
vSQL: Verifying Arbitrary SQL Queries over
Dynamic Outsourced Databases

Yupeng Zhang∗, Daniel Genkin†,∗, Jonathan Katz∗, Dimitrios Papadopoulos‡,∗ and Charalampos Papamanthou∗
∗University of Maryland †University of Pennsylvania ‡Hong Kong University of Science and Technology

Email: {zhangyp,cpap}@umd.edu, danielg3@cis.upenn.edu, jkatz@cs.umd.edu, dipapado@cse.ust.hk

Abstract—Cloud database systems such as Amazon RDS or
Google Cloud SQL enable the outsourcing of a large database to
a server who then responds to SQL queries. A natural problem
here is to efficiently verify the correctness of responses returned
by the (untrusted) server. In this paper we present vSQL, a
novel cryptographic protocol for publicly verifiable SQL queries
on dynamic databases. At a high level, our construction relies on
two extensions of the CMT interactive-proof protocol [Cormode
et al., 2012]: (i) supporting outsourced input via the use of a
polynomial-delegation protocol with succinct proofs, and (ii) sup-
porting auxiliary input (i.e., non-deterministic computation) ef-
ficiently. Compared to previous verifiable-computation systems
based on interactive proofs, our construction has verification cost
polylogarithmic in the auxiliary input (which for SQL queries
can be as large as the database) rather than linear.

In order to evaluate the performance and expressiveness of
our scheme, we tested it on SQL queries based on the TPC-H
benchmark on a database with 6 × 106 rows and 13 columns.
The server overhead in our scheme (which is typically the
main bottleneck) is up to 120× lower than previous approaches
based on succinct arguments of knowledge (SNARKs), and
moreover we avoid the need for query-dependent pre-processing
which is required by optimized SNARK-based schemes. In our
construction, the server/client time and the communication cost
are comparable to, and sometimes smaller than, those of existing
customized solutions which only support specific queries.

I. INTRODUCTION

All major cloud providers offer Database-as-a-Service solu-
tions that allow companies and individuals (clients) to alleviate
storage costs and achieve resource elasticity by delegating
storage and maintenance of their data to a cloud server.
A client can then query and/or update its data using, e.g.,
standard SQL queries. Outsourcing data in this way, however,
introduces new security challenges: in particular, the client
may need to ensure the integrity of the results returned by the
server. Providing such a guarantee is important if the client
does not trust the server, or even if the client is concerned
about the possibility of server errors or external compromise.

Prior works1 on verifiable computation/outsourcing and
authenticated data structures address exactly this problem (see
Section I-D for a detailed discussion), but have significant
drawbacks. Generic solutions (e.g., SNARKs) can be used
to verify arbitrary computations, but impose an unacceptable
overhead at the server. Function-specific schemes (e.g., authen-
ticated data structures) target specific classes of computations
and can be much more efficient than generic solutions; how-

1We assume no trusted hardware, nor are we willing to assume multiple,
non-colluding servers (as required by [22]).

ever, they suffer from limited expressiveness, and in particular
they cannot handle a wide range of SQL queries.

A. Our Results

In this work we present vSQL, a system for verifiable SQL
queries. vSQL allows a client who owns a relational database
to outsource it to an untrusted server while storing only a small
digest locally. Later, the client can issue arbitrary SQL queries
to the server, who returns the query’s result. (In the case of
an update query, the result is an updated digest.) The client
can then verify the validity of the result using an interactive
protocol with the server; if the result returned by the server is
incorrect, the client will reject with overwhelming probability.

vSQL overcomes the drawbacks of existing works. It is
highly expressive, supporting any computation expressed as
an arithmetic circuit (which in particular means arbitrary
SQL queries, including updates) efficiently. We empirically
demonstrate vSQL’s concrete performance and expressiveness
using the TPC-H [7] benchmark, and find that the server-side
computation (which is usually the limiting factor in verifiable-
computation schemes) is 5–120× better for vSQL than it is in
highly optimized libsnark-based constructions [4] (that further
require query-dependent preprocessing), and comparable to or
better than a state-of-the-art database-delegation scheme [60]
that only supports a limited subset of SQL.

At a high level, vSQL gains efficiency by combining
two different approaches. First, vSQL uses a highly efficient
information-theoretic interactive proof system [25] for delegat-
ing computations expressed as arithmetic circuits. This reduces
the number of cryptographic operations performed by the
server from linear in the circuit size to linear in the lengths of
the circuit’s inputs and outputs. Second, vSQL supports non-
deterministic computation by allowing the server to provide
auxiliary inputs to the circuit. We achieve this by using a novel
scheme for verifiable polynomial delegation with knowledge-
extraction properties, improving previous results [56]. To the
best of our knowledge, our protocol is the first implementation
of an argument system that supports general non-deterministic
computations and simultaneously achieves the following two
properties: (1) the number of cryptographic operations per-
formed by the prover depends linearly on the circuit’s input
and output size, and (2) the total prover time is quasilinear in
the size of the evaluated circuit. In addition, vSQL benefits
from several performance optimizations that improve both the
server’s and client’s concrete efficiency (see Section VI). We
describe our techniques in further detail next.

B. Our Techniques

Reducing Cryptographic Overhead. A key building block
of vSQL is the information-theoretic interactive proof system
due to Cormode et al. [25] (the CMT protocol) that allows
a client to verify that y = C(x) for some circuit C and
input x known to the client. It is natural in our setting to let
x be the client’s data, and to let C be a circuit corresponding
to the client’s query. While this is a good starting point for
reducing the number of cryptographic operations (since the
CMT protocol is information-theoretic), in our setting we
cannot directly apply the CMT protocol since our goal is to
avoid requiring the client to store its data x.
Supporting Delegated Inputs. We observe that at the last
step of the CMT protocol it is sufficient for the client to
be able to evaluate a certain multivariate polynomial px that
depends on x (but not on C) at a random point. We develop
a new polynomial-delegation scheme that allows the client to
outsource px itself; i.e., it enables the client to store a short
digest comx of px that can be used to verify claimed results
about the evaluation of px on points of the client’s choice.
This allows the client to delegate its input to the untrusted
server while still being able to execute the CMT verifier.
Supporting Auxiliary Inputs. In order to leverage the
efficiency improvements provided by non-determinism, we
extend the CMT protocol to support server-provided auxiliary
inputs. (This allows the server to prove that there exists w
such that y = C(x,w).) A straightforward approach for
achieving this [56] is to have the server provide the entire
auxiliary input to the client. However, we show that when
evaluating SQL queries it is possible that the auxiliary input
that is necessary in order to reduce the size of the circuit
being evaluated is as large as the database itself; in that
case, the naive approach of sending the auxiliary input to
the client is inefficient. Instead, we have the server provide a
succinct commitment to the auxiliary input which will be used
by the CMT verifier. To instantiate this approach efficiently,
we use the polynomial-delegation scheme described above,
augmented with a knowledge-extraction property (which is
required for extracting a cheating server’s auxiliary input).
Supporting Efficient Updates. We also build on the above
techniques to handle arbitrary updates efficiently, something
that is notoriously hard for previous approaches to verifiable
computation. Say the client wants to apply an update given by
a circuit C, and let x′ = C(x). Obviously, having the server
send the result x′ to the client is impractical. To avoid this, we
first observe that the client need not learn x′ in order to verify
future queries about x′; rather, it is sufficient for the client to
learn comx′ . At this point, we could just extend C to a circuit
C ′ that also includes the computation of comx′ and handle
updates the same way we handle queries but this would impose
an additional cost as it would result in a increased circuit
size. Instead, we further observe that this is not necessary: in
order to run the CMT verifier for circuit C, the client need
not know the output (x′ in this case) explicitly; as with the
input, it is enough to be able to evaluate the corresponding

multivariate polynomial px′ at a random point. For this, we
can again use our polynomial-delegation scheme to have the
server first provide the commitment comx′ to the client and
then provably evaluate px′ at a point chosen by the latter,
which is sufficient to prove that comx′ is the new digest.
Eliminating Interaction. Our approach uses the CMT proto-
col and thus inherits its need for interaction. While this is not a
major barrier (as demonstrated by our experimental evaluation
in Section VII), we remark that interaction can be avoided
using the Fiat-Shamir approach in the random-oracle model.

C. Outline
In Section II we establish notation and introduce the necessary
background. Section III presents our verifiable polynomial-
delegation protocol, which is used as a building block for
our main construction. We introduce our security definition
in Section IV, and the vSQL construction satisfying this defi-
nition in Section V. We discuss a series of optimizations that
improve the performance of our construction in Section VI. In
Section VII we provide a detailed experimental evaluation of
our system. We conclude in Section VIII.

D. Related Work

Verifiable outsourcing of data has been studied from multiple
perspectives, and under various names. Work on authenti-
cated data structures typically focuses on handling only a
specific class of computations on outsourced data, e.g., range
queries [43], [47], joins [59], [62], [30], pattern matching [27],
[48], set operations [50], [21], [41], polynomial evaluation [9],
graph queries [35], [61], and search problems [45], [46].
The most relevant point of comparison to our work is Inte-
griDB [60], which supports a subset of SQL. In Section VII,
we show that vSQL is significantly more expressive than
IntegriDB while enjoying comparable efficiency.

Arbitrary computations on outsourced data can be handled
by schemes for verifiable delegation of computation [31], [24].
State-of-the-art systems [10], [51], [26], [52], [57] can han-
dle arbitrary non-deterministic arithmetic circuits by relying
on succinct arguments of knowledge (SNARKs) [14], [32].
SNARKs provide an efficiently verifiable, constant-size proof
for the correct evaluation of a circuit. The major disadvantage
of SNARK-based approaches is the extremely high prover
time they currently impose (cf. Section VII). In addition, the
fastest existing implementations of SNARKs assume a circuit-
specific preprocessing step, something that is not practical
(and may be impossible) in a scenario where multiple queries
that cannot be predicted in advance will be made on a given
database. Finally, we remark that the systems mentioned above
are all “natively” designed to support verification only when
the input is known to the client. Support for outsourced data
can be handled by having the client compute a succinct hash
of its data, and then verifying the hash computation along
with verification of the result. However, this adds additional
overhead as the hash computation needs to either be computed
as part of the arithmetic circuit [19], or checked by an external
mechanism [8], [28]. Alternatively, one could hard-code the

database into the circuit being evaluated, but then the circuit-
specific preprocessing needs to be executed after each database
update. In Section VII, we show that vSQL has significantly
better prover time than SNARK-based approaches.

While some other works also aim at verifying arbitrary
computations over remotely stored data [23], [17], [38], [20],
these approaches are only of theoretical interest at this point.

Interactive proofs were introduced by Goldwasser et al. [34],
and have been studied extensively in complexity theory.
More recently, prover-efficient interactive proofs for log-depth
circuits were introduced in [33]. Subsequent works have
optimized and implemented this protocol, demonstrating the
potential of interactive proofs for practical verifiable compu-
tation [25], [54], [56].

II. PRELIMINARIES

A. SQL Queries

Structured Query Language (SQL) is a very popular program-
ming language designed for querying and managing relational
database systems. It operates on databases that consist of
collections of two-dimensional matrices called tables. In the
following, we briefly present the general structure of such
queries and provide concrete examples for common types.

In SQL, a simple query begins with the keyword SELECT
followed by a function A(col1, . . .) and then the keyword
FROM followed by a number of tables, where A is defined
over (a subset of) the columns of the specified tables. This
sequence of clauses and expressions dictates the output of the
query. Following these, there is a WHERE clause followed by
a sequence of predicates connected by logical operators (e.g,
AND, OR, NOT) that restrict the rows used when computing the
output. The above is best illustrated by a series of examples.
Consider a database consisting of tables T1 and T2:

T1:

row id employee id name age salary
1 2019 John 28 45,000
2 1905 Kate 31 55,000
3 1908 Lisa 44 70,000
4 2117 Leo 23 39,000
5 2003 Alice 29 34,000

T2:

row id employee id department
1 1905 Sales
2 1906 Sales
3 1908 HR
4 2003 R&D
5 2022 HR
6 2117 R&D

The first example we provide is a SQL range query which is
used to select rows for which particular values fall within a
set of specified ranges. The conditions may be defined over
multiple columns, in which case we refer to it as a multi-
dimensional range query. For example, the query “SELECT
∗ FROM T1 WHERE age < 35 AND salary > 40, 000” is a
two-dimensional range query that returns the following table.

row id employee id name age salary
1 2019 John 28 45,000
2 1905 Kate 31 55,000

A FROM clause can be followed by JOIN sub-clauses that
are used to combine multiple tables based on common values
in specific columns. An example of such a JOIN query is
“SELECT T1.name, T2.department FROM T1 JOIN T2 ON
T1.employee id = T2.employee id,” which returns:

name department
Kate Sales
Lisa HR
Alice R&D

The result of any SQL query is itself a table to which an-
other SQL query can be applied. In other words, a SQL query
may be composed of several sub-queries. SQL also provides
queries for adding, updating, and deleting data from a SQL
database. Data-manipulation queries start with an INSERT,
DELETE, or UPDATE clause followed by a table identifier,
a series of values, and (optionally) a sequence of WHERE
clauses. For example, the query “DELETE FROM T2 WHERE
department = Sales” deletes the first two rows from T2. Fi-
nally, there are queries that manipulate the database structure,
e.g, by adding new columns or creating a new table.

Note that a common theme of the examples presented above
is that they process each row of some table independently,
performing a specific operation (e.g., comparing values from
given columns with a specified range) on each row. In Sec-
tion V, we discuss how this structure can be leveraged to
improve efficiency in our setting.

B. Interactive Proofs

An interactive proof [34] is a protocol that allows a prover P
to convince a verifier V of the validity of some statement. We
phrase this in terms of P trying to convince V that f(x) = 1,
where f is fixed and x is the common input. Of course, an
interactive proof in this sense is only interesting if the running
time of V is less than the time to compute f .

Definition 1. Let f be a boolean function. A pair of interactive
algorithms (P,V) is an interactive proof for f with soundness
ε if the following holds.

• Completeness. For every x such that f(x) = 1 it holds
that Pr[〈P,V〉(x) = accept] = 1.

• ε-Soundness. For any x with f(x) 6= 1 and any P∗ it
holds that Pr[〈P∗,V〉(x) = accept] ≤ ε.

Note that the above can be easily extended to prove that
g(x) = y (where x, y are common input) by considering the
function f defined as f(x, y) = 1 iff g(x) = y.
The Sum-Check Protocol. A fundamental interactive proto-
col that serves as an important building block for our work is
the sum-check protocol [44]. Here, the common input of the
prover and verifier is an `-variate polynomial g(x1, . . . , x`)
over a field F; the prover’s goal is to convince the verifier that

H =
∑

b1∈{0,1}

∑
b2∈{0,1}

. . .
∑

b`∈{0,1}

g(b1, b2, . . . , b`) .

Note that direct computation of H by V requires at least 2`

work. Using the sum-check protocol, the verifier’s computation

is exponentially smaller. The protocol proceeds in ` rounds,
as follows. In the first round, the prover sends the univari-
ate polynomial g1(x1)

def
=

∑
b2,...,b`∈{0,1} g(x1, b2, . . . , b`);

the verifier checks that the degree of g1 is at most the
degree of x1 in g, and that H = g1(0) + g1(1); it rejects
if these do not hold. Next, V sends a uniform challenge
r1 ∈ F. In the ith round P sends the polynomial gi(xi)

def
=∑

bi+1,...,b`∈{0,1} g(r1, . . . , ri−1, xi, bi+1, . . . , b`). The verifier
checks the degree of gi and verifies that gi−1(ri−1) = gi(0)+
gi(1); if so, it sends a uniform ri ∈ F to the prover. After the
final round, V accepts only if g(r1, . . . , r`) = g`(r`).

The degree of each monomial in g is the sum of the powers
of its variables; the total degree of g is the maximum degree
of any of its monomials. We have [44]:

Theorem 1. For any `-variate, degree-d polynomial g over
F, the sum-check protocol is an interactive proof for the
(no-input) function

∑
b1∈{0,1} . . .

∑
b`∈{0,1} g(b1, . . . , b`) with

soundness d · `/|F|.

C. Multilinear Extensions

Let V : {0, 1}` → F be a function. Then there exists a unique
`-variate polynomial Ṽ : F` → F, called the multilinear
extension of V , with the properties that (1) Ṽ has degree
at most 1 in each variable and (2) Ṽ (x) = V (x) for all
x ∈ {0, 1}`. Note that Ṽ can be defined as

Ṽ (x1, . . . , x`) =
∑

b∈{0,1}`

∏̀
i=1

Xbi(xi) · V (b), (1)

where bi is the ith bit of b, and we set X1(xi) = xi and
X0(x) = 1− xi.
Multilinear Extensions of Arrays. An array A =
(a0, . . . , an−1) ∈ Fn, where for simplicity we assume n is a
power of 2, can be viewed as the function A : {0, 1}logn → F
such that A(i) = ai for 0 ≤ i ≤ n− 1 (where i is expressed
in binary). In the sequel, abuse this terminology and use a
multilinear extension Ã of an array A. A useful property of
multilinear extensions of arrays is the ability to efficiently
combine two multilinear extensions. That is, let A1, A2 be
two equal-length arrays, and let A = A1||A2 be their
concatenation. Then Ã(x1, . . . , xlogn+1) can be computed as
(1 − x1)Ã1(x2, . . . , xlogn+1) + x1Ã2(x2, . . . , xlogn+1), i.e.,
as a linear combination of the evaluations of the multilinear
extensions of the smaller arrays. More generally, in the case
of m equal-length arrays A0, . . . , Am−1 (where m is a power
of 2) the multilinear extension of Ã = A0|| . . . ||Am−1 can be
evaluated on a point (x1, . . . , xlog(nm)) as

m−1∑
i=0

logm∏
j=1

Xij (xj)Ãi(xlogm+1, . . . , xlog(nm)) (2)

where ij is the jth bit of i and Xij (xj) is defined as above.

D. The CMT Protocol

Cormode et al. [25], building on work of Goldwasser et
al. [33], show an efficient interactive proof (that we call the

CMT protocol) for a certain class of functions. The CMT
protocol serves as the starting point for our scheme.
High-Level Overview. Let C be a depth-d arithmetic circuit
over a finite field F that is layered, i.e., for which each gate of
C is associated with a layer, and the output wire from a gate at
layer i can only be an input wire to a gate at level i− 1. The
CMT protocol processes the circuit one layer at a time, starting
from layer 0 (that contains the output wires) and ending at
layer d (that contains the input wires). The prover P starts by
proposing a value y for the output of the circuit on input x.
Then, in the ith round, P reduces a claim (i.e., an algebraic
statement) about the values of the wires in layer i to a claim
about the values of the wires in layer i+ 1. The protocol
terminates with a claim about the wire values at layer d (i.e.,
the input wires) that can be checked directly by the verifier V
who knows the input x. If that check succeeds, then V accepts.
Notation. Before describing the protocol more formally we
introduce some additional notation. Let Si be the number of
gates in the ith layer and set si = dlogSie so si bits suffice
to identify each gate at the ith layer. The evaluation of C on
an input x assigns in a natural way a value in F to each gate
in the circuit. Thus, for each layer i we can define a function
Vi : {0, 1}si → F that takes as input a gate g and returns
its value (and returns 0 if g does not correspond to a valid
gate). Using this notation, Vd corresponds to the input of the
circuit, i.e., x. Finally, we define for each layer i two boolean
functions addi,multi, which we refer to as wiring predicates,
as follows: addi : {0, 1}si−1+2si → {0, 1} takes as input three
gates g1, g2, g3, where g1 is at layer i − 1 and g2, g3 are at
layer i, and returns 1 if and only if g1 is an addition gate
whose input wires are the output wires of gates g2 and g3. (We
define multi for multiplication gates analogously.) The value
of a gate g at layer i < d can thus be recursively computed as

Vi(g) =
∑

u,v∈{0,1}si+1

(
addi+1(g, u, v) · (Vi+1(u) + Vi+1(v))

+multi+1(g, u, v) · (Vi+1(u) · Vi+1(v))
)
.

Protocol Details. One idea is for V to verify that y = C(x)
by checking that Vi(g) is computed correctly for each gate g in
each layer i. Since Vi(g) can be expressed as a summation, this
could be done using the sum-check protocol from Section II-B.
However, the sum-check protocol operates on polynomials
defined over F and therefore we need to replace terms with
their multilinear extensions. That is:

Ṽi(z) =
∑

g∈{0,1}si
u,v∈{0,1}si+1

fi,z(g, u, v) (3)

def
=

∑
g∈{0,1}si

u,v∈{0,1}si+1

β̃i(z, g) ·
(

˜addi+1(g, u, v) · (Ṽi+1(u)

+ Ṽi+1(v)) + ˜multi+1(g, u, v) · (Ṽi+1(u) · Ṽi+1(v))
)
,

where ˜addi (resp., ˜multi) is the multilinear extension of addi
(resp., multi) and β̃i is the multilinear extension of the selector
function that takes two si-bit inputs a, b and outputs 1 if a = b

Construction 1 (CMT protocol). Let F be a prime-order field, and let C : Fn → Fk be a depth-d layered arithmetic circuit. P and V hold x, y, and
P wants to convince V that y = C(x). To do so:
1) Let V0 : {0, 1}dlog ke → F be such that V0(j) equals the jth element of y. Verifier V chooses uniform r0 ∈ Fdlog ke and sends it to P . Both parties

set a0 = Ṽ0(r0).
2) For i = 1, . . . , d:

a) P and V run the sum-check protocol for value ai−1 and polynomial fi−1,ri−1 as per Equation (3). In the last step of that protocol, P provides
(v1, v2) for which it claims v1 = Ṽi(q1) and v2 = Ṽi(q2).

b) Let γ : F → Fsi be the line with γ(0) = q1 and γ(1) = q2. Then P sends the degree-si polynomial h(x) = Ṽi(γ(x)). Next, V verifies that
h(0) = v1 and h(1) = v2, and rejects if not. Then V chooses uniformly at random r′i ∈ F, sets ri = γ(r′i), ai = h(ri) and sends them to P .

3) V accepts iff ad = Ṽd(rd), where Ṽd is the multilinear extension of the polynomial representing the input x.

and 0 otherwise.2 However, this approach would incur a cost to
the verifier larger than the cost of evaluating C, as it requires
one execution of the sum-check protocol per gate.

Instead, by leveraging the recursive form of Ṽi, correctness
of the circuit evaluation can be checked with a single execution
of the sum-check protocol for each layer i, as follows. Assume
for simplicity that the output of the circuit is a single value.
The interaction begins at level 0, with the prover claiming that
y = Ṽ0(0) (i.e., the circuit’s output) for some value y. The two
parties then execute the sum-check protocol for the polynomial
f0,0 in order to check this claim. Recall that, at the end of this
execution, V is supposed to evaluate f0,0 at a random point
ρ ∈ Fs0+2s1 (the randomness generated by the sum-check
verifier). Since f0,0 depends on Ṽ1(u) and Ṽ1(v), in this case
V has to evaluate Ṽ1 on the random points q1, q2 ∈ Fs1 where
q2 consists of the last s1 entries of ρ, and q1 from the previous
s1 ones. If the verifier had access to all the correct gate values
at layer 1, he could compute these evaluations himself. Since
he does not, however, he must rely on the prover to provide
him with these evaluations, say v1, v2. This effectively reduces
the validity of the original claim that y = Ṽ0(0) to the validity
of the two claims that Ṽ1(q1) = v1 and Ṽ1(q2) = v2. The two
parties can now execute the sum-check protocol for these two
claims. By repeatedly applying this idea, the final claim by the
prover will be stated with respect to Ṽd (i.e., the multilinear
extension of the circuit’s input), which can be checked locally
by the verifier who has the input x.

Unfortunately, this approach still potentially requires 2d

executions of the sum-check protocol, since the number of
claims being verified doubles with each level.

Condensing to a Single Evaluation Per Layer. Efficiency
can be improved by reducing the proof that v1 = Ṽ1(q1) and
v2 = Ṽ1(q2) to a single sum-check execution, as follows. Let
γ : F→ Fs1 be the unique line with γ(0) = q1 and γ(1) = q2.
The prover sends a degree-s1 polynomial h that is supposed
to be Ṽ1(γ(x)), i.e., the restriction of Ṽ1 to the line γ. The
verifier checks that h(0) = v1 and h(1) = v2, and then picks
a new random point r′1 ∈ F and initiates a single invocation
of the sum-check protocol to verify that Ṽ1(γ(r′1)) = h(r′1).
Proceeding in this way, it is possible to obtain a protocol that
uses only O(d) executions of the sum-check protocol.

2Although using β̃ is not strictly necessary [55], we use it in our implemen-
tation because it improves efficiency when C is composed of many parallel
copies of a smaller circuit C′ (as is the case for standard SQL queries).

We assumed so far that there is a single output value y.
Larger outputs can be handled efficiently [56] by adapting the
above approach so that the initial claim by the prover is stated
directly about the multilinear extension of the claimed output.

The CMT protocol is formally described in Construction 1.3

Theorem 2 ([33], [25], [56], [54]). Let C : Fn → Fk
be a depth-d layered arithmetic circuit. Construction 1 is
an interactive proof for the function computed by C with
soundness O(d · logS/|F|), where S is the maximal number of
gates per circuit layer. It uses O(d logS) rounds of interaction,
and the running time of P is O(|C| logS). If ˜addi and ˜multi
are computable in time O(polylogS) for all layers i ≤ d, then
the running time of the verifier V is O(n+ k+ d ·polylogS).

The following remark will be particularly useful for us in
the context of evaluating circuits representing SQL queries.

Remark 1 ([54]). If C can be expressed as a composition
of (i) parallel copies of a layered circuit C ′ whose maximum
number of gates at any layer is S′, and (ii) a subsequent
“aggregation” layered circuit C ′′ of size O(|C|/ log |C|), the
running time of P is reduced to O(|C| log |S′|).4

E. Bilinear Pairings

We denote by bp := (p,G,GT , e, g) ← BilGen(1λ) the
generation of parameters for a bilinear map,5 where λ is the
security parameter, G,GT are two groups of order p (with p
a λ-bit prime), g ∈ G is a generator, and e : G × G → GT
is a bilinear map. In Appendix A we present the assumptions
necessary for proving the security of our scheme.

III. VERIFIABLE POLYNOMIAL DELEGATION

As a key part of our main construction, we use a new scheme
for verifiable polynomial delegation that allows a client to
outsource storage of a multivariate polynomial f to a server
while retaining only a short commitment com. The server can

3Throughout the paper, when reporting asymptotic complexities we omit
a factor that is polylogarithmic in the field/blinear group size, implicitly
assuming all operations take constant time.

4Note that the bound on the running time of V can also be improved if
one makes stronger assumptions about the “regularity” of C′′. Many common
SQL queries satisfy this condition (e.g., return the average of a range query).

5For simplicity of exposition we assume symmetric (Type I) pairings. Our
treatment can be extended to asymmetric pairings, which are what we use in
our implementation for better efficiency.

Construction 2 (Verifiable Polynomial Delegation). Let F be a prime-order finite field, ` be a variable parameter, and d be a degree parameter such
that O(

(`+`d
`d

)
) is polynomial in λ. Consider the following verifiable delegation protocol that supports the family F of all `-variate polynomials of

variable-degree d over F.
1) KeyGen(1λ, `, d): Run bp ← BilGen(1λ). Select uniform α, s1, . . . , s` ∈ F and compute P = {g

∏
i∈W si , gα·

∏
i∈W si}W∈W`,d . The public

parameters are pp = (bp,P, gα).
2) Commit(f, pp): Compute c1 = gf(s1,...,s`) and c2 = gα·f(s1,...,s`), and output the commitment com = (c1, c2).
3) Evaluate(f, t, r, pp): On input t = (t1, . . . , t`) and random challenge r = (r1, . . . , r`−1), compute y = f(t). Using Lemma 1 compute polynomial

q`(x`) and polynomials qi(xi, . . . , x`) for i = 1, . . . , `− 1, such that

f(x1, . . . , x`)− f(t1, . . . , t`) = (x` − t`) · q`(x`) +
`−1∑
i=1

(ri · (xi − ti) + xi+1 − ti+1) · qi(xi, . . . , x`).

Output y and the proof π := (gq1(s1,...,s`), . . . , gq`−1(s1,...,s`), q`).
4) Ver(com, y, t, π, r, pp): Parse the proof π as (π1, . . . , π`−1, qn). If e(c1/gy , g)

?
= e(gs`−t` , gq`(s`)) ·

∏`−1
i=1 e(g

ri(si−ti)+si+1−ti+1 , πi) and
e(c1, gα) = e(c2, g), output accept else, output reject.

Definition 2. Let F be a finite field, F be a family of `-variate polynomials over F, and d be a variable-degree parameter.
(KeyGen,Commit,Evaluate,Ver) constitute a verifiable polynomial-delegation protocol for F if:

• Perfect Completeness. For any polynomial f ∈ F , if pp ← KeyGen(1λ, `, d) and com← Commit(f, pp), then for any t ∈ F` and r ∈ F` if
(y, π)← Evaluate(f, t, r, pp) then (1) y = f(t) and (2) Ver(com, t, y, π, r, pp) =accept.

• Soundness. For any PPT adversary A the following is negligible:

Pr

[
pp← KeyGen(1λ, `, d); (f∗, t∗)← A(1λ, pp);

com← Commit(f∗, pp); r ← F`; (y∗, π∗)← A(1λ, pp, f∗, r) :
Ver(com, t∗, y∗, π∗, r, pp) = accept

∧y∗ 6= f∗(t∗) ∧ f∗ ∈ F

]
(KeyGen,Commit,Evaluate,Ver) is an extractable, verifiable polynomial-delegation protocol if it additionally satisfies the following:

• Knowledge Soundness. For any PPT adversary A there exists a polynomial-time algorithm E with access to A′s random tape, such that the following
probability is negligible:

Pr

[
pp← KeyGen(1λ, `, d); (com∗, t∗)← A(1λ, pp); f ′ ← E(1λ, pp);

r ← F`; (y∗, π∗)← A(1λ, pp, r); com← Commit(f ′, pp)
:

Ver(com∗, t∗, y∗, π∗, r, pp) = accept ∧
(com∗ 6= com ∨ y∗ 6= f ′(t∗) ∨ f ′ /∈ F)

]

then respond to requests for the correct evaluation of f on
various points, along with a proof of correctness of the result.

There are several works in the literature addressing this
problem [39], [13], [29], [49]. Our construction extends the
scheme of Papamanthou et al. [49] (which itself extends prior
work [39] to the multivariate case) in order to achieve a
“knowledge” property, i.e., to ensure that if the server can
correctly prove that y is the correct output relative to com for
some input t, then the server in fact knows a polynomial f of
the correct degree for which f(t) = y. Thus, our construction
can be viewed as a special-purpose SNARK for polynomial
evaluation. The modifications to the prior scheme are relatively
small: we change the commitment to contain two group
elements with “related” exponents (instead of containing one
group element), and change the verification algorithm corre-
spondingly. In the following, we define the variable-degree of
a multivariate polynomial f be the maximum degree of f in
any of its variables, and use W`,d to denote the collection of
all multisets of {1, . . . , `} for which the multiplicity of any
element is at most d. Our polynomial-delegation protocol is
presented in Construction 2 and relies on the following lemma.

Lemma 1 ([49]). Let f : F` → F be a polynomial of variable
degree d. For all t ∈ F` and all r1, . . . , r`−1 ∈ F \ {0}, there
exist efficiently computable polynomials q1, . . . , q` such that:

f(x)−f(t) =
`−1∑
i=1

[ri(xi−ti)+xi+1−ti+1]qi(x)+(x`−t`)q`(x`)

where qn is a univariate polynomial of degree at most d, and
ti is the ith element of t.

We define (extractable) verifiable polynomial delegation in
Definition 2. A proof of the following appears in the full
version of the paper.

Theorem 3. Under Assumption 1, Construction 2 is a ver-
ifiable polynomial-delegation protocol. Moreover, under As-
sumptions 1 and 2, it is an extractable, verifiable polynomial-
delegation protocol. Algorithms KeyGen,Commit run in time
O(
(
`+`d
`d

)
), Evaluate in time O(`d

(
`+`d
`d

)
), and Ver in time

O(` + d). The commitment produced by Commit consists of
O(1) group elements, and the proof produced by Evaluate
consists of O(`) elements of G and O(d) elements of F.

In the context of our verifiable database system (Section V),
our verifiable polynomial-delegation protocol will be used in
two ways. First, the database owner will use it to commit
to its database; all subsequent proofs will be formulated with
respect to that commitment. Queries may possibly be evaluated
on additional auxiliary inputs (beyond the client’s database)
generated by the server. In this case the server will produce
commitments to these inputs and the proof will be formulated
with respect to both the original database commitment and
these additional commitments. In the former case, the neces-
sary security property is soundness alone; in the second case
(since the commitment comes from the untrusted server), we
need the stronger notion of knowledge soundness.

IV. MODEL

In this section, we present our security definition for a ver-
ifiable database system, viewed as a two-party protocol run

Definition 3. A verifiable database system for database class D and query class Q = U ∪ S (where U denotes update queries and S denotes selection
queries), is a tuple of algorithms defined as follows:
1) Setup takes as input 1λ, a database D ∈ D and outputs a digest δ and public parameters pp.
2) Evaluate is an interactive protocol run between two probabilistic polynomial-time algorithms C and S on common input a digest δ, a query Q ∈ Q,

and public parameters pp. Moreover, S holds database D. If Q ∈ S, then at the end of the protocol C either outputs a result y (and accepts) or
rejects. If Q ∈ U , then at the end of the protocol C outputs a new digest δ′ (and accepts), or rejects.

Denote by Q(D) the evaluation of query Q on database D. We require that Setup and Evaluate have the following properties.

• Perfect Completeness. For any λ, any D0 ∈ D, any t ≥ 0, and any queries Q1, . . . , Qt ∈ Q and Q∗ ∈ S, we require that y = Q∗(Dt) in the
following experiment:
– Setup is invoked on the input (1λ, D0) and outputs (δ0, pp).
– For 1 ≤ i ≤ t, do: S and C run Evaluate on inputs (Qi, δi−1, Di−1, pp) and (Qi, δi−1, pp), respectively. If Qi ∈ U , let δi denote the output

of C and set Di = Qi(Di−1); otherwise, set δi = δi−1 and Di = Di−1.
– S and C run Evaluate on inputs (Q∗, δt, Dt, pp) and (Q∗, δt, pp), respectively. Let y denote the output of C.

• Soundness. For any t and polynomial-time attacker S∗, the probability that S∗ succeeds in the following experiment is negligible:
1) S∗(1λ) outputs D0 ∈ D .
2) Setup(1λ, D0) outputs (δ0, pp).
3) For 1 ≤ i ≤ t, do: S∗ outputs Qi. Then S∗ and C run Evaluate on inputs (Qi, δi−1, Di−1, pp) and (Qi, δi−1, pp), respectively. If C rejects,

the experiment ends. If C accepts and Qi ∈ U , let δi denote the output of C and set Di = Qi(Di−1); otherwise, set δi = δi−1 and Di = Di−1.
4) S∗ outputs Q∗ ∈ S. Then S∗ and C run Evaluate on inputs (Q∗, δt, Dt, pp) and (Q∗, δt, pp), respectively. Let y denote the output of C. We say

that S∗ succeeds if C accepts with output y, but y 6= Q∗(Dt).

between a client that owns a database D which it wishes
to outsource to a remote server. In a setup phase, the client
computes a short digest of D, which it stores locally, and
uploads D to the server. Subsequently, he issues queries
about the data or requests to update the data, which are
processed by the server. Each query evaluation is executed
by an interactive protocol between the two parties, at the
end of which the client either accepts the returned output or
rejects it. Informally, the required security property is that no
computationally bounded adversarial server can convince the
client into accepting a false result. This is defined formally
in Definition 3. To simplify notation, we do not distinguish
between verification parameters (that are stored by the client
and should be succinct) and proof-computation parameters
(stored by the server).

Supporting Database Size Increases. For some construc-
tions (including ours), the size of the public parameters pp may
depend on the database size. If the database size increases
(as a result of updates), it may be necessary to extend pp;
there are various ways this can be done. For instance, the
database owner can choose an upper bound for the database
size, and generate a long-enough pp during the setup phase.
Alternatively, the owner may maintain some (succinct) trap-
door information that allows it to extend pp as needed.

Efficiency Considerations. One important aspect of a veri-
fiable database system is efficiency; a trivial approach is to
transmit D for each query and have the client evaluate it
himself. Therefore, a basic efficiency requirement is that the
communication between client and server for query evaluation
should be sublinear in the database size |D|. Also important
is the client’s computational cost for, which should ideally be
smaller than evaluating the query (so the client can benefit not
only from delegation of its storage but also from delegation of
its computation). A final efficiency metric is the computational
overhead of the server, which should ideally be asymptotically
the same as the cost of evaluating the query.

V. THE VSQL PROTOCOL

A. High-Level Description

In this section, we present our construction of a verifiable
database system. As mentioned above, our protocol uses
the CMT protocol [25] as presented in Section II-D, as
well as our verifiable polynomial-delegation protocol from
Section III. In the sequel we refer to the prover and ver-
ifier of the CMT protocol as (Pcmt,Vcmt), and we refer
to the algorithms of our polynomial-delegation protocol as
(KeyGen,Commit,Evaluate,Ver).

Preprocessing Phase. At a high level, we combine the CMT
protocol and our polynomial delegation scheme as follows.
Initially, the client views its database D as an array of |D|
elements (where |D| is equal to number of rows times number
of columns) and computes the multilinear extension D̃ as
in Section II-C.6 Note that the number of variables in D̃ is
logarithmic in the total size of D. Next, the client generates
a commitment com to D̃ using our polynomial-delegation
protocol, stores com locally, and uploads D to the untrusted
server. We stress that this phase does not depend on any
specific queries the client may choose to issue later.

Query Evaluation Phase. All subsequent queries are val-
idated by running a modified version of the CMT protocol
between the client and the server. Our main observation is that
in the last step of the CMT protocol, Vcmt needs to evaluate
D̃ at a random point. Since the client no longer knows D̃,
the client needs to rely on the untrusted server to provide this
value. In order to ensure the correctness of the value provided
by the server, the client and server use our polynomial-
delegation protocol relative to the commitment com that the
client holds. The client accepts the answer returned by the
server to its original query only if both Ver and Vcmt accept.

6This can be done by concatenating the |D| elements of the database into a
single array of length |D|, by sorting them first by row and then by column.

Construction 3. Let λ be a security parameter, let D be a database and let F be a prime-order field with |F| exponential in λ.

Setup Phase. On input 1λ and a database D ∈ D, the client picks a parameter N ≥ |D| such that N ∈ O(|D|), which denotes an upper bound on
the size of databases (in terms of values in the database) that can be supported, and sets n = dlogNe. Let D̃ denote the multilinear extension of D. The
client runs KeyGen(1λ, n, 1) to compute public parameters pp, and Commit(D̃, pp) to compute commitment com on D̃. It then sends (D, pp, com)
to the server and stores (pp, com).

Evaluation Phase. Let (x0, . . . , xN−1) be the current version of the database D stored by the server and let com be the commitment stored by
both client and server. Given a query Q ∈ Q, let C be a depth-d circuit over F that evaluates Q on input D and (possibly empty) auxiliary input
B ∈ F|B|. Assume w.l.o.g. that |B| = (2m − 1) ·N for some integer m. Partition the input of C into 2m arrays (B1, . . . , B2m) each of size N with
B1 corresponding to D and the rest corresponding to the auxiliary input. Finally, let B̃1, . . . , B̃2m denote the corresponding multilinear extensions of
B1, . . . , B2m where B̃1 = D̃.
• If Q is a selection query, the two parties then interact as follows:

1) S computes the necessary auxiliary input B2, . . . , B2m , and runs Commit(B̃i, pp) for 2 ≤ i ≤ 2m to obtain values com2, . . . , com2m , which
it sends to C.

2) C runs Vcmt,1+2 and S runs Pcmt to evaluate C(B1, . . . , B2m). If Vcmt,1+2 rejects at any point, C outputs reject. Otherwise, let rd, ad be
the final values returned by Vcmt,1+2. Let Ṽd be the multilinear extension of the input layer of C. At this point, C must verify that Ṽd(rd) = ad,
which is done as follows.

3) C sends to S values ρ(1), . . . , ρ(2
m) ∈ Fn−1 chosen uniformly at random.

4) S parses rd as rd := (κ1, . . . , κm+n) and defines r′d := (κm+1, . . . , κm+n). S then sends to C the evaluations (v1, . . . , v2m) of polynomials
B̃1(r′d), . . . , B̃2m (r′d) along with corresponding proofs πi computed by Evaluate(B̃i, r′d, ρ

(i), pp), for all 1 ≤ i ≤ 2m.
5) C runs Ver(comi, r′d, vi, πi, ρ

(i), pp) for 1 ≤ i ≤ 2m. If any execution outputs reject, C outputs reject. Otherwise, C defines r′′d := (κ1, . . . , κm)

and computes Ṽd(rd) by combining values v1, . . . , v2m as per Equation II-C-(2). If Ṽd(rd) 6= ad, C outputs reject, otherwise accept.
6) The output of S is set to C(B1, . . . , B2m).

• If Q is an update query, the two parties then interact as follows:
1) S computes the necessary auxiliary input B2, . . . , B2m , and runs Commit(B̃i, pp) for 2 ≤ i ≤ 2m computing values com2, . . . , com2m .

Moreover, it computes the multilinear extension Ṽout of the output of C(B1, . . . , B2m) and runs Commit(Ṽout, pp) to compute output commitment
comout. Finally, it sends comout, com2, . . . , com2m to C.

2) C chooses r0 ∈ Fn, (the output of C is the entire new database which by assumption is at most N therefore its multilinear extension operates on
n = logN elements), and sends it to the server along with a uniform value ρout ∈ Fn−1.

3) S responds with a0 = Ṽout(r0) and corresponding proof πout computed with Evaluate(Ṽout, r0, ρout, pp).
4) C runs Ver(comout, r0, a0, πout, ρout, pp) and rejects if it outputs reject. Otherwise, C runs Vcmt,2 while S runs Pcmt,2 on common input

r0, a0. If Vcmt,2 rejects at any point, C outputs reject. Otherwise, let rd, ad be the final values returned by Vcmt,2 . Let Ṽd be the multilinear
extension of the input layer of C. At this point, C must verify that Ṽd(rd) = ad. This is achieved by having C and S perform steps 3–5 from above.

5) The output of S is set to C(B1, . . . , B2m) and comout. If C accepts, it sets com← comout.

B. Adapting the CMT protocol to SQL queries

In this section we discuss how we address various difficulties
that arise when applying our protocol to SQL queries.
Supporting Comparisons. Since our approach utilizes the
CMT scheme, queries need to be encoded as arithmetic
circuits. One side effect of this is that non-arithmetic gates,
such as a comparisons, cannot be handled directly. One way
to handle comparisons in arithmetic circuits is to decompose
the inputs into their bit-level representations, perform the
comparison in binary, and then “glue” the results back together
into a single element. This is inefficient since it requires many
bit-decomposition operations as well as a complicated binary
comparison circuit.

One way to reduce the overhead induced by arithmetic
circuits is to allow the circuit to use additional “advice”
provided by the server in the form of auxiliary inputs, i.e.,
to add support for non-deterministic computations. (So, for
example, rather than compute the bit decomposition of an
input directly, we can instead have the server provide the
bit decomposition and then only use the circuit to verify
that the given bit decomposition is correct. We highlight
other efficiency benefits of this approach in Section VI-A.)
Unfortunately, the CMT protocol does not naturally support
such auxiliary input.
Supporting Auxiliary Inputs. Previous CMT-based
works [56] addressed this issue by having the CMT prover
provide the entire auxiliary input to the verifier, effectively

treating the witness as part of the verifier’s input. While this
works, it is only effective when the size of the auxiliary input
is small compared to the input size. For vSQL, however, we
would like to support auxiliary input whose size is comparable
to the size of the entire database.

Our main observation is that in order to successfully execute
the CMT protocol, all the verifier needs for the input gates
(including both the real input and the auxiliary input) is to be
able to evaluate the multilinear extension polynomial of the
inputs on a random point. Thus, instead of transmitting the
entire auxiliary input to the verifier, the prover can commit
to the multilinear extension of the auxiliary input using our
verifiable polynomial-delegation protocol. To see how this
works, assume the auxiliary input is the same size as the
database. At the last step of the interactive proof protocol,
the client will request the evaluations of the two polynomials
(one for the database and one for the auxiliary input) at the
same random point. The server then responds with the values
and their corresponding proofs. Due to the additive property of
multilinear extensions, the client can then combine these two
values in order to reconstruct the evaluation of the multilinear
extension of the entire input to the circuit, as described in
Section II-C. Moreover, since the polynomial commitment is
binding, the client can be sure that the server’s response does
not depend on the random point chosen by the client, thus
preserving the soundness of the interactive-proof protocol.

More generally, this can be applied to any query (even those

that require auxiliary inputs larger than the database size) by
adding sufficient “padding” such that the total circuit input size
(database plus auxiliary input) is a power-of-two multiple of
the database size (e.g., if auxiliary input is 2 · |D|, it should be
padded with |D| dummy values, thus making the total circuit
input size 4 · |D|). The server provides a separate commitment,
evaluation and proof for each database-length “chunk” of the
auxiliary input and the evaluation of the multilinear extension
of the entire input is calculated by the client by applying
Equation II-C-(2).
Supporting Expressive Updates. A common problem of
existing dynamic authenticated data structures (e.g., [47], [60])
is that they support limited types of updates: element insertions
and deletions. Thus, they cannot handle general updates that
can be expressed as SQL queries themselves, e.g., the query
UPDATE Employees; SET Salary = 45000; WHERE Age = 33.

The main reason such update queries are hard to handle
is that the client must eventually compute the corresponding
updated database commitment. Without access to the database,
it must again rely on the untrusted server to provide this
new commitment. SNARK-based constructions can support
expressive updates by including the commitment computation
in the circuit. However, this would considerably increase the
prover’s overhead. Our approach avoids this cost by separating
the computation of the update from its verification. First, the
server computes the updated database normally, and commits
to the multilinear extension of the result using our verifiable
polynomial delegation scheme. The client and server then
verify that the update was performed correctly by running the
CMT protocol on the circuit that performs the update. In order
to initiate the CMT protocol, the client needs to compute the
multilinear extension of the updated database (which is here
the circuit’s output) and evaluate it on a random point. This
would naively require transmitting the entire updated database
back to the client. Instead, we rely on the server to compute
the evaluation for the client, and verify this value using our
verifiable polynomial-delegation scheme. Once this is done,
the remainder of the CMT evaluation proceeds normally.
Exploiting SQL Query Structure. Our construction can be
applied to verify the computation of any arithmetic circuit,
which clearly includes SQL queries. But the specific structure
of SQL queries allows for additional efficiency improvements.
Concretely, most “natural” SQL queries specify some com-
putation that is applied independently to every database row,
followed by a final aggregation/post-processing phase. Thus,
the arithmetic circuit C that corresponds to the entire SQL
query can be written as a sequence of parallel copies of a
smaller circuit C ′ corresponding to the single-row logic, where
inputs to C are wired directly to the appropriate copy of C ′,
and the outputs of the copies of C ′ are wired into a (small)
post-processing circuit C ′′. We can thus rely on Remark 1 to
improve the prover’s efficiency.

C. Our Construction

Before describing our construction, we introduce some nota-
tion. The client in our construction will be running a modified

version of Vcmt that selectively executes some of the three
steps of Construction 1. Let Vcmt,1+2 denote a version of the
verifier Vcmt that only runs the first two steps in Construc-
tion 1 and then outputs rd, ad, omitting step 3. Likewise, let
Vcmt,2 denote the restricted version of Vcmt that on input
r0, a0 runs only the second step, again outputting rd, ad, and
Pcmt,2 the similar restricted version of Pcmt that runs the
second step on input r0, a0.

Our main construction is given as Construction 3. A proof
of the following appears in the full version of the paper.

Theorem 4. If Construction 2 is an extractable, verifiable
polynomial-delegation protocol, then Construction 3 is a ver-
ifiable database system for SQL queries.

If Construction 3 is executed on a database D with |D|
values, to evaluate a query expressed as a non-deterministic,
depth-d arithmetic circuit C with at most S gates per layer,
that consists of parallel copies of a circuit C ′ with at most S′

gates per layer, followed by a post-processing circuit C ′′ of
size O(|C|/ log |C|), and with auxiliary input B, then
1) The running time of Setup is O(|D|).
2) Evaluate requires O(d logS) rounds of interaction.
3) The running time of C is O(k+d ·polylog(S)+ log(|B|+
|D|)), where k is the size of the result for selection queries
and k is O(log |D′|) for updates (D′ is the output size).

4) The running time of S is O(|C| · logS′ + (|B| + |D|) ·
log(|B|+ |D|)).

Local State at the Client. For simplicity, in our description
we assume the client stores the entire public parameters pp,
which are as large as D. However, in practice the client only
needs to store n terms from pp, specifically all terms gτi for
i ≤ 1 ≤ n, that are necessary for verifying the evaluation
of the multilinear extensions it receives from the server using
our verifiable polynomial-delegation protocol. We also note
that verification does not require any trapdoor information, and
therefore our scheme has public verifiability: namely, anyone
with access to the database commitment produced by the client
and the public parameters can issue and verify queries.
Handling Unbounded Database Size. For simplicity, we
assume that the size of the database will never exceed the
bound N . In practice, this can achieved by picking N large
enough. Note however, that this is not a limitation of our con-
struction: a client that stores the n trapdoor values s1, . . . , sn
of the verifiable polynomial-delegation scheme can compute
additional elements, as needed, in case the database size
exceeds N . Moreover, our construction has the nice feature
that the work required by the client and the server at any
given time only depends on the size of the actual database
and not the upper bound N .

VI. PERFORMANCE OPTIMIZATIONS

In this section, we present a number of optimizations that we
apply to the evaluation phase. In particular, we leverage the
ability of our scheme to efficiently handle auxiliary inputs in
order to: (i) achieve faster equality testing (which is useful for

selection queries), (ii) allow for input/output gates at arbitrary
layers of the circuit with minimal overhead, and (iii) verify the
results of set intersections using a smaller number of gates
(which is useful for join queries). Finally, we discuss how
simple updates (that consist of assigning values to unused table
cells) can be verified using one round of interaction.

Most of the optimizations discussed below exploit various
techniques for constructing efficient representations of compu-
tations commonly when answering SQL queries. These tech-
niques include modifying the queries’ circuit representations
in order to utilize auxiliary inputs, encoding some of the query
computations directly as polynomials, and utilizing interaction
in order to reduce the circuit size. Since these modifications
are applied directly to the underlying circuit being computed,
security when using these optimizations follows readily from
security of our protocol.

A. Optimizing Equality Testing

A very common subroutine used in both selection and join
queries is testing whether two values are equal, which can be
reduced to testing whether their difference is 0. Here we show
how we can efficiently perform such zero tests using auxiliary
input provided by the prover.

Optimized Zero Testing. Ideally, we would like a small
arithmetic circuit that takes as input a field element x and
outputs x′ = 0 if x = 0 and x′ = 1 otherwise. It is well
known [25] that, by relying on Fermat’s little theorem, this
can be done by computing x′ = xp−1 (where p is the field
size). This approach is relatively expensive, however, since it
requires a circuit of size and depth O(log p). Instead, we will
construct a non-deterministic circuit for this task that has two
outputs x′, z and satisfies the following: x = 0 iff there is an
auxiliary input y such that x′ = 0 and z = 0; also, x 6= 0
iff there is an auxiliary input y such that x′ = 1 and z = 0.
Thus, the rest of the computation can use x′, and the client
will additionally verify that z = 0.

We can achieve the above by computing x′ = xy and
z = x · (1 − xy). Note that setting y = x−1 if x 6= 0
(and setting y arbitrarily otherwise) yields correct values for
x′ and z. Moreover, if x = 0 then x′ = z = 0 for any
choice of y, and if x 6= 0 then the only way to force z = 0
is to set x′ = 1. We note that the same high-level idea has
appeared before (e.g., [53], [51]) in the context of SNARKs
that are defined based on constraint systems. In our case,
the CMT protocol only supports the evaluation of arithmetic
circuits (and not constraint systems), and so we need a slightly
different technique.

Enforcing Zero Values. A trivial implementation of the
above would require the server to send all the x′, y values
to the client, resulting in the client performing work linear in
the number of zero tests. Since zero testing may be done at
least once per database row, this will lead to large overheads.

Instead (cf. Figure 1), we split the computation into two
parts: (i) a circuit C1 that computes z = x(1− xy), and (ii) a
circuit C2 that evaluates the SQL query using the result of the

y1x1 xM yM

C2C1

⇥

⇥

⇥

⇥

R

R

R

R1� 1�

zMz1

Layer 0

Layer 1

Layer 2

Layer 3 . . .

. . .

Fig. 1. Zero testing. If zi = 0 then the input to C2 is a 0/1 value indicating
whether xi is zero.

zero test (i.e., x′ = xy). Without loss of generality, we assume
the result of the zero test is used at the input layer of C2, as
shown in Figure 1. The client and the server will run two
separate interactive proof protocols for C1 and C2. First, the
protocol for C2 is executed up to one layer before its input
layer (i.e., the client and server pause before proceeding to
its input layer). After that, the protocol for C1 is initiated.
Note that the honest prover does not need to send any of
the outputs of C1 to the verifier since the verifier knows all
of them are supposed to be 0. Moreover, in order to initiate
the execution of this protocol, the verifier needs to compute
the multilinear extension of the outputs of C1 evaluated at a
random point. Since the multilinear extension of the 0-vector
is the 0-polynomial, this step is free. Once the interactive
protocol for C1 finishes layer 1, the verifier uses the same
randomness for the next layer of both circuits (layer 2 of C1

and the input layer of C2, which have the same values).7 This
reduces the claims in both executions to a single evaluation
of the multilinear extension of the joint input for that layer.
Finally, layer 3 (the input layer) of C1 is verified normally. In
this way, the prover’s overhead for zero testing is only linear in
the size of C1, which only has 3 layers. The verifier’s overhead
is only polylogarithmic in the size of C1.

In our experiments (where dlog pe = 254), the above zero
testing and enforcement method yield an 80× speedup for both
prover and verifier compared to the deterministic approach
using Fermat’s little theorem.

Handling Conjunctions and Disjunctions. In multi-
dimensional SQL selection queries, AND or OR operators
are applied on the results of multiple selection clauses over
different columns, and thus the number of zero tests required
potentially grows with the number of columns. But note
that OR clauses can be trivially reduced to a single zero
test; e.g., testing x1 = 0 ∨ x2 = 0 reduces to testing
x1x2 = 0. We further observe that AND clauses can also be
reduced to a single zero test if the input values are known
to be in a bounded range. For example, if it is known that
−
√
p/2 < x1, x2 <

√
p/2 then we may reduce evaluating

the conjunction x1 = 0 ∧ x2 = 0 to evaluating whether
x21 + x22 = 0. In particular, if all values in question are
32 bits long and p is a 254-bit value, then we can test
conjunctions involving up to 2189 values using just a single
zero test. Alternatively, we can handle conjunctions using

7Using the same randomness for both C1 and C2 does not affect the
soundness of the CMT protocol here.

packing: e.g., if x1, x2 are 32-bit values (and |p| > 64) then
testing whether x1 = 0 ∧ x2 = 0 is equivalent to testing
whether 232x1+x2 = 0. These approaches ensure the number
of required auxiliary inputs (as well as the size of the zero-
test circuit) for a multi-dimensional selection query depends
linearly on the number of rows in the table and is almost
independent of the number of columns involved in the query.

B. Supporting Inputs/Outputs at Arbitrary Circuit Layers

So far, we have assumed that the circuit being computed takes
all its inputs at the same layer, and produces all its outputs
at the same layer. This is without loss of generality since
one can always define a “relay” gate that simply passes its
input to the next layer. In practice however, such relay gates
will contribute some cost to the execution of the interactive-
proof protocol [56]. For many natural SQL queries, this might
even result in a highly inefficient circuit where most gates are
relay gates. For example, consider an SQL query of the form
SELECT ∗ FROM T WHERE coli = x. A circuit for evaluating
this query takes the entire table as input, but only values
from the ith column are involved in the selection process. All
the other values, from all other columns, are simply relayed
between the various circuit layers.

Avoiding Relaying the Inputs. We now describe a technique
that avoids relay gates by leveraging the property of the
multilinear extension described in Section II-C. Concretely,
consider a circuit C such that some internal layer k operates
on 2M values with m = dlogMe. Assume the second half
(denoted by B) of the 2M values are “fresh inputs” (these
may either be from the database itself, or auxiliary input
from the prover), while the first half (denoted by A) come
from layer k + 1. Before running the CMT protocol for C,
the verifier holds the commitment (either obtained from the
preprocessing or received from the server) to the multilinear
extension, Ṽ Bk , of the fresh inputs to the kth layer. Next, during
the execution of the CMT protocol, the client receives the
evaluation of the multilinear extension of the values at layer k,
i.e., Ṽk(r1, . . . , rm+1), at some random point (r1, . . . , rm+1)
as before. As only the first M wires (corresponding to A)
are connected to layer k + 1, the client needs to obtain the
evaluation of the multilinear extension (denoted by Ṽ Ak) of
the first M values, at a random point and use it to continue
the CMT protocol for layer k + 1.

This is done as follows. By Equation 2 in Section II-C,
we have Ṽk(r1, . . . , rm+1) = (1 − r1)Ṽ

A
k (r2, . . . , rm+1) +

r1 · Ṽ Bk (r2, . . . , rm+1). Since B are all input gates,
the client can request the evaluation of Ṽ Bk at point
(r2, . . . , rm+1) along with a corresponding proof
(using the verifiable polynomial-delegation protocol).
Next, the client computes Ṽ Ak (r2, . . . , rm+1) =(
Ṽk(r1, . . . , rm+1)− r1 · Ṽ Bk (r2, . . . , rm+1)

)
/(1 − r1),

obtaining an evaluation of Ṽ Ak at the random point
(r2, . . . , rm+1). The client then uses it to continue the
execution of the CMT protocol for layer k + 1 as usual.

We note that similar optimizations can be performed in
order to avoid relying output gates as well.

Generalizations. For both inputs and outputs, using Equa-
tion 2 allows us to avoid relaying a number of input and the
output gates. We notice that the number of input (resp. output)
gates does not have to be half of the total number of gates in
the layer, but can be any fraction 1/m′ such that m′ is a power
of 2. Moreover, while we described the solution assuming that
the “fresh” inputs at some layer are all in the second half
of the inputs to that layer, this is not required. With small
modifications we can accommodate more complicated wiring
patterns, e.g., the case where odd wires are routed from the
previous layer and even wires are fresh inputs to the circuit.

C. Verifying Set Intersections

A join operation requires computing the intersection of two
large sets of column values (assuming for now there are no
duplicates). The naive way to compute the intersection of two
N -element sets, where each element is represents using z bits,
requires a circuit that performs N2 equality tests on z-bit
inputs. We describe here several ways this can be improved.

A Sorting-Based O(zN log2N) Solution. An asymptotic
improvement can be obtained by first sorting the 2N elements,
and then comparing consecutive elements in the sorted result.
Sorting can be done using O(N log2N) comparator gadgets
of width z, resulting in a circuit of size O(zN log2N) overall.
The concrete overhead of this approach is high, as each
comparator must be implemented by decomposing the inputs
to their bit-level representations.

A Routing-Based O(zN + N logN) Solution. Prior
literature on SNARKs [10] improves the above by relying on
auxiliary input from the prover to replace sorting networks
with switching networks that can induce arbitrary permutations
on N elements. Using this approach, the server will simply
specify the permutation that sorts the elements; the client can
verify that the elements are sorted in linear time. Switching
networks can be built using O(N logN) gadgets that swap
their inputs if an auxiliary bit is set to 1. The total complexity
of this approach is O(zN +N logN).

An O(zN) Interactive Solution. In our setting, where
we have interaction, we can do better. We simply have the
server provide the sorted list x′1, . . . , x

′
2N corresponding to

the original items x1, . . . , x2N . The client can verify that the
new list is sorted in O(N) time, so all that remains is for the
client to verify that it is a permuted version of the original
list. This can be done by having the server commit to the
new values (as part of the auxiliary input he computes) using
our verifiable polynomial-delegation scheme. The client then
chooses and sends to the server a uniform value r, and both
parties then run an interactive proof protocol to verify that∏N
i=1(xi − r) − ∏N

i=1(x
′
i − r) = 0. Overall, this approach

requires O(zN) auxiliary inputs and gates.

Sorting 0 Values. The concrete cost can be further reduced
as follows. In case many of the elements are 0, after the

sorting step they will be pushed to the front of the auxiliary-
input array (assuming, for simplicity, that all values are
non-negative). Instead of providing one auxiliary input per
element, it suffices for the prover to tell the verifier the
number of non-zero elements, and only provide auxiliary
inputs for those. For example, assume only the last 1/m
of elements are non-zero (where m is a power of 2), using
Equation 2 in Section II-C, the evaluation of the multilinear
extension for all elements at point r = (r1, . . . , rlog(mn))

is Ṽ (r) = r1 . . . rlogmṼm(rlogm+1, . . . , rlogmn), where Ṽm
is the multilinear extension of the non-zero elements. Thus,
the size of the auxiliary input and the number of necessary
comparisons only depend on the number of non-zero elements
(as opposed to the total number of elements).

In the context of SQL queries, the scenario above is very
common. Consider a query where a join clause is applied on
the result of two range queries. It is often the case that only
a small portion of rows in the table fall within the bounds
imposed by the latter. Therefore, after evaluating the range
selection, the values in these rows will be propagated through
the circuit, while the values in all other rows will effectively be
set to 0. The join query (and therefore the sorting) will then be
applied on this result which has the property that many of its
elements are 0. Thus the above optimization can significantly
lower the join evaluation cost in this case.

Sorting Multiple Columns. Another challenge arises when
the output of a join query includes more than just the reference
column, e.g., SELECT ∗ FROM T1,T2, WHERE T1.coli =
T2.colj . In this case, in order to compute the set intersection
using the above interactive method, the verifier must make
sure that the prover permuted all of the columns of T1 (resp.,
T2) with the same permutation used for coli (resp., colj).

We achieve this using the following packing technique.
Assume for simplicity that each database row has two
columns with values xi, yi respectively, and that the ele-
ments are arranged as tuples (x1, y1), · · · , (xN , yN). Suppose
the elements xi, yi have length at most z bits, with z <
blog pc/2. To sort both columns based on the xi values, we
ask the server to provide auxiliary inputs (a1, . . . , a2N) =
(xπ(1), yπ(1), · · · , xπ(N), yπ(N)), such that the {xπ(i)} are
sorted and the {yπ(i)} are permuted by the same permutation.
The client then chooses and sends to the server two random
values r1, r2, and both parties run the interactive proof proto-
col described above for the following three checks:
1)
∏N
i=1(xi − r1)(yi − r1)−

∏2N
i=1(ai − r1) = 0;

2)
∏N
i=1(bi− r2)−

∏N
i=1(b

′
i− r2) = 0, where bi = xi+ yi2

z

and b′i = a2i−1 + a2i2
z;

3) (a1, a3, . . . , a2N−1) are sorted.
The first check guarantees that ais are a permutation of xi, yis,
which also implies that ais have length at most z bits. Now
as xi, yi, ais all have length at most z bits, the second check
guarantees that ∃π : a2i−1 = xπ(i) and a2i = yπ(i) (note that
we cannot omit the first check as there exist ais with more
than z bits that can pass the second check). This, together
with the last check, guarantees xπ(i)s are sorted and yπ(i)s

are permuted by the same permutation.
The technique generalizes naturally to sort multiple columns

based on a reference column. As long as the packing result
does not overflow in Fp, we can pack all the columns.
Otherwise, we can duplicate the reference column, perform
a separate packing of subsets of columns, and sort them
separately. In particular, assuming z = 32 and p is 254 bits
long, we can pack up to 7 columns in a single field element.

Handling Duplicate Values. Finally, if there are duplicate
values in the reference columns, the result of a join query
can no longer be described as a set intersection. In this case,
a pairwise comparison of the elements of the two columns,
viewed as multisets, provides the correct result but the cost is
quadratic in the number of database rows. Instead we can do
the following. First, we extract the unique values from each
multiset (using a linear-size circuit as described in [54]). Then
we compute the intersection of the resulting sets with our
previous technique for the case of no duplicates. Following
this, we apply again the same technique to intersect this
intersection with each of the original multisets. This returns
two multisets such that: (i) each of them contains exactly those
elements that appear in both original multisets, and (ii) every
element appears in each multiset exactly the same amount of
times as it appeared in the the corresponding original multiset.
Finally, the join result can be computed with a pair-wise
comparison of the elements of these two multisets. Note that
the cost for this final step is asymptotically optimal as it is
exactly the same as simply parsing the join’s output.

D. Efficient Value Insertions

As explained above, our construction can handle any update
query by having the server evaluate the update-query circuit
and then commit to the output as the new digest. For simple
updates such as adding/subtracting a constant from an element,
we have a much simpler mechanism. By utilizing the closed
form of the multilinear extension, in order to add a constant
v to the bth entry in the database, the multilinear extension of
the database is increased by Xb(x1, · · · , xn)v (as defined in
Equation 1). Therefore, the client only needs to multiply the
commitment of the database by gXb(x1,··· ,xn)v = pvb , where
pb is the bth element of the public key P. In practice, as the
size of P is linear in the size of the database, the client can
outsource its storage to the server and obtain an authenticated
value of pb using a Merkle hash tree or digital signatures. Thus,
simple updates of this form can be handled with one round of
interaction, and the running time for both parties is logarithmic
in the database size using a Merkle tree, or constant using
a digital signature scheme. The update above also captures
inserting a new element/row to the database, which is adding
their values to previously unused cells.

VII. EMPIRICAL EVALUATION

A. Experimental Setup
Software. We implemented our constructions (including the
circuit generator, CMT protocol, and polynomial-delegation

1. SELECT n name, SUM(l extendedprice*(1-l discount))
2. AS revenue
3. FROM customer, orders, lineitem, supplier, nation, region
4. WHERE c custkey = o custkey AND l orderkey = o orderkey
5. AND l suppkey = s suppkey AND c nationkey = n nationkey
6. AND n regionkey = r regionkey AND r name = ’MIDDLE EAST’
7. AND o orderdate >= date ‘1997-01-01’
8. AND o orderdate < date ‘1997-01-01’+interval ’1’ year
9. GROUP BY n name
10. ORDER BY (revenue) DESC;

Fig. 2. Query #5 of the TPC-H benchmark.

protocol) in C++, and compiled it with g++ 4.8.4. We use the
NTL library [5] for number-theoretic operations, and SHA-
256 in OpenSSL [6] for hashing (in order to instantiate a
random oracle). For the bilinear pairing we use the ate-paring
library [1] on a 254-bit elliptic curve. The EMP toolkit [58]
was used for the network I/O between the server and the client.

Hardware and Network. Our experiments were executed
on two Amazon EC2 c4.8xlarge machines running Linux
Ubuntu 14.04, with 60GB of RAM and Intel Xeon E5-2666v3
CPUs with 36 virtual cores running at 2.9 GHz. For the
WAN experiments, we used machines hosted in two different
regions, one in the US East and the other in the US West.
The average network delay was measured at 72ms and the
bandwidth was 9MB/s. For each data point, we collected 10
experimental results and report their average.

B. Benchmark Dataset
Database Setup. We evaluate performance using the TPC-
H benchmark [7], which contains 8 synthetic tables and 22
SQL queries and is widely used by the database community
for performance evaluation. We represented decimal numbers,
dates, and categorical strings in the tables as elements in the
field used by our constructions. In our experimental evalua-
tions, we do not consider substring or wildcard queries, and the
corresponding columns were discarded. The TPC-H database
contains tables of various sizes. The two largest tables used
in our experiments contained 6 million rows and 13 columns
and 0.8 million rows and 4 columns, respectively.

TPC-H Queries. We tested five TPC-H queries: query #2,
#5, #6, #15, and #19. As a representative example, query
#5 is shown in Figure 2. It gives an example of multi-way
join queries on different columns of different tables. sub-
query in line 6 is a selection query on table region, and the
query in lines 7–8 is a range query on table order. Lines
4–6 consist of join queries among tables customer, order,
lineitem, supplier, nation, region. In line 1, the result is
projected to three columns, two of which are aggregated.
Finally, in lines 9–10, the aggregated values are summed for
each unique value of n name, and sorted based on n name
in descending order.

Query #2 is a nested query. The inner query consists of a 4-
way join followed by a MIN query, resulting in a single value.
The outer query consists of selection queries, where the result
of the inner query is used as a constraint, followed by a 4-
way join and projections. Query #6 is a simple 3-dimensional
range query followed by an aggregation. Query #19 consists

of range and selection queries on two tables, followed by a
single join query and an aggregation. Query #15 creates a new
table that is the result of a one-dimensional range query and
a SUM query. All the other queries in TPC-H are variants of
these five queries with different dimensions and constraints.

Query Representation and Field Sizes. For every TPC-
H query we implemented a circuit generator that takes as
input the database size and outputs an arithmetic circuit for
evaluating the specified query on a database of that size, using
the optimizations described in Section VI (when possible).
We implemented both the CMT protocol (Construction 1) and
the verifiable polynomial-delegation protocol (Construction 2)
using a prime-order field with a 254-bit prime.

C. Performance Comparison: Selection Queries

We compare the performance of our construction with prior
work, including IntegriDB [60], a special purpose system
optimized for a class of SQL queries, and libsnark [4], the
state-of-the-art general-purpose SNARK implementation. We
also against (non-verifiable) SQL, based on MySQL. Below,
we report the results on queries #2, #5, #6, and #19.

For IntegriDB, we downloaded the implementation from [2]
and executed it on our machine. For libsnark, we estimated the
performance as follows. For each query, we first produced its
circuit representation the jSNARK compiler [3], hardcodeding
the TPC-H dataset in the circuit. This resulted in a circuit
which takes as inputs the values used in selection and range
queries. We then constructed a SNARK using libsnark for
this circuit, and report its performance. We note that this
approach of hardcoding the database and the query into the
circuit yields a preprocessing phase whose results are only
useful for that specific query and database. In particular,
the results of the preprocessing phase cannot be reused for
other queries or databases, or even an updated version of the
database. Although clearly unrealistic, this approach gives a
lower bound on the server time when using a SNARK-based
approach.8 Even with this more efficient approach, we were
not able to generate SNARKs for circuits containing more
than 220 multiplication gates (see Table 7 for the circuit sizes
of the queries we used in our evaluation). Therefore, for
experiments requiring larger circuits, we estimated the cost
assuming the prover time grows linearly in the circuit size
(this is, again, an underestimate since the prover time actually
grows quasilinearly in the circuit size).

Setup Phase. The setup phases in both IntegriDB and vSQL
are query independent and thus need to be executed only once,
after which any supported queries can be handled. We run
the setup phases of both IntegriDB and vSQL on all eight
TPC-H tables. The setup for vSQL took about 2,467 seconds.
For IntegriDB, the setup phase could not be completed on the
entire TPC-H database due to excessive memory consumption.
Our estimate for the setup phase of IntegriDB was about

8It is possible to use SNARKs that support arbitrary queries by constructing
a SNARK for a universal circuit [12] and supporting delegation of stor-
age [28], [19]. However, these approaches introduce additional overhead.

IntegriDB SNARKs vSQL (ours) MySQL
Query Server Client Server∗ Client∗ Server Client Total (WAN) Total (NI)
#19 6,376s 232ms 196,000s 6ms 4,892s 162ms 4,957s 4,892s 0.67s
#6 1,818s 74ms 19,000s 6ms 3,851s 129ms 3,869s 3,851s 3.92s
#5 7 7 615,000s 110ms 5,069s 398ms 5,278s 5,069s 4.16s
#2 7 7 58,000s 40ms 2,346s 508ms 2,559s 2,346s 2.96s

Fig. 3. Comparison of server and client times for evaluating queries using IntegriDB, a SNARK-based approach, our construction, and plain SQL (based on
MySQL). (See text for details.) The numbers in columns marked by * are estimated. 7 denotes an unsupported query..

350,000 seconds. Our construction is about 121× faster than
IntegriDB because the complexity of our setup phase is linear
in the number of columns compared to quadratic in IntegriDB.

For libsnark, the setup time depends on the query. The
fastest setup time, for query #6, is estimated to take 36,000
seconds, which is an order-of-magnitude slower than vSQL.
Running setup for all four queries is estimated to require about
1.7 · 107 seconds (roughly 197 days).

Evaluation Phase. The results of the evaluation phase are
summarized in Table 3. The numbers reported in the “Server”
column reflect the computation time required for the server to
evaluate the SQL query and produce a valid proof; those in
the “Client” column reflect the time for the client to verify
the proof. For vSQL, in the “Total (WAN)” column we also
report the total end-to-end time which includes the overhead
due to communication between the client and server over
a WAN network. For comparison, the total time for IntegriDB
and SNARKs (which are non-interactive) is essentially the
same as the server time, since the client time is negligible.
Note, however, that vSQL can be made non-interactive in
the random oracle model, virtually eliminating the cost of
interaction at the negligible expense of a small number of
SHA-256 computations. We report the performance of this
non-interactive mode, including the SHA-256 computation
time, under “Total (NI).”

Evaluation Phase: vSQL vs. IntegriDB. As shown in
Table 3, IntegriDB can only support queries #19 and #6,
compared with vSQL which can support all TPC-H queries.
While being more expressive, the running times of vSQL’s
client and server are on the same order of magnitude as those
of IntegriDB; in fact, for query #19, vSQL’s server (resp.,
client) outperforms that of IntegriDB by about 23% (resp.,
30%). We observe also that the cost of interaction for vSQL
(even over a WAN) is small, mainly because prover time is
by far the dominating cost.

Evaluation Phase: vSQL vs. SNARKs. Compared to
libsnark, the server time of our constructions is significantly
faster (ranging from 5× for query #6 to 120× for query #5). At
a high level, the better performance of vSQL is a consequence
of two features. First, our construction is mostly information-
theoretic and the number of (relatively slow) cryptographic
operations it requires is linear in the input and output length,
whereas SNARK-based approaches require a number of cryp-
tographic operations linear in the circuit size. In addition, as
described in Section VI, our construction leverages interaction
and auxiliary input to reduce the size of a query’s circuit
representation. Verification when using a SNARK-based ap-

proach is faster than in vSQL since it requires only a number
of cryptographic operations linear in the output length. In
practice, however, the difference is at most 0.5sec which we
consider negligible for most applications. We stress that all
numbers reported for libsnark are underestimations since they
assume the database and queries are fixed in advance. We
expect our construction’s improvement to be even more sig-
nificant compared to more general SNARK-based systems that
support arbitrary queries and dynamic outsourced databases
(see discussion below).

Communication. For libsnark-based systems, the additional
communication required for the proof is always constant (e.g.,
288 bytes). For IntegriDB and vSQL the communication
required in all experiments was under half a megabyte. We
consider this to be negligible in practice for modern networks
and thus omit additional details.

Comparison with Other SNARK-based Systems. SNARKs
can be used for verifiable computation in various ways other
than the one we used for our comparison.

Exploiting Structured Computations via Bootstrapping. Gep-
petto [26] takes a complex computation and splits it into
smaller building blocks, each represented as a “small” circuit.
Each such circuit can then be pre-processed with a SNARK
separately. In the context of SQL queries, the natural way to
split the computation is by having one small circuit that oper-
ates on a single row, and then applying that circuit iteratively to
each row in the database. An additional SNARK is then needed
to aggregate and verify the outputs of all the smaller SNARKs
into a single succinct proof, in a “bootstrapping” step. In
practice, Geppetto has the potential to significantly reduce the
preprocessing time and memory consumption since the same
small circuit is used throughout the query evaluation. However,
the total prover time to execute the smaller SNARK on every
row is similar to that of the single large SNARK we used as our
benchmark, as the total number of exponentiations is linear in
the total number of multiplication gates and breaking a large
circuit into multiple smaller ones does not reduce that. Our
results already show that the prover time in that case is up to
2 orders of magnitude slower than for vSQL. Additionally, the
bootstrapping phase requires approximately 30,000–100,000
gates per instance of the smaller circuit [26, Section 7.3.1].
Applying this to a table with 6 million rows (as in the TPC-H
dataset) will thus introduce an additional overhead of 1.4–
4.8 × 107s for the prover, based on our estimations with
libsnark (which is itself an underestimate as the bootstrapping
phase operates over a larger and less efficient elliptic curve).

Memory Delegation via Hash Functions. Pantry [19] can

Server Client Total (WAN) Total (RO) Comm.
2,049.9s 85ms 2,106.9s 2,050.8s 85.7KB

Fig. 4. Performance of our construction on TPC-H query #15, creating a new
table from table lineitem.

be used to outsource memory by implementing a Merkle
hash tree on top of Pinocchio [51]. The consistency of each
memory read/write access must be proven by checking the
corresponding Merkle path as part of the SNARK that eval-
uates the query. This approach has the benefit of allowing
the verifiable evaluation of RAM programs on outsourced
memory (as opposed to expressing the computation directly as
a circuit). For SQL queries, assuming the existence of pre-built
database indices (as is typically the case with modern database
management systems), there are programs that can evaluate
certain queries in time sublinear in the database size. (E.g.,
assuming the existence of a search tree that stores the ordered
element values at its connected leaves, a simple 1-D range
query can be evaluated in time logarithmic in the database size
and linear in the result.) Thus, for specific queries for which
such indices can be built, Pantry can in theory outperform
vSQL. Regarding the specific queries we evaluated here, we
note that the number of memory accesses would still be very
large even with the help of pre-built indices. The simplest
TPC-H query we tested is query #6, which is a 3-dimensional
range query followed by a summation. Assuming a search
tree is built for each dimension and each 1-D range query has
a 1% selectivity (which is well below the selectivity in our
experiments), getting the result of each dimension requires
60,000 memory accesses. In practice, the concrete cost of
proving the correctness of each memory access would be
approximately 2.5s, using a SNARK-friendly algebraic hash
function [40] for 106 4-byte memory blocks. Therefore, just
verifying the memory accesses for query #6 would take around
450,000s (5 days) in this case.

Finally, in contrast to vSQL, both approaches require a
query-specific setup phase that can only be avoided if one
uses a universal circuit [12] or proof-bootstrapping [11], but
these techniques incur considerable additional overheads.

D. Performance Comparison: Update Queries

We test the performance of vSQL on a CREATE query (query
#15 in TPC-H). As shown in Table 4, the communication
required is only 85.7KB, even though the newly created
table is itself more than 1MB in size. IntegriDB cannot
directly support such expressive updates. The only solution for
IntegriDB would be for the client to download the entire new
table, verify its correctness, and preprocess it from scratch.

Next we look at updates that can be supported by Inte-
griDB, in particular inserting a new row. In this case, vSQL
outperforms IntegriDB since the total time for inserting a
row into the lineitem table in TPC-H is only 5.2ms using
vSQL vs. 1.46s using IntegriDB. This is because the vSQL
client only needs to verify the corresponding elements of
the public parameters using a Merkle-tree proof and then
perform one exponentiation per column. For IntegriDB, the
required number of exponentiations is quadratic in the number

6× 103 6× 104 6× 105 6× 106

Table size

100

101

102

103

104

Se
rv

er
ti

m
e

(s
) query #6

query #5
query #19

6× 103 6× 104 6× 105 6× 106

Table size

0

100

200

300

400

C
lie

nt
ti

m
e

(m
s)

query #6
query #5
query #19

Fig. 5. Performance of vSQL for three TPC-H queries as a function of the
number of rows in the largest table involved in the query.

Query # of Inputs Time (sec) Time/Input (ms)
#15 12,002,430 1,405 0.1171
#2 17,840,340 1,990 0.1115
#6 24,004,860 2,715 0.1130
#5 31,397,075 3,509 0.1118

#19 32,406,075 3,695 0.1140

Fig. 6. Prover time for our polynomial-delegation scheme. The number of
inputs includes both the database and the prover’s auxiliary inputs.

of columns and logarithmic in the number of rows.
In order for a SNARK-based system to support updates,

it must offer a way to check the validity of a new database
digest returned by the prover. The standard way of doing this
is by incorporating the digest computation in the circuit that
is evaluated, which introduces a huge cost in practice. More
recent approaches can achieve this via an external mechanism
that is not part of the circuit of the SNARK (e.g., [8], [28]).
Note however, that at the very least the update circuit must
be evaluated and the SNARK proof must be computed by
the prover. According to our performance comparison in the
previous section, this already takes more time than vSQL.

E. Scalability of Our Construction

In this section, we evaluate the performance of our construc-
tions as a function of the database size. To that end, we run
our construction on the largest three of the previous queries
and scale the number of rows in the largest participating table
from 6,000 to 6,000,000.

Server Time. As shown in Figure 5, the server performance
for query evaluation scales almost linearly with the size of the
largest table, matching the theoretical analysis of Theorem 4.

Client Time. Figure 5 shows that the client’s verification time
grows logarithmically with the number of rows in the largest
table participating in a query (note the logarithmic scale of the
horizontal axis). This again matches Theorem 4.

F. Microbenchmarks

In addition to evaluating vSQL’s end-to-end performance, we
also report the performance of vSQL’s main components.

Performance of the Polynomial-Delegation Scheme. Ta-
ble 6 shows the prover time for our implementation of the
polynomial-delegation scheme (Construction 2). The prover
spends about 0.11ms per input, which is the same order
of magnitude as SNARK-based schemes. Preprocessing for
our polynomial-delegation scheme (which is the only part of
our construction that requires preprocessing) took only 2,467
seconds for 95,525,880 inputs (25.8µs per gate).

Query # of Gates Time (sec) Time/Gate (µs)
#2 198,646,335 356 1.79

#15 367,495,719 646 1.76
#6 704,643,060 1,137 1.61

#19 801,374,196 1,198 1.49
#5 945,828,996 1,560 1.65

Fig. 7. Prover time for our implementation of the CMT protocol.

Performance of the CMT Protocol. Table 7 shows the
performance of our implementation of the CMT protocol. As
can be seen, the average time required per gate is about 1.7µs.

VIII. CONCLUSION

In this work we show how to extend the CMT protocol using
a polynomial-delegation protocol to efficiently support out-
sourced data as well as auxiliary inputs (i.e., non-deterministic
computations). We then incorporate this new construction into
vSQL, a verifiable database system that can support arbitrary
SQL queries, including updates. Compared to previous general
approaches, vSQL offers significantly faster evaluation time
for the server as it requires cryptographic work linear in the
size of the query’s inputs and outputs (and independent of the
size of the query’s circuit representation). Our experimental
evaluation demonstrates that in practice this results in a
concrete speedup for the server of up to 120× compared to a
SNARK-based approach, with negligibly larger overhead for
the client. The overall performance of vSQL is comparable to,
and sometimes better than, that of IntegriDB, a state-of-the-art
scheme that only supports (and is optimized for) a restricted
subclass of SQL.

Limitations and Future Work. Our main construction can
support the delegation of any computation that can be repre-
sented as a non-deterministic arithmetic circuit, which theoret-
ically includes all possible SQL queries. For many common
operations (such as joins and comparisons), vSQL includes
specific optimizations which reduce the overall circuit size.
vSQL also benefits from the structure of most SQL queries,
which can be viewed as applying the same computation to
every row in a table. In general, however, our optimizations do
not apply to all possible SQL queries. In particular, since some
variants of the SQL language are Turing complete [42], general
(and relatively inefficient) reductions from Turing machines
to circuits are required to support them. Moreover, additional
work is needed to handle some operations that arise in many
“natural” SQL queries, most prominent of which are substring
and wildcard queries. We leave the task of handling such
queries efficiently for future work.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their comments, and
Andrew Miller for shepherding the paper. This work was
supported in part by NSF awards #1514261 and #1526950,
financial assistance award 70NANB15H328 from the U.S.
Department of Commerce, National Institute of Standards and
Technology, the Rothschild foundation, and the Warren Center
for Network and Data Sciences.

REFERENCES

[1] Ate pairing. https://github.com/herumi/ate-pairing.
[2] Integridb. https://github.com/integridb/Code.
[3] jsnark. https://github.com/akosba/jsnark.
[4] libsnark. https://github.com/scipr-lab/libsnark.
[5] NTL library. http://www.shoup.net/ntl/.
[6] OpenSSL toolkit. https://www.openssl.org/.
[7] TPC-H benchmark. http://www.tpc.org/tpch/.
[8] BACKES, M., BARBOSA, M., FIORE, D., AND REISCHUK, R. M.

ADSNARK: Nearly practical and privacy-preserving proofs on authen-
ticated data. In S&P 2015, pp. 271–286.

[9] BACKES, M., FIORE, D., AND REISCHUK, R. M. Verifiable delegation
of computation on outsourced data. In CCS 2013, pp. 863–874.

[10] BEN-SASSON, E., CHIESA, A., GENKIN, D., TROMER, E., AND
VIRZA, M. SNARKs for C: Verifying program executions succinctly
and in zero knowledge. In CRYPTO 2013. pp. 90–108.

[11] BEN-SASSON, E., CHIESA, A., TROMER, E., AND VIRZA, M. Scalable
zero knowledge via cycles of elliptic curves. In CRYPTO 2014. pp. 276–
294.

[12] BEN-SASSON, E., CHIESA, A., TROMER, E., AND VIRZA, M. Succinct
non-interactive zero knowledge for a von Neumann architecture. In
USENIX Security 2014.

[13] BENABBAS, S., GENNARO, R., AND VAHLIS, Y. Verifiable delegation
of computation over large datasets. In CRYPTO 2011, pp. 111–131.

[14] BITANSKY, N., CANETTI, R., CHIESA, A., AND TROMER, E. From
extractable collision resistance to succinct non-interactive arguments of
knowledge, and back again. In ITCS 2012, pp. 326–349.

[15] BITANSKY, N., CANETTI, R., PANETH, O., AND ROSEN, A. On the
existence of extractable one-way functions. STOC 2014, pp. 505–514.

[16] BONEH, D., AND BOYEN, X. Short signatures without random oracles.
In EUROCRYPT 2004, pp. 56–73.

[17] BOYLE, E., GOLDWASSER, S., AND IVAN, I. Functional signatures and
pseudorandom functions. In PKC 2014, pp. 501–519.

[18] BOYLE, E., AND PASS, R. Limits of extractability assumptions with
distributional auxiliary input. In ASIACRYPT 2015, pp. 236–261.

[19] BRAUN, B., FELDMAN, A. J., REN, Z., SETTY, S., BLUMBERG, A. J.,
AND WALFISH, M. Verifying computations with state. In SOSP 2013,
pp. 341–357.

[20] CANETTI, R., CHEN, Y., HOLMGREN, J., AND RAYKOVA, M. Adaptive
succinct garbled RAM or: How to delegate your database. In TCC 2016-
B, pp. 61–90.

[21] CANETTI, R., PANETH, O., PAPADOPOULOS, D., AND TRIANDOPOU-
LOS, N. Verifiable set operations over outsourced databases. In PKC
2014, pp. 113–130.

[22] CANETTI, R., RIVA, B., AND ROTHBLUM, G. N. Practical delegation
of computation using multiple servers. In CCS 2011, pp. 445–454.

[23] CATALANO, D., FIORE, D., GENNARO, R., AND NIZZARDO, L. Gen-
eralizing homomorphic MACs for arithmetic circuits. In PKC 2014,
pp. 538–555.

[24] CHUNG, K., KALAI, Y. T., LIU, F.-H., AND RAZ, R. Memory
delegation. In CRYPTO 2011, pp. 151–168.

[25] CORMODE, G., MITZENMACHER, M., AND THALER, J. Practical
verified computation with streaming interactive proofs. In ITCS 2012,
pp. 90–112.

[26] COSTELLO, C., FOURNET, C., HOWELL, J., KOHLWEISS, M.,
KREUTER, B., NAEHRIG, M., PARNO, B., AND ZAHUR, S. Geppetto:
Versatile verifiable computation. In S&P 2015, pp. 253–270.

[27] DEVANBU, P., GERTZ, M., KWONG, A., MARTEL, C., NUCKOLLS, G.,
AND STUBBLEBINE, S. G. Flexible authentication of XML documents.
In CCS 2001, pp. 136–145.

[28] FIORE, D., FOURNET, C., GHOSH, E., KOHLWEISS, M., OHRIMENKO,
O., AND PARNO, B. Hash first, argue later: Adaptive verifiable
computations on outsourced data. Cryptology ePrint Archive, 2016.

[29] FIORE, D., AND GENNARO, R. Publicly verifiable delegation of large
polynomials and matrix computations, with applications. In CCS 2012,
pp. 501–512.

[30] FOURNET, C., KOHLWEISS, M., DANEZIS, G., AND LUO, Z. ZQL: A
compiler for privacy-preserving data processing. In USENIX Security
2013, pp. 163–178.

[31] GENNARO, R., GENTRY, C., AND PARNO, B. Non-interactive verifiable
computing: Outsourcing computation to untrusted workers. In CRYPTO
2010, pp. 465–482.

[32] GENNARO, R., GENTRY, C., PARNO, B., AND RAYKOVA, M. Quadratic
span programs and succinct NIZKs without PCPs. In EUROCRYPT
2013, pp. 626–645.

[33] GOLDWASSER, S., KALAI, Y. T., AND ROTHBLUM, G. Delegating
computation: interactive proofs for muggles. In STOC 2008, pp. 113–
122.

[34] GOLDWASSER, S., MICALI, S., AND RACKOFF, C. The knowledge
complexity of interactive proof-systems. In STOC 1985, pp. 291–304.

[35] GOODRICH, M. T., TAMASSIA, R., AND TRIANDOPOULOS, N. Effi-
cient authenticated data structures for graph connectivity and geometric
search problems. Algorithmica 60, 3 (2011), 505–552.

[36] GROTH, J. On the size of pairing-based non-interactive arguments. In
EUROCRYPT 2016, pp. 305–326.

[37] GROTH, J. Short pairing-based non-interactive zero-knowledge argu-
ments. In ASIACRYPT 2010, pp. 321–340.

[38] KALAI, Y. T., AND PANETH, O. Delegating RAM computations. In
TCC 2016-B,, pp. 91–118.

[39] KATE, A., ZAVERUCHA, G. M., AND GOLDBERG, I. Constant-size
commitments to polynomials and their applications. In ASIACRYPT
2010, pp. 177–194.

[40] KOSBA, A., ZHAO, Z., MILLER, A., QIAN, Y., CHAN, H., PAPAMAN-
THOU, C., PASS, R., ABHI SHELAT, AND SHI, E. C∅c∅: A framework
for building composable zero-knowledge proofs. Cryptology ePrint
Archive, Report 2015/1093, 2015. http://eprint.iacr.org/2015/1093.

[41] KOSBA, A. E., PAPADOPOULOS, D., PAPAMANTHOU, C., SAYED,
M. F., SHI, E., AND TRIANDOPOULOS, N. TRUESET: Faster verifiable
set computations. In USENIX Security 2014, pp. 765–780.

[42] LAW, Y.-N., WANG, H., AND ZANIOLO, C. Query languages and
data models for database sequences and data streams. In VLDB 2004,
pp. 492–503.

[43] LI, F., HADJIELEFTHERIOU, M., KOLLIOS, G., AND REYZIN, L.
Dynamic authenticated index structures for outsourced databases. In
SIGMOD 2006, pp. 121–132.

[44] LUND, C., FORTNOW, L., KARLOFF, H., AND NISAN, N. Algebraic
methods for interactive proof systems. J. ACM 39, 4 (1992), 859–868.

[45] MARTEL, C., NUCKOLLS, G., DEVANBU, P., GERTZ, M., KWONG, A.,
AND STUBBLEBINE, S. G. A general model for authenticated data
structures. Algorithmica 39, 1 (2004), 21–41.

[46] MILLER, A., HICKS, M., KATZ, J., AND SHI, E. Authenticated data
structures, generically. In POPL 2014, pp. 411–423.

[47] PAPADOPOULOS, D., PAPADOPOULOS, S., AND TRIANDOPOULOS, N.
Taking authenticated range queries to arbitrary dimensions. In CCS
2014, pp. 819–830.

[48] PAPADOPOULOS, D., PAPAMANTHOU, C., TAMASSIA, R., AND
TRIANDOPOULOS, N. Practical authenticated pattern matching with
optimal proof size. VLDB 2015, 750–761.

[49] PAPAMANTHOU, C., SHI, E., AND TAMASSIA, R. Signatures of correct
computation. In TCC 2013, pp. 222–242.

[50] PAPAMANTHOU, C., TAMASSIA, R., AND TRIANDOPOULOS, N. Op-
timal verification of operations on dynamic sets. In CRYPTO 2011,
pp. 91–110.

[51] PARNO, B., HOWELL, J., GENTRY, C., AND RAYKOVA, M. Pinocchio:
Nearly practical verifiable computation. In S&P 2013, pp. 238–252.

[52] SETTY, S., BRAUN, B., VU, V., BLUMBERG, A. J., PARNO, B., AND
WALFISH, M. Resolving the conflict between generality and plausibility
in verified computation. In EuroSys 2013, pp. 71–84.

[53] SETTY, S. T. V., VU, V., PANPALIA, N., BRAUN, B., BLUMBERG,
A. J., AND WALFISH, M. Taking proof-based verified computation a
few steps closer to practicality. In USENIX Security Symposium 2012,
pp. 253–268.

[54] THALER, J. Time-optimal interactive proofs for circuit evaluation. In
CRYPTO 2013, pp. 71–89.

[55] THALER, J. A note on the GKR protocol, 2015. Available at http:
//people.cs.georgetown.edu/jthaler/GKRNote.pdf.

[56] VU, V., SETTY, S., BLUMBERG, A. J., AND WALFISH, M. A hybrid
architecture for interactive verifiable computation. In S&P 2013,
pp. 223–237.

[57] WAHBY, R. S., SETTY, S. T. V., REN, Z., BLUMBERG, A. J., AND
WALFISH, M. Efficient RAM and control flow in verifiable outsourced
computation. In NDSS 2015.

[58] WANG, X., MALOZEMOFF, A. J., AND KATZ, J. EMP-toolkit: Efficient
multiparty computation toolkit. https://github.com/emp-toolkit.

[59] YANG, Y., PAPADIAS, D., PAPADOPOULOS, S., AND KALNIS, P. Au-
thenticated join processing in outsourced databases. In SIGMOD 2009,
pp. 5–18.

[60] ZHANG, Y., KATZ, J., AND PAPAMANTHOU, C. IntegriDB: Verifiable
SQL for outsourced databases. In CCS 2015, pp. 1480–1491.

[61] ZHANG, Y., PAPAMANTHOU, C., AND KATZ, J. Alitheia: Towards
practical verifiable graph processing. In CCS 2014, pp. 856–867.

[62] ZHENG, Q., XU, S., AND ATENIESE, G. Efficient query integrity for
outsourced dynamic databases. In CCSW 2012, pp. 71–82.

APPENDIX A
BILINEAR ASSUMPTIONS

We rely on the following assumptions. Let PPT stand for
“probabilistic polynomial-time.” To prove security of our
construction, we use the following assumptions:

Assumption 1 ([16] (q-Strong Diffie-Hellman)). For any PPT
adversary A, the following probability is negligible:

Pr

 bp← BilGen(1λ);

τ
R← Z∗p;

σ = (bp, gτ , . . . , gτ
q

)

: (x, e(g, g)
1

τ+x)← A(1λ, σ)

Let W`,d denote the set of all multisets of {1, . . . , `} in

which the multiplicity of any element is at most d.
The next assumption states the following. Assume a poly-

nomial time algorithm that receives as input two ordered
sequences of elements of G such that each element contains in
the exponent a multivariate monomial with at most ` variables
and of degree at most ` · d, for some d, and for every ordered
pair of elements (across the two sequences) it holds that the
elements differ in the exponent by a fixed multiplicative factor
α. Then, if the party outputs a new such pair of elements that
differ in the exponent by α, then it must hold that the first of
these two elements was computed as a linear combination of
the elements of the first sequence (and likewise for the second
and the same linear combination). This fact is captured by the
existence of a polynomial-time extractor that, upon the same
input outputs this linear combination.

Assumption 2 ((d, `)-Power Knowledge of Exponent). For
any PPT adversary A there is a polynomial-time algorithm E
(running on the same random tape) such that for all benign
auxiliary inputs z ∈ {0, 1}polyλ the following probability is
negligible:

Pr

bp← BilGen(1λ);

τ1, . . . , τ`, α
R← Z∗p, τ0 = 1;

σ1 = {g
∏
i∈W τi}W∈W`,d

;

σ2 = {gα·
∏
i∈W τi}W∈W`,d

;
σ = (bp, σ1, σ2, g

α);

G×G 3 (h, h̃)← A(1λ, σ, z);
(a0, . . . , a|W`,d|)← E(1λ, σ, z)

:

e(h, gα) = e(h̃, g)
∧∏

W∈W`,d

gaW
∏
i∈W τi

6= h

The above is a knowledge-type assumption that is a direct

generalization of Groth’s q-PKE assumption [37] for the case
of multivariate polynomials. In fact, q-PKE is by definition
the same as (1, q)-PKE, using our notation. Note that W`,d

has size O(
(
`+`d
`d

)
). In our construction, we will be using

this assumption for the case where d is constant and ` is

logarithmic in the database size. The results of [18], [15] show
the impossibility of knowledge assumptions with respect to
arbitrary auxiliary inputs. In the above definition we use the
notion of a benign auxiliary input (or, alternatively, a benign
state generator), similar to [26], [36], [28], to refer to auxiliary
inputs that make extraction possible, avoiding these negative
results. Concretely, our proofs hold assuming the auxiliary
input of the extractor comes from a benign distribution.

