conducting experiments on a
machine running Ubuntu 16.04, with a 2.40 GHz Intel Zeon
processor, 32 GB RAM, and 6 TB HDD.
Dataset: We collected our target C/C++ programs from
GitHub. These programs had at least one star and were pushed
at least during the period from January 1st, 2016 to July
28, 2016. Repositories that are starred (i.e., bookmarked by
GitHub users) are popular and influential repositories. The
existence of a push record during the first half of 2016 implies
that the repository is active. The repository cloning process
required 7 weeks to finish, gathering 25,253 Git repositories
which satisfy the aforementioned two conditions. In addition

TABLE I: Scalability and time comparison for varying input size. The average time was computed after iterating each experiment
five times.

LoC VUDDY SourcererCC ReDeBug CCFinderX DECKARD
1 K 0.44 s 2.3 s 35.6 s 6 s 1 s

10 K 0.81 s 3.1 s 35.6 s 10 s 3 s
100 K 5.17 s 50.7 s 42 s 50 s 13 s
1 M 55 s 1 m 44 s 1 m 43 s 6 m 44 s 2 m 20 s
10 M 12 m 43 s 24 m 38 s 18 m 32 s 1 h 36 m 12h 30 m

100 M 1 h 32 m 9 h 42 m 2 h 32 m 12 h 44 m Memory ERROR
1 B 14 h 17 m 25 d 3 h 1 d 3 h File I/O ERROR –

TABLE II: Configurations for experiments.

Technique Configuration
SourcererCC Min length 6 lines, min similarity 70 %.

ReDeBug n-gram size 4, 10 context lines.
DECKARD Min length 50 tokens, similarity 85 %, 2 token stride.
CCFinderX Min length 50 tokens, min token types 12.

to the Github projects, we downloaded the firmware of several
Android smartphones.

B. Scalability evaluation
First, we evaluated the scalability of VUDDY, against four

publicly available and competitive techniques (SourcererCC,
ReDeBug, DECKARD, and CCFinderX) in terms of varying
target program size. Note that as Wang et al. [44] pointed
out, the configuration choices have a significant impact on the
behavior of the tools that are compared. As a remedy, we
referenced the optimal configuration of each technique found
by [44], [45], and [19] to conduct a sufficiently fair evaluation.
The configuration can be found in Table II.

To focus on the scalability of tools when handling real-
world programs, we generated target sets of varying sizes,
from 1 KLoC to 1 BLoC, by randomly selecting projects from
the 25,253 Git projects we collected. All experiments were
iterated five times each (except for SourcererCC, with which
we iterated twice), to ensure that the results are reliable.

As described in Table I, VUDDY overwhelmed other tech-
niques. DECKARD had the least scalability, failing to process
100 MLoC target because of a memory error. In the case of
CCFinderX, a file I/O error occurred after 3 days of execution
for a 1 BLoC target. VUDDY finished generating fingerprints
and detecting clones of the 1 BLoC target in only 14 hour
and 17 minutes. Although SourcererCC and ReDeBug also
scaled to 1 BLoC, their execution is considerably slower than
that of VUDDY. ReDeBug required more than a day, and
SourcererCC required 25 days to finish detecting clones from
the same 1 BLoC target. Fig. 6 displays a graph depicting the
results in Table I. We can clearly see that the execution time of
the other state-of-the-art techniques explodes as the target size
grows. In fact, VUDDY scales even to the size of all 25,253
repositories consisting of 8.7 BLoC with ease, requiring only
4 days and 7 hours.

C. Accuracy evaluation
Now we evaluate the accuracy of VUDDY by comparing

the number of false positives produced by each tool, given a
set of vulnerabilities and a target program. In this subsection,

0

500

1000

1500

2000

1 K 10 K 100 K 1 M 10 M 100 M 1 B
Ti

m
e

(i
n

m
in

ut
es

)
Size of target (LoC, logscaled)

VUDDY

• • • • •
•

•

•
ReDeBug

N N N N N
N

N
N

SourcererCC

2 2 2 2 2

2

2
CCFinderX

◦ ◦ ◦ ◦
◦

◦

◦
Deckard

4 4 4 4

4

4

Fig. 6: Execution time when varying size of target programs
were given to VUDDY, SourcererCC, ReDeBug, DECKARD,
and CCFinderX. DECKARD and CCFinderX scaled up to 10
MLoC and 100 MLoC, respectively, then failed to execute.
Although ReDeBug and SourcererCC scales to 1 BLoC, their
growth rates of time are much steeper than that of VUDDY.

we focus on comparing the accuracy of VUDDY and other
clone detection techniques: SourcererCC, DECKARD, and
CCFinderX. These techniques are not aimed at detecting
“vulnerable” clones, and thus are not accurate when finding
security vulnerabilities. On the other hand, ReDeBug is de-
signed for detecting vulnerable code clones. Thus, we compare
VUDDY with ReDeBug in detail in section VIII.

To evaluate accuracy on the most equitable basis possible,
we decided to conduct clone detection using each technique,
then manually inspect every reported clones. The result of
clone detection between our vulnerability database and Apache
HTTPD 2.4.23 (352 KLoC) is shown in Table III. As it is
very challenging to find literally every vulnerability (including
unknown vulnerabilities) in the target program, we cannot
easily determine false negatives of tested techniques. To be
clear, values of the FN column in Table III only accounts for
indisputable false negatives. For example, FN of VUDDY is
the number of code clones detected by the other techniques
that are not false positives, but not detected by VUDDY. We
reused the configurations of Table II except for the minimum
similarity threshold settings.

VUDDY reported 9 code clones in 22 seconds, and all of the
findings were unpatched vulnerable clones in Apache HTTPD
2.4.23. SourcererCC with 100 % similarity setting also had
precision of 1.0, but reported only one true positive case. It
missed 8 vulnerable clones which VUDDY detected, because

TABLE III: Accuracy of VUDDY, SourcererCC, DECKARD,
and CCFinderX when detecting clones between the vulnera-
bility database and Apache HTTPD 2.4.23.

Technique Time Rep† TP FP FN Precision
VUDDY 22 s 9 9 0 2 1.000

SourcererCC (100)∗ 122 s 1 1 0 8 1.000
SourcererCC (70)∗ 125 s 56 2 54 7 0.036
DECKARD (100)∗ 58 s 57 3 54 8 0.053
DECKARD (85)∗ 234 s 462 4 458 8 0.009

CCFinderX 1201 s 74 11 63 1 0.147
∗ The values between parentheses denote minimum similarity threshold

configuration in percent
† Denotes the number of clones each technique reported

of its filtering heuristics. We lowered the minimum similarity
threshold to 70 %, expecting that SourcererCC might detect
more true positive cases. However, it ended up detecting only
two legitimate vulnerable clones, whereas introducing 54 false
positives. DECKARD with minimum similarity set to 100 %
reported 57 clones, and 54 cases were confirmed to be false
positives. This shows that two perfectly matching abstract
syntax trees are not necessarily generated from the same
code fragments. Furthermore, when the minimum similarity
threshold was set to 85 %, DECKARD detected only 4 true
positive clones, with 458 false positives. This result accords
with the observation of Jiang, et al. [29] which claims that
DECKARD has 90 % false positive. CCFinderX was the only
technique that reported more true positive cases than those of
VUDDY. However, 63 out of 74 reported clones were false
positives, and CCFinderX required the most time to complete.

We analyzed the false positive cases of each tool, and
discovered a fatal flaw of the compared techniques. In most
of the false positive cases, SourcererCC, DECKARD, and
CCFinderX falsely identified patched functions in the target as
clones of unpatched functions in the vulnerability database. We
present one case in which patched benign function is identified
as a clone of old, vulnerable version of the function, by all
techniques but VUDDY. In Listing 3, we can observe that the
statements removed and added by the patch are quite similar.
Eventually, the unpatched function and patched function have
so similar structure and tokens that SourcererCC, DECKARD,
and CCFinderX misleadingly report them as a clone pair.

We also analyzed the false negative cases. VUDDY did not
detect two vulnerable functions that both SourcererCC (70 %
similarity threshold) and DECKARD detected. The sole reason
is that some lines of code, other than the vulnerable spot ad-
dressed by security patches, were modified in the function. We
currently have vulnerable functions of the repository snapshots
right before the security patches are applied. However, this is a
trivial issue that can be easily resolved, because we can retrieve
every different versions of a vulnerable function and add them
in our database. For example, a command “git log -p
filename” retrieves the entire change history of the queried
file. Older snapshots of vulnerable functions are naturally
obtained from the change history, and we can insert these
into our vulnerability database. From a different standpoint,
it is very surprising that SourcererCC and DECKARD have
more false negatives than VUDDY has. For these cases they

failed to identify two identical functions as clones, implying
that these techniques are not complete (see Equation 2).
Listing 3: Snippet of the patch for CVE-2015-3183 which
is already applied in request.c of Apache HTTPD 2.4.23.

1 - if (access_status == OK) {
2 - ap_log_rerror(APLOG_MARK, APLOG_TRACE3, 0, r,
3 - "request authorized without authentication by "
4 - "access_checker_ex hook: %s", r->uri);
5 - }
6 - else if (access_status != DECLINED) {
7 - return decl_die(access_status, "check access", r);
8 ...
9 + else if (access_status == OK) {

10 + ap_log_rerror(APLOG_MARK, APLOG_TRACE3, 0, r,
11 + "request authorized without authentication by "
12 + "access_checker_ex hook: %s", r->uri);
13 + }
14 + else {
15 + return decl_die(access_status, "check access", r);

In summary, although Apache HTTPD is a moderately-sized
project consisting of 350 KLoC, a lot of false positive cases
are reported by techniques other than VUDDY. It is only
logical that the bigger a target program is, the more false
alarms are generated. Therefore, we confidently conclude that
SourcererCC, DECKARD, and CCFinderX are not suitable for
detecting vulnerable clones from large code bases, as they will
report so many false positive cases which cannot be handled by
restricted manpower. Moreover, SourcererCC and DECKARD
had more false negatives than VUDDY had.

D. Exact-matching vs Abstract matching

Our abstraction scheme enables VUDDY to detect variants
of known vulnerabilities. We tested VUDDY with an Android
firmware (14.9 MLoC). VUDDY reported 166 vulnerable
clones without abstraction and 206 clones with abstraction.
This means that VUDDY detects 24 % more clones with
abstraction, which are unknown vulnerabilities. We manually
inspected the clones, and identified no false positive.

VIII. IN-DEPTH COMPARISON WITH REDEBUG

In subsection VII-C, we compared VUDDY with other
clone detection techniques of which the designs do not con-
sider vulnerability preservation in clones. Here, we compare
VUDDY with ReDeBug, a line-based vulnerability detection
technique which takes advantage of security patches to find
vulnerability. The sole purpose of ReDeBug is to scalably find
vulnerable code clones, which we believe to be very similar
to our purpose. As ReDeBug takes a different design choice,
(i.e., line-level granularity) for clone detection, we compare
VUDDY and ReDeBug in detail to demonstrate the efficiency
and effectiveness of VUDDY. Three major advantages of
VUDDY over ReDeBug are as follows:

• VUDDY is twice faster than ReDeBug.
• VUDDY has far less false positive than ReDebug.
• VUDDY is capable of detecting Type-2 clones, but

ReDeBug is not.

TABLE IV: Comparison of VUDDY and ReDeBug, targeting
Android firmware (14.86 MLoC, 349 K functions).

VUDDY ReDeBug
Time to complete 17 m 3 s 28 m 15 s
initial reports 206 2,090
multiple counts 0 1,845
unique clones 206 245
false positives 0 43
end result 206 202
unique findings 25 21
common findings 181

1

10

100

1000

10000

VUDDY ReDeBug

Ti
m

e
(i

n
se

c,
lo

g
sc

al
ed

)

Preprocessing
Clone detection

1023
676

1.04

1019

Fig. 7: Time required for preprocessing and clone detection.

A. Speed

The result of comparison is summarized in Table IV. In
terms of speed, VUDDY is faster than ReDeBug. When
querying 9,770 CVE patches targeting Android firmware (14.9
MLoC, using kernel version 3.18.14), VUDDY required 17
minutes and 3 seconds. Meanwhile, ReDeBug using the same
default parameters (n = 4, c = 3, where n is the number
of lines per window, and c is the amount of context) used by
Jang et al. [18] in their experiment, required 28 minutes and 15
seconds for clone detection. In fact, VUDDY required 1,023
seconds for preprocessing and for the fingerprint generation
procedure, and the actual clone detection required only 1.04
seconds, as illustrated in Fig. 7. Note that once the prepro-
cessing is complete, VUDDY does not need to regenerate the
fingerprint dictionary for every clone detection. Thus, we can
argue that VUDDY detects vulnerable code clones at a speed
more than twice faster than ReDeBug, in practice.

B. False positive

VUDDY overwhelms ReDeBug with decisive margin, with
respect to accuracy. No false positive was reported by VUDDY.
However, we conducted a manual inspection for 12 hours
with 2,090 code clones reported by ReDeBug to find that
1,845 (88.3 %) of these code clones were duplicates, because
ReDeBug counts the number of CVE patches rather than the
number of unpatched spots in the target code. After removing
duplication, the number of clones reduced to 245. Then, we
were able to find 43 (17.6 %) false positives among the 245
unique code clones through a further inspection. The false
positive cases were attributed to two causes: ReDeBug is

language agnostic, and there is a technical limitation in their
approach.

The language agnostic nature of ReDeBug causes the
technique to find code clones of trivial patches (i.e., hardly
related to vulnerability), such as patches that modify macro
statements, structs, and header inclusion or exclusion. For
example, the patch for CVE-2013-0231 adds header inclusion
statements to the beginning of pciback_ops.c in the xen
driver of Linux kernel. The patch for CVE-2015-5257 adds an
initialization statement of a struct member variable. Although
ReDeBug found and reported that these patches are not applied
in the Android smartphone, these unpatched code cannot be
vulnerabilities. On the other hand our mechanism targets only
the functions, and therefore refrains from reporting such trivial
code clones.

ReDeBug also has a technical limitation that contributes
to the false positives. When ReDeBug processes the patches,
it excludes the lines prefixed by a “+” symbol to obtain
the original buggy code snippet, and then removes curly
braces, redundant whitespaces and comments from the snippet.
When searching for the snippet in the target source code,
the lack of context leads to false positives. For example,
ReDeBug reported a benign function in xenbus.c as an
unpatched vulnerability, where the patch actually adds a line of
comment to the original source code without making any sig-
nificant changes to other lines of code. Even worse, ReDeBug
erroneously detected the nr_recvmsg function shown in
Listing 4, although the corresponding patch in Listing 5 is
already applied. In this case, the sequence of lines 3, 6, 8,
and 9 in the patch exactly matches lines 3, 4, 6, and 7 of
the function in Listing 4 after preprocessing. This example
reveals the limitation of a line-level granularity, responsible
for causing false positives.
Listing 4: nr recvmsg function in Android firmware which
is erroneously reported as vulnerable by ReDeBug.

1 sax->sax25_family = AF_NETROM;
2 skb_copy_from_linear_data_offset(skb, 7, sax->

sax25_call.ax25_call,
3 AX25_ADDR_LEN);
4 msg->msg_namelen = sizeof(*sax);
5 }
6 skb_free_datagram(sk, skb);
7 release_sock(sk);

Listing 5: Patch for CVE-2013-7266.
1 sax->sax25_family = AF_NETROM;
2 skb_copy_from_linear_data_offset(skb, 7, sax->

sax25_call.ax25_call,
3 AX25_ADDR_LEN);
4 + msg->msg_namelen = sizeof(*sax);
5 }
6 - msg->msg_namelen = sizeof(*sax);
7 -
8 skb_free_datagram(sk, skb);
9 release_sock(sk);

C. False negative
Table IV shows the number of unique findings of VUDDY

and ReDeBug, which represent the false negatives of each

other. In terms of false negatives, VUDDY and ReDeBug are
complementary. Owing to the abstraction, VUDDY was able to
find 25 vulnerable code clones in which data types, parameters,
variable names, and function’s names were modified. However,
ReDeBug was not resilient to such changes. One of the cases
is the function in Listing 7, which should have been patched
by Listing 6 but not. While the security patch is not applied,
a const qualifier is inserted in line 1 of Listing 7. ReDeBug
tries to detect the window consisting of lines 1 to 6, and
fails because of const. However, VUDDY is capable of
detecting such variant of vulnerable function because both
const wlc_ssid_ and wlc_ssid_t are replaced with
DTYPE after applying abstraction.

Listing 6: Patch for CVE-2016-2493.
1 ssid = (wlc_ssid_t *) data;

2 memset(profile->ssid.SSID, 0,
3 sizeof(profile->ssid.SSID));
4 + profile->ssid.SSID_len = MIN(ssid->SSID_len,

DOT11_MAX_SSID_LEN);
5 memcpy(profile->ssid.SSID, ssid->SSID, ssid->

SSID_len);
6 profile->ssid.SSID_len = ssid->SSID_len;
7 break;

Listing 7: Vulnerable function in kernel/drivers/net/wire-
less/bcmdhd4359/wl cfg80211.c

1 ssid = (const wlc_ssid_t *) data;

2 memset(profile->ssid.SSID, 0,
3 sizeof(profile->ssid.SSID));
4 memcpy(profile->ssid.SSID, ssid->SSID, ssid->

SSID_len);
5 profile->ssid.SSID_len = ssid->SSID_len;
6 break;

The 21 cases VUDDY missed but ReDeBug detected re-
sulted from precisely the same reason addressed in sub-
section VII-C. ReDeBug detected unpatched functions even
if lines other than security patch addresses were modified,
because it utilizes a line-level granularity. However, we empha-
size again that these cases can be detected by VUDDY if we
reinforce our vulnerability database by adding older snapshots
of vulnerable functions.

After examining the wide discrepancies in speed and ac-
curacy between VUDDY and ReDeBug, we concluded that
VUDDY delivers results that are much more precise and
accomplishes this with faster speed.

IX. CASE STUDY

Taking advantage of the scalability and accuracy of
VUDDY, we could investigate a wide range of programs in a
relatively short period of time. In this section, we evaluate the
practical merits of VUDDY by demonstrating vulnerabilities
detected in real-world programs.

According to the scale and cause of clones, we classify
clone-induced vulnerabilities into the following three cate-
gories: Library reuse; Kernel reuse; and Intra-project code
reuse cases. The cases we introduce show that software is
often affected by old vulnerabilities blended into their system
by code cloning.

A. Library reuse cases
In practice, library reuse takes place very frequently, be-

cause any software, small or large, can use libraries without
much restriction. For example, in the latest release of VLC
media player, an open source media player, at least 91 third-
party libraries (including very popular ones such as FFmpeg,
FLAC, LAME, libmpeg2, and Qt5) are used. Consequently,
many projects are prone to a wide range of vulnerabilities
attributable to the outdated libraries they use.

1) LibPNG and a mobile browser: The smartphone we
addressed in subsection IX-B is shipped with a built-in
web browser application based on the use of an outdated
LibPNG library. The version of LibPNG in the web browser
is 1.2.45, which was released in July 2011. VUDDY de-
tected that the fix for CVE-2011-3048 (Heap-based buffer
overflow in LibPNG) is not applied in that version, leaving
the browser vulnerable. In Listing 8, the vulnerable function
named png_set_text_2 in pngset.c is described.
Listing 8: Snippet of vulnerable function in pngset.c of
LibPNG 1.2.45.

1 if (info_ptr->text != NULL)
2 {
3 png_textp old_text;
4 int old_max;
5 old_max = info_ptr->max_text;
6 info_ptr->max_text = info_ptr->num_text + num_text +

8;
7 old_text = info_ptr->text;
8 info_ptr->text = (png_textp)png_malloc_warn(png_ptr,

(png_uint_32)(info_ptr->max_text * png_sizeof(
png_text)));

9 if (info_ptr->text == NULL)
10 {
11 png_free(png_ptr, old_text);
12 return(1);
13 }
14 png_memcpy(info_ptr->text, old_text, (png_size_t)(

old_max * png_sizeof(png_text)));
15 png_free(png_ptr, old_text);
16 }

When memory allocation in line 8 fails, png_free
function is called without restoring the prior states of
info_ptr->max_text, and info_ptr->old_text.
As a result, dangling pointers are generated. We could exploit
this vulnerability to accomplish denial of service through a
crafted PNG file.

This case is very alarming because a vulnerability which had
already been patched five years ago is still being distributed
through widely-used smartphones. After we reported this bug
to the manufacturers, they affirmed that they will conduct a
dependency check and library update for the next release.

2) Expat library and Apache HTTPD: In the Apache HTTP
server, we discovered a vulnerable code clone of CVE-2012-
0876, which eventually turned out to be a zero-day vulnerabil-
ity. The latest stable release (2.4.23), and a few recent releases
(2.4.18 and 2.4.20) are affected. Apache HTTP server relies
on the Expat library for parsing XML files. Unfortunately,
the library that is currently being used by Apache HTTP
server is an outdated version, which is vulnerable to CVE-
2012-0876, a so-called Hash DoS attack. VUDDY detected

that expat/lib/xmlparse.c contained a code clone of a
vulnerable function retrieved from Google Android repository,
which allows attackers to cause a DoS attack through a crafted
XML file. Listing 9 shows part of the patches for CVE-2012-
0876, and Listing 10 is an excerpt of the vulnerable function
in Apache HTTP server, which can be triggered with a crafted
packet to cause DoS.

We could use a specially crafted XML file to trigger the
vulnerability, and force the Apache HTTP server daemon
to consume 100 % of CPU resources. We reported this
zero-day vulnerability, which could critically affect numerous
web services that run Apache HTTP server, and the Apache
security team confirmed this vulnerability.
Listing 9: Patch for CVE-2012-0876 retrieved from Google
Android repository.

1 for (i = 0; i < table->size; i++)
2 if (table->v[i]) {
3 - unsigned long newHash = hash(table->v[i]->name);
4 + unsigned long newHash = hash(parser, table->v[i]->

name);
5 size_t j = newHash & newMask;

Listing 10: Vulnerable function in httpd-2.4.23/srclib/apr-
util/xml/expat/lib/xmlparse.c (lines from 5428 to 5434) of
Apache HTTP server 2.4.23 which is still unpatched even
though the security patch was released in 2012.

1 ...for (i = 0; i < table->size; i++)
2 if (table->v[i]) {

3 unsigned long newHash = hash(table->v[i]->name);

4 size_t j = newHash & newMask;
5 step = 0;...

B. Kernel reuse cases
One important characteristic of cases in which the kernel

is reused, is that these kernels usually lag behind the latest
kernel. This is very prevalent in the ecology of IoT devices
including Android smartphones, Tizen appliances, and Linux-
oriented operating systems such as Ubuntu. It often takes at
least half a year to develop their own operating system on the
basis of a certain version of Linux kernel, which eventually
leaves them (i.e., the IoT devices, OS distributions, and smart
appliances running the Tizen OS) subject to the vulnerabilities
reported during the period of development. In other words,
although the Linux kernel is constantly patched and updated,
devices inevitably lag behind the patching efforts of Linux
kernel developers.

The dirty COW vulnerability (CVE-2016-5195) is an excel-
lent example of a situation in which VUDDY can be effective,
because a vulnerable Linux kernel was reused in a smartphone.
This vulnerability was once discovered and fixed by a Linux
kernel developer in 2005, but its fix was reverted, thereby
nullifying the initial fix. VUDDY detected the vulnerable clone
(see Listing 11) in the firmware of an Android smartphone
released in March 2016, and we successfully exploited the
vulnerable clone to gain root privilege of the smartphone run-
ning the examined firmware. If VUDDY had been employed to
find known old vulnerabilities before the affected kernels were
released, Linux could have prevented such brutal vulnerability
from being propagated through a number of OS distributions

including those in Android smartphones which hold more than
half of the market share.
Listing 11: Vulnerable clone affected by Dirty COW
vulnerability found in the Android firmware.

1 ...}
2 if ((flags & FOLL_NUMA) && pte_protnone(pte))
3 goto no_page;
4 if ((flags & FOLL_WRITE) && !pte_write(pte)) {
5 pte_unmap_unlock(ptep, ptl);
6 return NULL;
7 }...
8 * reCOWed by userspace write).
9 */

10 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags &
VM_WRITE))

11 *flags &= ˜FOLL_WRITE;
12 return 0;
13 }

We contacted the smartphone manufacturer3 to inform them
about our findings of the vulnerability. As a result, they
immediately initiated a process to address the vulnerability.

C. Intra-project code reuse cases
Owing to our abstraction strategy, we detected an 8-year-

old vulnerability (CVE-2008-3528) which possibly is a zero-
day vulnerability, in the latest stable trees including versions
4.8.6, 4.7.10, and the LTS versions of the Linux kernel. Very
interestingly, although the original vulnerability was found in
ext2, ext3, and ext4 file systems of the kernel 2.6.26.5, and
patched in 2008 (Listing 12), the nilfs2 file system of which
the implementation is very similar (but differs in relation to
some identifiers) to that of ext2 has remained unpatched to
date. The problematic function named *nilfs_dotdot is
in linux/fs/nilfs2/dir.c.
Listing 12: Original patch of CVE-2008-3528 targeting
ext2 file system of Linux.

1 struct ext2_dir_entry_2 * ext2_dotdot (struct inode

*dir, struct page **p)
2 {
3 - struct page *page = ext2_get_page(dir, 0);
4 + struct page *page = ext2_get_page(dir, 0, 0);
5 ext2_dirent *de = NULL;
6

7 if (!IS_ERR(page)) {

Listing 13: Buggy function in nilfs2 file system of Linux.
1 struct nilfs_dir_entry *nilfs_dotdot(struct inode *

dir, struct page **p)
2 {

3 struct page *page = nilfs_get_page(dir, 0);

4 struct nilfs_dir_entry *de = NULL;
5

6 if (!IS_ERR(page)) { de = nilfs_next_entry(...

The function described in Listing 13 is suspected to be
cloned from the implementation of the ext2 file system,
because file systems share a considerable amount of similar
characteristics. Even though the name of the function called at
line 3 of Listing 13 is different from that of the original buggy

3Name of this company and vulnerable smartphones are deliberately
anonymized for legal reasons.

function (ext2_get_page), this is detected by VUDDY
because as described in subsection IV-A-S2, we abstract the
function calls by replacing the names of the called function
with FUNCCALL.

The contents of function ext2_get_page and
nilfs_get_page are also identical except for their
names and a few identifiers, and thus we attempted to
trigger the vulnerability in Ubuntu 16.04 which is built upon
kernel version 4.4. Surprisingly, we could trigger the “printk
floods” vulnerability which in turn causes denial of service,
by mounting a corrupted image of the nilfs2 file system.
We contacted a security officer of Redhat Linux, and he
confirmed that this vulnerability should be patched. This case
shows that VUDDY is capable of detecting unknown variants
of known vulnerability.

X. DISCUSSION

A. The use of function-level granularity
In this section, we discuss the reasoning behind selecting

the function level as the basis for clone detection, through a
theoretical and empirical analysis of time complexity, storage
use, and accuracy of detection. As a way of answering the
research question of “Which granularity is best for scal-
able and accurate vulnerability detection?” we parameterize
the granularity level, and observe the performance curve of
VUDDY.

1) Time complexity: Given a function F consisting of l
LoC, c characters per line on average, assume that we use
g lines as a granularity unit. Then, each processing window
will consist of g blocks, and the number of windows in F
will be l − g + 1. We can compute the cost of preprocessing
a function as the multiplication of the number of windows
by the preprocessing time per window. When preprocessing
a retrieved function, VUDDY conducts abstraction, normal-
ization, and length computation, and then applies the MD5
hash algorithm. However, the first three operations require a
trivial amount of time relative to the MD5 hash computation,
of which the complexity is denoted as ax + b where x is
the number of input characters4. Thus, the Cost function is
approximated as follows:

Cost(g) = (#windows) ∗ (HashT ime/window) (7)
= (l − g + 1) ∗ (a(cg) + b) (8)

= −acg2 + (acl + ac− b)g + b(l + 1) (9)

This formula is empirically validated by measuring the time
VUDDY requires to preprocess functions of various lines of
code. As illustrated in Fig. 8, the cost function is parabolic,
peaking at g = 2/l. The minimum value of each graph is
attained when g = l, which means the least time is required
for any function when we take advantage of the function-
level granularity. Note that these properties are observed for
all functions in our vulnerability database, with sizes ranging
from 51 to 2526, but in consideration of the readability of the
graphs, we only plotted six representative functions.

4To the best of our knowledge, the time complexity of MD5 implementation
in Python Hashlib is not known. Therefore, we empirically measured the time
complexity in subsection VI-B to find that it is linear to the length of input
plaintext.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 100 200 300 400 500 600 700 800 900

Ti
m

e
co

st
(i

n
m

s)

g (granularity in LoC)

l=100
l=300
l=506

22
222
22
22222

2
2
2
2
2
22

2222
22
2
2
2
2
2
22
2
22222

222
2222

2222
22

2
l=602

OO
O
OO
OO
OOOO

O
OO
OO
O
O
OO
O
OO
OOOOOO

O
OOOOOO

O
OOOOO

OOOOOOO
OOOOOO

OO
OO
OO

O
l=702

◦◦◦
◦◦
◦◦◦
◦◦◦
◦◦
◦◦

◦
◦◦◦
◦◦◦
◦◦
◦
◦◦◦◦◦
◦
◦
◦
◦◦
◦◦◦◦◦◦◦◦◦

◦

◦◦◦◦◦◦◦◦◦◦◦◦◦
◦◦◦
◦◦◦◦◦◦◦◦◦◦

◦
l=817

+
++
+
+++
+
++++

+

++
+
+++
+
+
+
++
++
+
+++++

++++
+
+
+
++
++
++++++

+
++
+++++

++++
+

+

+++++
++++

+++
+
+++
++
+

+

Fig. 8: Time required for preprocessing the functions by vary-
ing the granularity level. The graphs represent six functions
with 100, 300, 506, 602, 702, and 817 LoC, respectively.

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700

B
en

efi
t

l (in LoC)

××××
×××××
×××××
××××××
×
×
××××××××

×

××××××
×××××
×
×
×
×××

×

×
×××

×

×

××
×
×
××××
×

×
×××
××××
××

×
×

×
×

××××××
××
×××
××
××××
×

×
×
×

×
×
××

×
×××
×
×
××
×××
××
×

×××××
×
××
××
×××

××
×
×

×
×
×××
×××××
××××
××××
×
××
×
×

××

×

××
×
××
××
×

×
×

×
×
×
××
×
×
×××
×

×××××
×
×
××××××
×××

×××
×
×
×
××

×
×
×
×××××

×
×
×

×

×
××

××

×

××

×

××

×

×

×
××××

×

×

×××

×
×

×

×
×
×××

×
×

×

×
×
××
×
×
××
×××

××
×
××
×

×

×
××

×

×

×

×
×

××

×

×
×

×××
×
×
××
××

×

×
×
×
××

×

×
×
×

××

×××

××

×
××
××
×
×

×

×

×
×

××

××
××
×
×
××
××
××××

×

×

×

×
×
××
×

××

××

×

×

×
××

×

×

×

××

×

×
×

×

×
×

××
×

××××××
×

Approximation: 0.0068l−0.042
0.0002l+0.006

Fig. 9: Relative time benefit of cost(g = l) (i.e., function-level
granularity) over cost(g = 4) (i.e., as of ReDeBug) along
varying sized functions in the vulnerability database. Each
point (x-shaped) represents a function consisting of l lines,
and the curved line represents an approximate fitted curve.

Using the cost function, we now estimate the relative
benefit, (i.e., speedup) of function-level granularity (VUDDY)
over using four LoC as granularity (default of ReDeBug). The
Benefit function is given by:

Benefit(l) =
cost(g = 4)

cost(g = l)
(10)

=
(4ac+ b)l − (12ac+ 3b)

acl + b
(11)

To prove the validity of our theoretical estimation, we
conducted another experiment to assess the benefit, with the
functions of our vulnerability database. The result is shown
in Fig. 9. By observing the open source projects in our
dataset, we determined the average number of characters, c,
to be 10, and through the experiment in subsection VI-B,
the complexity of the MD5 hash algorithm was found to be
2.00e−5x + 0.006. This observation, enabled us to obtain a
graph that approximately fits the experimental data (the curved
graph in Fig. 9), where Benefit(l) asymptotically approaches
34 as l increases.

2) Memory usage: Memory usage is another crucial factor
that determines the scalability of a method. Technically, our

method takes variable granularity l, which always equals the
length of a function. This is highly advantageous compared to
approaches that utilize a fixed granularity-level, e.g., ReDeBug
or CCFinder, in terms of memory usage. Table V shows the
amount of memory used when the functions in our vulner-
ability database are preprocessed. When l was taken as the
granularity level, the least memory was used because only one
fingerprint was generated per function. When the granularity
g was 4 LoC, it consumed 651 MB of memory for processing
and storing the fingerprints of fine-grained functions. This is
considerable overhead, considering that the total size of files
in the vulnerability database is 21 MB (see subsection V-A).

Formally, l − g + 1 fingerprints were generated for each
function, which led an increase in the amount of memory
space required. It can be observed in Table V that when
the granularity level is increased, memory use decreases.
However, this does not necessarily imply that the use of
larger granularity reduces memory usage. Instead, the main
reason for the lower memory usage is that functions shorter
than the fixed granularity are not processed. For example, if
we take 100 LoC as the granularity level, functions with a
length is shorter than 100 cannot be processed, and are thus
discarded. Therefore, we can confidently argue that function-
level granularity promotes memory efficiency more than other
fixed granularity levels.

3) Accuracy: Considering the former discussion from a
different standpoint, fixed granularity can impair the accuracy
of an approach. In other words, an approach that attempts
to detect vulnerable code clones using granularity g cannot
detect clones with a length smaller than g, which causes
false negatives. As a remedy, we could generate fingerprints
for every possible g value and search for the corresponding
fingerprint from every dictionary whenever it fails to detect
functions smaller than the fixed granularity, which causes a
tremendous amount of overhead. Moreover, it is obvious that
the false positive rate increases when we use finer granularity,
as shown in subsection VII-C. The false positive rate is directly
related to the trustworthiness of a vulnerable clone detector.
Vulnerable clone detectors that report numerous false alarms
do not actually help developers identify the problems in their
code; instead, they lead to increased efforts to routinely check
meaningless alarms. In this respect, we believe that our design
of VUDDY achieves the right balance between accuracy and
scalability.

B. Room for speedup
Currently, a large portion of the overhead is concentrated

in the parsing step. When generating a fingerprint of Android
firmware, VUDDY spent 973 seconds (95.1 %) out of 1023
seconds only for parsing. To resolve this performance bottle-
neck, we also implemented a faster version of VUDDY, called
VUDDY-fast, which utilizes regular expression to identify and
analyze functions. VUDDY-fast required only 1 hour and 17
minutes for generating fingerprint dictionary of 1 BLoC input
in Table I, but it identified 9.7 % less functions. As one of the
future works, we plan to improve the performance of parser
by optimizing the grammar and leveraging parser generator
which is faster than ANTLR.

TABLE V: Memory use when preprocessing functions in the
vulnerability database with the given granularity. l refers to
the LoC of a function.

Property Granularity (LoC) Memory use (MB)

Variable l 48

Fixed
4 651

10 496
40 172
100 49

C. Open service
In April 2016, we launched an open web service via web

with which anyone can use VUDDY to inspect their programs.
A number of open source developers, device manufacturers,
and commercial product developers tested more than 14 BLoC
for 11 months, and VUDDY detected 144,496 vulnerable
functions. For lack of space, the results and insights drawn
from the service is described in the Appendix.

XI. CONCLUSION AND FUTURE WORK

In this paper, we proposed VUDDY, which is an approach
for scalable and accurate vulnerable code clone discovery. The
design principles of VUDDY are directed towards extending
scalability through function-level granularity and a length
filter, while maintaining accuracy so that it can afford to detect
vulnerable clones from the rapidly expanding pool of open
source software. VUDDY adopts a vulnerability preserving
abstraction scheme which enables it to discover 24 % more
unknown variants of vulnerabilities. We implemented VUDDY
to demonstrate its efficacy and effectiveness. The results
show that VUDDY can actually detect numerous vulnerable
clones from a large code base with unprecedented scalability
and accuracy. In the case study, we presented several cases
discovered by VUDDY, in which vulnerable functions remain
unfixed for years and propagate to other programs.

Tremendous number of vulnerable code fragments will
continue to be propagated to countless programs and devices.
We strongly believe that VUDDY is a must-have approach to
be used for securing various software when scalability and
accuracy is required.

Our work can be extended in multiple directions. Firstly, we
plan to continue improving the performance of VUDDY by
refining the parser and expanding the vulnerability database.
It will boost the speed of VUDDY and increase detec-
tion rate. Moreover, we will try to combine our approach
with other types of vulnerability-detecting techniques (e.g.,
fuzzers), which will allow a more sophisticated detection of
vulnerability.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their insightful
comments to improve the quality of the paper. We are also
grateful to Donghyeok Kim for his contribution on the parser
generation, and Taebeom Kim for his help on the manual
inspection process. This work was supported by Institute for
Information & communications Technology Promotion (IITP)
grant funded by the Korea government (MSIP) (No.R0190-16-
2011, Development of Vulnerability Discovery Technologies
for IoT Software Security).

REFERENCES

[1] M. W. Godfrey and Q. Tu, “Evolution in open source software: A
case study,” in Software Maintenance, 2000. Proceedings. International
Conference on. IEEE, 2000, pp. 131–142.

[2] G. Succi, J. Paulson, and A. Eberlein, “Preliminary results from an
empirical study on the growth of open source and commercial software
products,” in EDSER-3 Workshop. Citeseer, 2001, pp. 14–15.

[3] W. Scacchi, “Understanding open source software evolution,” Software
Evolution and Feedback: Theory and Practice, vol. 9, pp. 181–205,
2006.

[4] “SourceForge,” http://sourceforge.net, accessed: 2016-11-01.
[5] “GitHub,” http://github.com, accessed: 2016-11-01.
[6] M. Kim, L. Bergman, T. Lau, and D. Notkin, “An ethnographic study

of copy and paste programming practices in OOPL,” in Empirical
Software Engineering, 2004. ISESE’04. Proceedings. 2004 International
Symposium on. IEEE, 2004, pp. 83–92.

[7] C. J. Kapser and M. W. Godfrey, ““Cloning considered harmful”
considered harmful: patterns of cloning in software,” Empirical Software
Engineering, vol. 13, no. 6, pp. 645–692, 2008.

[8] J. Mayrand, C. Leblanc, and E. M. Merlo, “Experiment on the automatic
detection of function clones in a software system using metrics,” in
Software Maintenance 1996, Proceedings., International Conference on.
IEEE, 1996, pp. 244–253.

[9] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An empirical study
of code clone genealogies,” in ACM SIGSOFT Software Engineering
Notes, vol. 30, no. 5. ACM, 2005, pp. 187–196.

[10] T. Lavoie, M. Eilers-Smith, and E. Merlo, “Challenging cloning related
problems with gpu-based algorithms,” in Proceedings of the 4th Inter-
national Workshop on Software Clones. ACM, 2010, pp. 25–32.

[11] B. S. Baker, “On finding duplication and near-duplication in large
software systems,” in Reverse Engineering, 1995., Proceedings of 2nd
Working Conference on. IEEE, 1995, pp. 86–95.

[12] N. H. Pham, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Detection
of recurring software vulnerabilities,” in Proceedings of the IEEE/ACM
international conference on Automated software engineering. ACM,
2010, pp. 447–456.

[13] H. Li, H. Kwon, J. Kwon, and H. Lee, “CLORIFI: software vulnerability
discovery using code clone verification,” Concurrency and Computation:
Practice and Experience, pp. 1900–1917, 2015.

[14] A. Nappa, R. Johnson, L. Bilge, J. Caballero, and T. Dumitras, “The
attack of the clones: a study of the impact of shared code on vulnerability
patching,” in 2015 IEEE Symposium on Security and Privacy. IEEE,
2015, pp. 692–708.

[15] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic
token-based code clone detection system for large scale source code,”
Software Engineering, IEEE Transactions on, vol. 28, no. 7, pp. 654–
670, 2002.

[16] I. D. Baxter, A. Yahin, L. Moura, M. S. Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in Software Maintenance, 1998.
Proceedings., International Conference on. IEEE, 1998, pp. 368–377.

[17] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD: Scalable and
accurate tree-based detection of code clones,” in Proceedings of the 29th
international conference on Software Engineering. IEEE Computer
Society, 2007, pp. 96–105.

[18] J. Jang, A. Agrawal, and D. Brumley, “ReDeBug: finding unpatched
code clones in entire os distributions,” in Security and Privacy (SP),
2012 IEEE Symposium on. IEEE, 2012, pp. 48–62.

[19] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“SourcererCC: scaling code clone detection to big-code,” in Proceedings
of the 38th International Conference on Software Engineering. ACM,
2016, pp. 1157–1168.

[20] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Com-
parison and evaluation of clone detection tools,” IEEE Transactions on
Software Engineering, vol. 33, no. 9, pp. 577–591, 2007.

[21] R. Koschke, “Survey of research on software clones,” in Dagstuhl Sem-
inar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
2007.

[22] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Science of Computer Programming, vol. 74, no. 7, pp. 470–495, 2009.

[23] D. Rattan, R. Bhatia, and M. Singh, “Software clone detection: A
systematic review,” Information and Software Technology, vol. 55, no. 7,
pp. 1165–1199, 2013.

[24] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: Finding copy-paste
and related bugs in large-scale software code,” Software Engineering,
IEEE Transactions on, vol. 32, no. 3, pp. 176–192, 2006.

[25] X. Yan, J. Han, and R. Afshar, “CloSpan: Mining: Closed sequential pat-
terns in large datasets,” in Proceedings of the 2003 SIAM International
Conference on Data Mining. SIAM, 2003, pp. 166–177.

[26] F. Yamaguchi, F. Lindner, and K. Rieck, “Vulnerability extrapolation:
assisted discovery of vulnerabilities using machine learning,” in Pro-
ceedings of the 5th USENIX conference on Offensive technologies.
USENIX Association, 2011, pp. 13–13.

[27] F. Yamaguchi, M. Lottmann, and K. Rieck, “Generalized vulnerability
extrapolation using abstract syntax trees,” in Proceedings of the 28th
Annual Computer Security Applications Conference. ACM, 2012, pp.
359–368.

[28] R. C. Read and D. G. Corneil, “The graph isomorphism disease,” Journal
of Graph Theory, vol. 1, no. 4, pp. 339–363, 1977.

[29] L. Jiang, Z. Su, and E. Chiu, “Context-based detection of clone-related
bugs,” in Proceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering. ACM, 2007, pp. 55–64.

[30] Y. Sasaki, T. Yamamoto, Y. Hayase, and K. Inoue, “Finding file clones
in FreeBSD ports collection,” in Mining Software Repositories (MSR),
2010 7th IEEE Working Conference on. IEEE, 2010, pp. 102–105.

[31] Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, and J. Hu, “VulPecker: an automated
vulnerability detection system based on code similarity analysis,” in
Proceedings of the 32nd Annual Conference on Computer Security
Applications. ACM, 2016, pp. 201–213.

[32] “The Expat XML Parser,” http://expat.sourceforge.net/, accessed: 2016-
11-01.

[33] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-aware android mal-
ware classification using weighted contextual api dependency graphs,”
in Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2014, pp. 1105–1116.

[34] “Common Vulnerability Enumeration,” http://cve.mitre.org, accessed:
2016-11-01.

[35] “ANTLR, ANother Tool for Language Recognition,” http://www.antlr.
org/, accessed: 2016-11-01.

[36] N. Synytskyy, J. R. Cordy, and T. R. Dean, “Robust multilingual parsing
using island grammars,” in Proceedings of the 2003 conference of the
Centre for Advanced Studies on Collaborative research. IBM Press,
2003, pp. 266–278.

[37] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting
vulnerable software components,” in Proceedings of the 14th ACM
conference on Computer and communications security. ACM, 2007,
pp. 529–540.

[38] A. Van Deursen and T. Kuipers, “Building documentation generators,”
in Software Maintenance, 1999.(ICSM’99) Proceedings. IEEE Interna-
tional Conference on. IEEE, 1999, pp. 40–49.

[39] L. Moonen, “Generating robust parsers using island grammars,” in
Reverse Engineering, 2001. Proceedings. Eighth Working Conference
on. IEEE, 2001, pp. 13–22.

[40] G. Pike and J. Alakuijala, “Introducing cityhash,” 2011.

[41] A. Appleby, “Murmurhash 2.0,” 2008.

[42] B. Jenkins, “SpookyHash: a 128-bit non-cryptographic hash (2010),”
2014.

[43] X. Wang and H. Yu, “How to break MD5 and other hash functions,”
in Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2005, pp. 19–35.

[44] T. Wang, M. Harman, Y. Jia, and J. Krinke, “Searching for better
configurations: a rigorous approach to clone evaluation,” in Proceedings
of the 2013 9th Joint Meeting on Foundations of Software Engineering.
ACM, 2013, pp. 455–465.

[45] J. Svajlenko and C. K. Roy, “Evaluating modern clone detection tools,”
in Software Maintenance and Evolution (ICSME), 2014 IEEE Interna-
tional Conference on. IEEE, 2014, pp. 321–330.

http://sourceforge.net
http://github.com
http://expat.sourceforge.net/
http://cve.mitre.org
http://www.antlr.org/
http://www.antlr.org/

APPENDIX
VUDDY AS AN OPEN SERVICE

VUDDY has been serviced online (at IoTcube, https://iotcube.net) since April 2016, facilitating scalable and accurate
inspection of software. Users of our service include commercial software developers, open source committers, and IoT device
manufacturers. Here, we present the working example of VUDDY given the firmware of an Android smartphone. When the
fingerprint is uploaded to our service platform, the platform shows the number of detected vulnerable clones, the origins
of clones, yearly distribution of CVEs assigned to vulnerabilities, CVSS (Common Vulnerability Scoring System) score
distribution, CWE (Common Weakness Enumeration) distribution, and a tree view with which users are able to locate the
files affected by vulnerable clones. Graphs in the appendix are downloaded as vector images from IoTcube, and the other
figures are screen-captured.

Fig. 10: The main page of IoTcube. The implementation of VUDDY is under the White-box Testing menu.

Fig. 11: Statistical knowledge obtained by web service for 11 months. Tables show the most frequently detected CVEs and
CWEs, respectively. This information is also open to the users.

The origin of vulnerabili�es

6363

11

11

22

number of vulnerability

codeaurora

linux

chromium

special

ubuntu

0 20 40 60 80 100 120 140

129129

Fig. 12: The origin of vulnerabilities. 129 vulnerable functions detected in the smartphone are already reported and patched
in the repository of Ubuntu-Trusty.

Yearly distribu�on of CVEs

00 00

55

11 11 00 11

99 99

8080

9090

CVE

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

0

20

40

60

80

100

Fig. 13: Yearly distribution of CVEs. As the tested smartphone uses the Linux kernel version 3.18.14, which was released in
May 2015, many of the vulnerabilities exposed in 2015 and 2016 are not patched yet.

CVSS

High: 18.4 %High: 18.4 %

Medium: 30.1 %Medium: 30.1 %

Low: 51.5 %Low: 51.5 %

Fig. 14: The distribution of CVSS. Over 18 % of the detected CVEs are assigned with high severity score.

CWE

CWE-020: 2.0 %CWE-020: 2.0 %

CWE-264: 16.8 %CWE-264: 16.8 %

CWE-000: 50.0 %CWE-000: 50.0 %

CWE-119: 8.2 %CWE-119: 8.2 %

CWE-254: 1.5 %CWE-254: 1.5 %

CWE-399: 6.6 %CWE-399: 6.6 %

CWE-189: 2.0 %CWE-189: 2.0 %

CVE-264: 1.0 %CVE-264: 1.0 %

CWE-362: 5.6 %CWE-362: 5.6 %

CWE-017: 0.5 %CWE-017: 0.5 %

CWE-200: 5.6 %CWE-200: 5.6 %

Fig. 15: The distribution of CWE. Permission-related vulnerabilities (CWE-264) are dominant in the Android smartphone.

Fig. 16: A snippet of tree view. Internal nodes denote directories, and leaf nodes denote files. In this tree, dir.c file located
under /fs/nilfs2/ has two vulnerable functions. Clicking the leaf nodes, users can also browse the vulnerable functions and
corresponding patches.

