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Abstract—Augmented reality (AR) technologies, such as Mi-
crosoft’s HoloLens head-mounted display and AR-enabled car
windshields, are rapidly emerging. AR applications provide users
with immersive virtual experiences by capturing input from a
user’s surroundings and overlaying virtual output on the user’s
perception of the real world. These applications enable users to
interact with and perceive virtual content in fundamentally new
ways. However, the immersive nature of AR applications raises
serious security and privacy concerns. Prior work has focused
primarily on input privacy risks stemming from applications with
unrestricted access to sensor data. However, the risks associated
with malicious or buggy AR output remain largely unexplored.
For example, an AR windshield application could intentionally or
accidentally obscure oncoming vehicles or safety-critical output of
other AR applications. In this work, we address the fundamental
challenge of securing AR output in the face of malicious or buggy
applications. We design, prototype, and evaluate Arya, an AR
platform that controls application output according to policies
specified in a constrained yet expressive policy framework. In
doing so, we identify and overcome numerous challenges in
securing AR output.

I. INTRODUCTION

Augmented reality (AR) technologies enable users to in-
teract with virtual content in fundamentally new ways. AR
applications capture input from a user’s surroundings, such as
video, depth sensor data, or audio, and they overlay output
(e.g., visual, audio, or haptic feedback) directly on the user’s
perception of the real world, through devices like smartphones,
head-mounted displays (HMDs), or automotive windshields.

While commercial AR efforts are relatively young, they
are beginning to capture the attentions of users worldwide.
For example, the wildly popular mobile AR app “Pokémon
Go” [35] brought in over $600 million in revenue in its
first three months after release, making it the most successful
mobile game in history [44]. However, the potential of AR lies
far beyond simple smartphone games, and we are beginning to
see rapid growth in new AR technologies. For example, Mi-
crosoft’s HoloLens HMD is now available to developers [20],
Meta’s second-generation HMD is available for pre-order [27],
and Google has invested over $500 million in the HMD
startup Magic Leap [28]. Additionally, many groups within the
automotive industry are developing AR-enabled windshields
to aid drivers [15, 26, 46]. Overall, interest in employing AR
technologies across diverse industry sectors is increasing, with

AR as a whole projected to grow into a $100 billion industry
by the year 2020 [1].

Challenge: AR Output Security. Though AR technologies
have the potential to deliver tremendous benefits, they also
raise new privacy and security risks. A growing body of
literature focuses on mitigating privacy risks that stem from
applications’ needs to gather input from the numerous sensors
on AR devices, such as cameras [8, 18, 37, 39, 40, 45]. In this
work, we focus instead on a complementary issue: the security
risks of AR output, or the risks that arise from AR applications’
abilities to modify a user’s view of the world. Addressing these
risks is particularly critical for fully immersive AR systems,
such as HMDs and car windshields, where users cannot easily
disengage from their devices if output security issues arise.

To illustrate potential security risks related to AR output,
imagine driving a car with an AR-enabled windshield. The
intended benefits of this technology include the ability to vis-
ibly highlight lane markers to prevent accidental lane drift, to
display turn-by-turn driving directions visually overlaid on the
road, and to visibly warn the driver of impending collisions —
examples already showcased by industry, e.g., [17] (see also
Figure 1). These tasks might run as multiple components
of a single application, or as multiple, distinct applications.
Without appropriate safeguards, however, the benefits of these
applications can be overshadowed by risks. A malicious or
buggy AR application could potentially obscure real-world
pedestrians, overlay misleading information on real-world road
signs, or occlude the virtual content of other AR applications,
such as collision warnings or other important safety alerts.
Similar issues could arise with HMDs for a user on foot.
Consider, for example, an HMD application that accidentally
or intentionally blocks the user’s view of a tripping hazard or
an oncoming car. The ability of AR content to obscure real-
world objects is not hypothetical, as Figure 2 shows.

To our knowledge, no existing industry or research AR
platforms are designed to mitigate the above types of output
security risks. Today, it is the responsibility of the applications
themselves to safely generate output and to adhere to guide-
lines such as those suggested for HoloLens developers [29].
For instance, these guidelines suggest that applications should
not create AR content that covers too much of the user’s
view of the world, but HoloLens itself does not enforce this.
Placing this responsibility on application developers, who may
generate buggy, vulnerable, or malicious code, is problematic.



2

Fig. 1: Example AR Scenario. This screenshot from Hyundai’s
CES demo [17] shows an AR warning overlaid on a car and the
car’s current speed. In future AR platforms, we expect that multiple
applications will simultaneously produce output.

Furthermore, the fact that today’s AR platforms cannot exert
any control over the output of individual applications means
they also cannot handle conflicts between the output of multi-
ple applications. Indeed, HoloLens sidesteps this problem by
not supporting multiple full-screen immersive AR applications
running at once.

Our Work: Designing for Secure AR Output. We seek to
change the above situation. Specifically, we design, implement,
and evaluate a prototype AR platform with output security as
an explicit, first-class goal. We refer to our design as Arya.
In our threat model, Arya is trusted, but the AR applications
running on Arya are untrusted. With Arya’s security mecha-
nisms enabled, applications still have significant flexibility to
create immersive AR experiences, but their visual content is
constrained by the platform based on policies, such as ensuring
that windshield applications cannot obscure real-world road
signs or pedestrians while the car is moving. This work
both identifies and overcomes numerous challenges towards
designing AR systems to mitigate output security risks.

Our core design builds upon the designs of prior AR systems
and includes sensors, such as cameras and microphones; rec-
ognizers [18] to detect objects, such as cars and people, from
the sensed input; and an input policy module [40] to determine
which of the sensed objects should be passed to applications,
possibly with modification. The central difference in Arya is
the inclusion of an output policy module that sits between
applications and the AR system’s output drivers, and that
enforces policy-based constraints on application outputs. While
the potential utility of an output policy module was suggested
in a position paper [21], we are the first to concretely explore
the feasibility of an output policy module in practice. We
find that designing an output policy module is fundamentally
challenging, and requires identifying and answering key design
questions, such as how to express desired output policies, how
to enforce those policies, and how to handle policy conflicts.

We identify and overcome these challenges through the
iterative design, implementation, and evaluation of Arya and
our Arya prototype. To drive our design, we develop a set
of case study output policies based on existing policies drawn

Fig. 2: Real-World Occlusion. This photo was taken by a smartphone
camera through a HoloLens display (resulting in some reflective
camera artifacts). It shows that virtual content displayed by HoloLens
(here, a cat) can visually obscure real-world objects (also a cat).

from several sources, including the HoloLens developer guide-
lines [29] and guidelines for the visibility of road signs [6]. For
example, we use a guideline that real-world trees should not
block road signs to inspire a policy that virtual objects should
not block real-world road signs. To support such policies, we
design an AR output policy specification framework that allows
policy writers to specify both (1) a condition under which
the policy is violated (e.g., when a virtual object blocks a
real-world person) and (2) an action to take (e.g., make the
offending virtual object partially transparent). We carefully
constrain this policy framework to support composable policies
and to limit the potential performance or other impacts of
buggy or malicious policies. We do not specify where policies
come from in this work — they may come from the device
manufacturer itself or other sources.

We develop our prototype atop the Unity game engine [47],
an environment for creating interactive 3D content. To evaluate
the output management portion of Arya through controlled
experiments that simulate different real-world contexts, we
develop virtual Unity scenes rather than using real-world sen-
sor input. Our scenes represent HMD and car windshield AR
scenarios, and we develop a set of case study applications that
run within these scenarios. We demonstrate that our prototype
can support the policies we identify and prevent corresponding
undesirable situations in our case studies. We conduct a
performance evaluation consisting of both microbenchmarks
and a full system evaluation, and we find that the performance
impact of policy enforcement in even our unoptimized pro-
totype is acceptable. Our prototype played a central role in
iteratively driving the design of Arya, and our design choices
and evaluation findings provide lessons for future AR system
designers.

Contributions. In summary, we contribute the following:
1) AR Output Security: We address, for the first time, the

fundamental challenge of securing AR output in the
face of malicious or buggy applications. We design
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Arya, an AR platform that can control visual application
output according to output policies. Our design prevents
single applications from modifying the user’s view of
the world in undesirable ways, and it securely supports
multiple applications simultaneously augmenting the
user’s view of the world — unlike existing AR platforms
such as HoloLens, which do neither.

2) AR Output Policies: We develop a policy specifica-
tion framework for defining output policies that is
designed to provide desirable properties (e.g., to limit
performance impact and support composable policies).
Through our design process, we uncover and overcome
fundamental challenges in realizing the above vision,
including how to specify and enforce policies, and how
to handle conflicting policies. Despite its restrictions,
we demonstrate that our framework can support real
policies from multiple sources, such as the HoloLens
developer guidelines and U.S. Department of Trans-
portation guidelines for in-vehicle electronic devices.

3) Prototype, Evaluation, Lessons: We prototype Arya on
top of the Unity game engine and develop case study
applications and policies for both HMD and automotive
AR scenarios. We conduct benchmark and full system
evaluations, finding the performance of policy enforce-
ment acceptable. From our experiences, we surface
lessons and recommendations for future AR systems.

We stand today at a pivotal juncture with AR technologies,
just as we did in the early 2000s with smartphones — there
are clear indicators that these emerging technologies are on
the horizon, yet it is still very early in their life cycles. Thus,
now is the time to consider security for AR. It is critical
that we identify and address AR security challenges while
the technologies are still young and designs are not yet set
in stone. Our work lays a technical foundation to support
future AR security efforts, and to enable immersive single-
and multi-application AR platforms whose potential benefits
are not overshadowed by risks due to buggy, malicious, or
compromised AR application output.

II. CONTEXT

We begin by providing additional context on the capabil-
ities of AR and its rising commercial presence. Emerging
commercial AR platforms support fundamentally new types
of applications that can respond contextually to input from a
user’s ever-changing environment, and that can directly alter
the user’s perception of his or her world with visual, auditory,
or haptic output. Since today’s AR devices primarily rely on
immersive visual feedback, we focus most of our concrete
discussions on visual output, though we note that similar issues
may apply to other output modalities (e.g., audio or haptic).

Many industries are beginning to leverage emerging AR
technologies for diverse purposes. For example, Microsoft’s
HoloLens is being used by NASA’s Jet Propulsion Laboratory
to guide astronauts through complex tasks [2], and by the
Israeli military to manipulate terrain models and monitor
troop positions [3]. Along with Microsoft, companies such
as Meta [27] and Magic Leap [25] are also developing so-
phisticated AR headsets. Additionally, the U.S. military has

shown increasing interest in AR [23, 32, 41], and researchers
and companies within the automotive industry are exploring
AR-enabled windshields and dedicated HMDs to aid drivers.
Haeuslschmid et al. [15] describe a broad taxonomy of AR
windshield applications grounded in existing literature, ranging
from safety-oriented apps (e.g., highlighting lane markers to
warn a driver of accidental lane drift) to navigation apps
(e.g., path finding with 3D navigation arrows). Recent demos
from Hyundai [17] (shown in Figure 1) and Continental [7]
demonstrate the capabilities of early-stage AR windshields,
and organizations such as BMW [4] and Honda Research [46]
continue to push the boundaries of automotive AR.

Though emerging AR platforms and applications hold great
promise, these technologies are still young and under ac-
tive development. For example, HoloLens has only released
its developer edition to date, and it is limited by the fact
that only one immersive AR application can run at a time.
However, we expect that future AR users will wish to allow
multiple applications to simultaneously augment their view of
the physical world, e.g., one application that translates and
superimposes text in real time, one that shows calendar and
email alerts, and one that runs a game (such as Pokémon
Go). Similarly, in future versions of the automotive example
in Figure 1, we envision that the collision warning capability
and the speedometer capability might be different applications
written by different development teams within the automotive
company, or even by third-party app providers.

III. MOTIVATION AND THREAT MODEL

In addition to their novel opportunities, AR applications
have a unique ability to impact users’ perceptions of the real
world in undesirable or harmful ways. To understand these
risks, consider the popular mobile AR app Pokémon Go.
While this game is a relatively simple smartphone app today,
it provides a taste of how emerging platforms like HoloLens
will be able to capture the attention of users [42]. In contrast
to smartphones, HMDs provide continuous, fully immersive
experiences by enveloping a user’s entire field of view. With
these emerging HMD platforms, we envision that a user may
wish to multitask while playing a game like Pokémon Go —
for example, by using an app that overlays walking directions
to nearby restaurants, or by using a labelling app to recognize
and point out nearby social media contacts. To reap the full
benefits of these apps, the user will need to use them while
actively moving about and interacting with the real world.

The interaction of multiple AR apps with each other and
with the user’s view of the real world raises risks. If one of the
apps were malicious or buggy, it could (a) annoy or distract
the user with spurious content (e.g., poorly-placed ads), (b)
endanger the user by occluding critical information in the real
world (e.g., by obscuring oncoming vehicles), or (c) perform
a denial of service attack on another application by occluding
that application’s output (e.g., a Pokémon creature that pre-
vents the user from seeing navigation directions). Indeed, a
recent concept video sketches out a possible future in which
AR technologies fail to address these types of threats, as shown
in Figure 3. While we describe these risks in terms of an HMD
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Fig. 3: AR Concept Image. This concept image of an AR user on
a bus could represent a possible future in which AR output remains
unregulated, leaving users unable to control the intrusiveness of AR
applications. Full video available at http://www.theverge.com/2016/
5/20/11719244/hyper-reality-augmented-short-film

platform here, we stress that they extend across platforms
and domains, such as AR-enabled windshields, which — like
HMDs — are fully immersive.

Thus, the high-level challenge we address in this work is
how an AR platform should constrain the output behaviors of
potentially buggy, malicious, or compromised applications, and
how it should handle conflicts between output from multiple
applications. We argue that emerging and future AR platforms
must address these questions if they wish to support rich,
untrusted applications that can be run simultaneously and
safely used while the user interacts with the physical world
(e.g., while walking or driving, not only while sitting at a
desk). We observe that undesirable output is not a new concern
in and of itself: recall the early days of the web, when
web applications frequently opened popups and used blink
tags. Browser vendors eventually constrained these undesirable
behaviors by enabling popup blocking by default [33] and by
obsoleting the blink tag. Unlike misbehaving applications on
the early web, the effects of problematic AR output can range
from minor annoyance to direct physical harm.

Threat Model. The above risks inform our threat model and
security goals. Specifically, we consider one or more malicious,
buggy, or compromised applications that create AR content,
which may intentionally or accidentally:
• Obscure another application’s virtual content, in order

to hide or modify its meaning.
• Obscure important real-world content, such as traffic

signs, cars, or people.
• Disrupt the user physiologically, such as by startling

them (e.g., by suddenly creating or quickly repositioning
virtual objects).

This set of threats is comparable to that used to motivate prior
work on AR output security [21], though how to build a system
to achieve these goals was then unknown.

To combat these threats, we design Arya, an AR platform
with a centralized, trusted output policy module that enforces
policies on AR content. These policies aim to mitigate the
above classes of threats, e.g., by preventing applications from

blocking important real-world information, such as people,
with AR content. Arya handles policies that can constrain
when and where applications display content; it does not
support policies that constrain what content is displayed (e.g.,
a 3D animal versus a 3D rock).

We assume that Arya’s operating system, drivers, and
platform hardware are trusted. However, applications are not
trusted by the system. Specifically, we assume that applications
may be intentionally malicious, unintentionally buggy, or com-
promised, potentially leading to undesirable AR output. For
example, an adversary might attempt to sneak an intentionally
malicious application onto an open platform’s app store (like
the HoloLens app store), or different trusted development
teams within a closed AR platform (e.g., a closed automotive
AR platform) might produce applications that interact with
each other unexpectedly in undesirable ways.

We also assume that Arya’s operating system employs
traditional, standard security best practices, e.g., application
isolation. In this work, we focus only on threats between
applications as they relate to the interaction of their AR output.

Additionally, we do not address the question of how the AR
output policies that Arya enforces are distributed. We assume
that these policies may (for example) be pre-loaded by the
device’s manufacturer, introduced by third-party sources, or
set based on user preferences. We assume that policies may be
buggy or malicious, and we do not require Arya to trust the
sources of these policies. Thus, our design must consider the
possibility of malicious or buggy policies.

Finally, we focus specifically on visual AR content, and we
consider issues related to non-visual output (e.g., haptic, audio)
to be out of scope. However, the lessons we surface through
this work may apply to other output modalities as well.

IV. DESIGN: ARYA

We now present the design of Arya, an AR platform
architecture with output security as a first-class goal. In de-
signing Arya, we identify and address new, fundamental design
challenges that future AR platforms must consider if they wish
to constrain AR application output. We begin with a high-level
overview of Arya in Section IV-A, summarized in Figure 4,
before describing its constituent components and the technical
challenges they address in greater depth.

A. System Overview
AR applications fundamentally require the ability to contin-

uously capture and process sensor inputs, and to superimpose
virtual output on the user’s view of the world. Consider the
collision warning application in Figure 1. This application
must know when the user moves too close to another car
so that it can display a warning whenever the user is at risk
for a collision. However, the user’s view of the real world
is constantly in flux — the user may change lanes, or other
cars may move in front of the user. Furthermore, applications
may need to dynamically generate and update visual content
in response to these changes — e.g., to display a warning when
a collision is imminent. When this content is generated, Arya
may also need to modify it to ensure that the warning does not
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Fig. 4: Overview of Arya’s Architecture. We design Arya, an AR
platform that consists of (1) system sensors, recognizers, and an input
policy module that filters input from the real world, based on prior
work (e.g., [18, 36, 40, 45]) and (2) an output policy module that
constrains application output. The design of the output policy module
is the primary contribution of this work.

occlude any pedestrians that stumble into the road, or impede
the driver’s view of the car that he or she is about to hit.

Arya consists of the following core modules, shown in Fig-
ure 4, that it employs to both support and constrain application
behaviors in the face of a dynamically changing environment:
• System Sensors and Recognizers, to gather and interpret

sensor data from the real world.
• The Input Policy Module, to filter and dispatch these data

to applications that require access.
• The Output Policy Module, to process any new appli-

cation requests to create or modify virtual content, and,
if applicable, modify this virtual content based on the
types of policies we introduce in this paper.

• Display Drivers, to display updated virtual state.
These modules are used to support applications running

on Arya that may call APIs to query information about the
real world and create or modify virtual objects. Arya steps
through a core workflow to process application requests and
produce every output video frame displayed to the user. We
first discuss how Arya incorporates prior work to handle input
in Section IV-B, before turning to our primary contribution —
output management — in Section IV-C.

B. Input
Consider again the collision warning application from Fig-

ure 1. This application must be able to detect nearby vehicles,
identify where those vehicles are in relation to the user’s view,
and determine if a collision is imminent. One way a system
might support this capability is to expose the full camera
sensor feed to the application, allowing it to perform vehicle
detection. However, as prior works note (e.g., [18, 37, 40, 45]),
applications that can access raw, unfiltered input from the real

world raise serious privacy concerns. Additionally, if multiple
applications need to locate vehicles in the video feed, it
would be inefficient for each to implement vehicle detection
separately.

To address these privacy and performance issues, prior
work [18] proposed recognizers for AR platforms: OS modules
that process raw sensor streams, detect specific types of
information within those streams (e.g., vehicles, people, faces,
or planar surfaces), and expose these higher-level objects to ap-
plications. Recognizers enable a least-privilege model in which
applications can be given access to only those recognized
objects that they need. For example, a Pokémon game may
not need a full video feed, but rather only information about
planar surfaces in the user’s view, to sensibly place Pokémon
on horizontal surfaces.

In this work, we find that recognizers provide an additional
benefit beyond their original purpose of enabling input privacy.
Recognizers give Arya itself — and thereby Arya’s output
policy module — information about the user’s real-world sur-
roundings. For example, to support a policy that prevents
applications from occluding people, Arya must know whether
and where there are people in the user’s view. Recognizers
provide this information and allow Arya to enforce output
policies that depend on the real world.

C. Output

Recall that our goal in designing Arya is to allow the OS
to control the visual output of AR applications. At a high
level, we do so by incorporating into the OS an output policy
module, which controls and modifies AR application outputs
according to policies. Before describing these policies and their
enforcement in detail in upcoming sections, we describe here
the visual output abstractions that Arya exposes to applications.

Foundation: Displaying and Constraining Visual Output.
Arya builds on and instantiates the AR object abstraction for
displaying output, proposed in prior work [21]. Conceptually,
AR objects are OS primitives that encapsulate virtual content
that applications wish to overlay on a user’s view of the
real world. For example, a single Pokémon creature would be
an AR object in Arya, and a single application may contain
many such objects. An AR object has a visual representation
and associated characteristics, such as size and opacity. AR
applications require the ability to create and transform these
objects (e.g., by moving, rotating, or resizing them), and Arya
supports these common operations.

Additionally, rather than requiring that applications manu-
ally update the locations of their objects as the user moves
throughout the physical world, Arya allows applications to
create “world-locked” objects that are attached to real-world
locations or objects, and Arya automatically updates where
they are rendered in the user’s display. For example, if an AR
application attaches a virtual object to a real-world table, Arya
can maintain this mapping, not requiring that the application
explicitly update how the object is displayed as the user moves.
Applications can also create “head-locked” objects that appear
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at a fixed location in the user’s display.1
Note that the AR object model differs from the “window”

display abstraction traditionally provided to applications, in
which applications have full control over a contiguous rectan-
gular screen area. A key benefit of AR objects is that they
allow Arya to reason about application output and enforce
policies at the granularity of individual objects. For example, if
one Pokémon creature obscures a real-world person, Arya can
take action against that one object (e.g., to make it transparent)
without affecting the rest of the Pokémon application’s output.

We now turn to the remainder of our design. We present our
key design questions, describe the challenges involved in cre-
ating an output policy module that constrains AR application
output, and surface key design decisions made along the way.

1) SPECIFYING AR OUTPUT POLICIES

Output policies broadly serve to protect AR users from
deceptive, discomforting, or harmful content. While AR tech-
nologies are still quite young, concretely exploring the policy
design space grounded in today’s technologies allows us to
begin to identify key challenges for future AR systems and to
surface initial solutions. Thus, given an output policy module
that constrains virtual content in the form of AR objects, our
first design question is the following:

Design Question: How can we translate abstract guidelines
into concrete policies that the output policy module can enforce
in practice? To help drive our design around this question,
we developed sample output policies for both HMD and
automotive AR scenarios. In addition to creating our own
policies, we draw on existing sources of guidelines for the rel-
evant scenarios, including the HoloLens developer guidelines
(which are suggestions, not technically enforced constraints),
the U.S. Department of Transportation guidelines for in-vehicle
electronic devices, and guidelines regarding the visibility of
street signs. These policies are summarized in Table I.

The first observation we make based on our case study
policies in Table I is that they tell us only what conditions
should be avoided, not what to do when the conditions are
met. For example, we would like Arya’s output policy module
to prevent applications from creating objects that are too close
to the user, take up too much of the user’s field of view,
block pedestrians, etc. However, existing guidelines do not
specify what actions the output policy module should take
if an application violates one of these policies. For example,
possible actions to enforce policies may include removing,
moving, or modifying (e.g., making more transparent) an app’s
AR objects. We consider these options further below.

Design Decision: Separate Policy Conditions and Mech-
anisms. The above observation raises an opportunity: the
conditions under which policies apply (e.g., when an AR
object blocks a real-world person or is drawn too close to the
user) and the mechanisms used to enforce the policies (e.g.,
remove the AR object or make it transparent) can be specified
independently and composed as desired.

1HoloLens similarly supports world-locked and head-locked objects [30].
The key distinction is that Arya supports these features within the OS as part
of its output management, while HoloLens does so at the application layer.

Specifically, we define AR output policies to consist of two
distinct components:

1) A conditional predicate, or a boolean expression that
determines when a policy should be applied.

2) One or more mechanisms, or actions that the output
policy module should take when the policy’s conditional
predicate evaluates to true.

The next design question we face is then the following:

Design Question: How should policy conditions and mech-
anisms be expressed? The most flexible approach would be
to allow conditions and mechanisms to consist of arbitrary
code, which would clearly support a wide range of policies.
However, arbitrary policy code raises several concerns. The
first is performance: in the worst case, an arbitrarily-defined
policy could halt the system by performing unbounded com-
putation. The second is unexpected results due to buggy or
untrusted policies: if policy mechanisms can arbitrarily modify
applications’ AR objects, then buggy policies could pose the
same risks as buggy apps themselves in the worst case.

Design Decision: Restrict Policies. Due to the challenges
raised by arbitrary policies, we instead develop an explicitly
restricted policy framework that requires policies to combine
options from a well-defined set of parameterized conditions
and mechanisms supported by Arya. Though this construction
is limited by design, we find that it is flexible enough to express
the set of desirable policies we developed ourselves and drew
from other sources (see Table I).

Policy Conditions. We develop a finite set of building blocks
that policies can use to construct conditional predicates.
Specifically, we allow policies to refer to attributes of ob-
jects. We define attributes to be either (1) visual properties
of AR objects, such as size, transparency, and speed, or
(2) relationships between AR objects and other virtual or
real-world objects. For example, relational attributes include
DistanceFromUser() or IsOccluding(type), where
“type” refers to a class of objects against which to check
for occlusion (virtual objects or specific types of real-world
objects detected by Arya’s recognizers, such as people). For
non-boolean attributes, a policy’s condition is then formed
by comparing one or more attributes of an AR object to
parameter values specified by the policy — for example, “if
DistanceFromUser() < 10 meters”.

Finally, we allow policy conditions to depend not only on
the attributes of AR objects, but also on global contextual
information. For example, a policy may depend on properties
of the user’s platform (e.g., if a user’s car is in motion) or
other contextual information (e.g., time of day).

Policy Mechanisms. Policy mechanisms are more challenging
to design, because they involve not just deriving boolean
results, but modifying application behaviors. As mentioned
above, possible mechanisms that Arya might support include
deleting applications’ AR objects (or not allowing them to be
created in the first place), modifying them (e.g., to change their
transparency or size), or moving them (e.g., away from block-
ing another object). In experimenting with different possible
mechanisms, we identified the following challenge:
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Identifier Description Applies To Source

P1 Avoid abrupt movement of AR objects. Car, HMD HoloLens Developer Guidelines [29]
P2 Place AR objects at a comfortable viewing distance from the user. Car, HMD HoloLens Developer Guidelines [29]
P3 Allow the user to see the real world in the background. Car, HMD HoloLens Developer Guidelines [29]
P4 Avoid content that is “head-locked” (at a fixed location in the display). HMD HoloLens Developer Guidelines [29]
P5 Don’t display text messages or social media while driving. Car NHTSA Driver Distraction Guidelines [50]
P6 Don’t obscure pedestrians or road signs. Car Portland Trees Visibility Guidelines [6]
P7 Don’t obscure exit signs. HMD Occupational Safety and Health Regulations [49]
P8 Disable user input on transparent AR objects. Car, HMD Literature on clickjacking (e.g., [16])
P9 Only allow advertisements to be overlaid on real-world billboards. Car, HMD N/A (New)

P10 Don’t allow AR objects to occlude other AR objects. Car, HMD N/A (New)

TABLE I: AR Output Policies. This table contains a set of policies that we use to drive Arya’s design. We identified existing policies from various
sources (P1-P8) and, if necessary, modified them to apply to the AR context. We created two additional policies (P9 and P10) motivated by our
threat model. Note that NHTSA (the source of P5) is the U.S. Department of Transportation’s National Highway Traffic Safety Administration.

Challenge: Conflicting Policies. Since multiple policies may
be triggered at once, certain combinations of policy mech-
anisms may conflict with each other or create a cycle. For
example, consider one policy that moves an object away from
blocking a person, but causes it to block a road sign, thereby
triggering another policy. Or consider a policy that reduces
an object’s transparency at the same time as another policy
attempts to increase its transparency.

We can address this challenge in one of two ways. First,
we could design a method to handle policy conflicts when
they arise. However, this raises many additional challenges —
for example, what should be done if the conflict cannot be
resolved, whether conflict resolution can be performed quickly
enough, and how non-conflicting but cyclic policies should
be handled. Though there may well be solutions to these
challenges (as we elaborate in Section VII), in this work we
take another approach: we design policy mechanisms such that
they cannot conflict in the first place.

Design Decision: Composable Policy Mechanisms. It is not
immediately obvious how to design policy mechanisms that
are composable yet sufficiently flexible to express meaningful
policies. However, we observe the following: the goal of our
AR output policies is ultimately to ensure that AR applications
cannot modify the user’s view of the world in dangerous or
undesirable ways. Thus, policies should constrain application
output to be less intrusive, so that the result is closer to an
unmodified view of the real world. Based on this observation,
we choose to support only policy mechanisms that move AR
objects towards a less intrusive state — for example, mecha-
nisms that make objects smaller, slower, or more transparent,
or that remove them or deny their creation entirely.

Designing policy mechanisms in this way gives us our
desired property of composability. For example, consider a
case in which one policy wishes to set an object’s opacity
to 50%, and another to 30% (more transparent). As stated,
we cannot satisfy both policies at once — the object cannot
have both 50% and 30% opacity. However, if we return to
the notion that the goal of a policy is to modify attributes
to be less intrusive — in this case, more transparent — we can
consider these policies as specifying thresholds. That is, the
first policy wishes to enforce a maximum of 50% opacity, and
the second a maximum of 30%. Formulated this way, these

policies compose: setting the object’s opacity to 30% satisfies
both policies. Thus, given some set of thresholds set by
different policies, Arya takes the most restrictive intersection
(i.e., the attribute values that result in the least intrusive state)
and enforces these thresholds on AR objects.

In addition to supporting composable policies, this design
also ensures that we can no longer encounter a situation in
which policies flip-flop, with one making an object more
transparent and the other making the object less. In the above
example, the subsequent activation of a third policy specifying
a higher maximum opacity (e.g., 60%) would not change the
most restrictive active threshold (30%).

This design decision intentionally disallows mechanisms
that might result in cyclic policy violations or lead to complex
constraint solving, but that may sometimes be desirable (e.g.,
automatically repositioning AR objects). We discuss possible
approaches that future work must explore to support such
policies in Section VII.

Finally, we note that malicious or buggy policies can still
result in applications being able to display less content, thus
impacting application functionality. However, due to the com-
posable properties of our polices, they cannot, by definition,
result in more intrusive output. That is, Arya is fail-safe in the
face of malicious or buggy policies.

2) ENFORCING AR OUTPUT POLICIES

Now that we have determined how policies are specified,
we turn our attention to how they are enforced by Arya’s
output policy module. The algorithms in Figure 5 detail policy
condition checking and mechanism enforcement at different
points within Arya, as we will introduce below.

Although we have thus far discussed policies as though they
always apply to all applications and objects, we note that they
can be enforced more granularly. For example, policies can
be enforced selectively on the objects of specific applications
or categories of applications (e.g., entertainment or safety-
oriented apps). However, we do not focus on this granularity
for the below discussion, instead assuming a more general
situation in which policies do apply.

Design Question: At what points in its workflow should Arya
evaluate policies? The first natural place to check and enforce
policies is when applications attempt to create, move, or
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Algorithm 1 Example policy checked on API
1: procedure CREATE(AR OBJECT a, AR OBJECT SET A)
2: for each On-Create Policy p do
3: deny← p.Evaluate(a)
4: if deny then DenyCreation(a) ; return
5: Create a ; A ← A∪ a

Algorithm 2 Per-frame policy enforcement
1: procedure UPDATE
2: Update mapping of real world
3: for each AR Object a ∈ A do
4: for each Per-Frame Policy p do
5: p.Evaluate(a)
6: PolicyModule.EnforceThresholds(a)
7: M← Incoming API requests
8: for each m in M do
9: ProcessRequest(m)

10: E ← Pending callback events
11: for each e in E do
12: SendEvent(e, targetApp)
13: finally: Render AR Objects

Algorithm 3 Example attribute-modifying API call
1: procedure SETALPHA(AR OBJECT a, VALUE alpha)
2: thresh← a.AlphaThreshold
3: if thresh < alpha then alpha← thresh
4: a.alphaValue = alpha

Fig. 5: Policy Enforcement. These algorithms give pseudocode for
how Arya checks and enforces policies (1) on API calls and (2) during
the per-frame update loop. The thresholds set when a policy is
enforced are respected (3) when object attributes are modified. Policy
enforcement is detailed in Section IV-C2.

modify their AR objects. For example, consider a policy with
a condition such as “if obj.size > X” and a mechanism
such as “obj.SetAlpha(0.2)” (i.e., a policy that makes
large objects semi-transparent). This policy’s condition can be
checked, and its mechanism enforced, when the application
calls CreateObject() or ResizeObject(). Similarly,
a policy that prevents head-locked objects (in a fixed position
of the user’s display) can be evaluated and enforced on the
call to CreateObject(). Algorithm 1 presents example
pseudocode for policy evaluation on the CreateObject()
API call; Arya handles other APIs similarly.

Challenge: Handling Relational Policies. Through our im-
plementation experience with different policies, we find that
only checking and enforcing policies on API calls is in-
sufficient when those policies depend on relationships be-
tween objects, which may be virtual objects or detected
real-world objects. Consider the example of a policy with
the condition “if an AR object is occluding a real-world
person” and the mechanism “set its opacity to 0.2” — or,
in pseudocode, “if obj.isOccluding(person) then
obj.setAlpha(0.2)”. Clearly, this condition could be
triggered when an application attempts to create or move its

AR objects in a way that obscures a real-world person. How-
ever, even without explicit action by an application, changes in
the real world (such as a person walking in front of the user)
could result in a policy violation.

Now consider a related policy that refers only to virtual
objects: “if an AR object is occluding another AR object, set
its opacity to 0.2”. At first glance, it seems that this policy
can be enforced on API calls, i.e., when an application creates
or moves virtual objects. However, suppose the user changes
his or her viewing angle or moves around the physical world.
In this case, Arya automatically updates the rendered locations
of world-locked virtual objects without explicit API calls from
the applications. As a result, objects that were previously not
occluding each other may now be violating the policy.

Thus, as these two examples show, Arya needs to be
able to enforce policies that depend on relationships between
objects independently of actions taken by applications. This
observation leads to the following design decision:

Design Decision: Check Relational Policy Conditions at
Regular Intervals. To account for changes in the real world
that may affect policy decisions, such as the user’s position and
viewing angle, Arya cannot wait for applications to explicitly
change their objects. Instead, it must continuously monitor
policy conditions that relate to real-world objects (e.g., on
a per-frame basis2). Thus, on every frame, Arya gathers
information from its input recognizers (e.g., to determine if and
where there are people in the current view of the real world)
and notes the current state of all AR objects. This information
is then used to evaluate policies such as the examples above.
Once all per-frame policy conditions have been evaluated on
an object, Arya enforces the respective policy mechanisms by
finding the most restrictive intersection of attribute thresholds
and applying them. In the above examples, Arya would set
the opacity of the violating object to 0.2. Algorithm 2 details
Arya’s per-frame policy enforcement workflow. However, we
must now consider the following:

Design Question: How do relational policies that influence
specific attributes (e.g., opacity) interact with API calls that
modify the same attributes? For example, consider again the
policy which reduces the opacity of AR objects that occlude
real-world people to 0.2. What happens if, after this policy
is enforced, the application calls SetAlpha(1.0) to make
that object opaque? If Arya naively evaluates the policy on
the current frame before processing the API call, the object
will — at least temporarily, for one frame — violate the policy.
Such a temporary violation, particularly if the application calls
SetAlpha(1.0) repeatedly, could nevertheless be disrup-
tive to the user. On the other hand, if Arya processes the API
call before enforcing the per-frame policy, it creates additional
overhead by needing to roll back the results of the API call.

Design Decision: Decouple Threshold Setting and En-
forcing. To avoid both of the above problems, we decouple
setting a threshold value for an attribute from enforcing that

2Our design considers per-frame checking for relational policies, but it
generalizes to other regular intervals. For example, Card et al. [5] suggest
that a 100ms interval may be sufficient.
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threshold. In the above example, the policy sets an opacity
threshold of 0.2 when it is evaluated per-frame. That threshold
is immediately enforced, i.e., the object’s opacity is reduced.
However, to avoid temporary violations, those thresholds are
also enforced on any API calls processed in the same frame.
That is, when Arya handles the SetAlpha(1.0) API call,
it respects the current opacity threshold for that object, not
exceeding 0.2. This process is detailed in Algorithm 3, which
shows an example for the SetAlpha() API; other attribute-
modifying API calls are handled similarly.

3) WHEN POLICY VIOLATIONS CEASE

Having considered how policies are specified and how they
are enforced, we turn to a final question:

Design Question: What should Arya do when a previously-
enforced policy is no longer violated? That is, when an AR
object that was modified due to a policy ceases to violate said
policy, how should those modifications be reverted?

An initially appealing approach is to have Arya itself
manage the reversal of policy enforcement. For example, if
Arya reduced an AR object’s opacity to 0.2 in response to a
policy, Arya should also return that object’s opacity back to
normal when the policy condition is no longer violated (e.g.,
when the object no longer occludes a real-world person). A
benefit of this approach is the loose coupling between AR
objects and policies, allowing applications to operate oblivious
of any active policies. However, this design raises the following
challenge:

Challenge: Policy Impact on Application State. When
considering an object attribute, what constitutes a “normal”
value is unclear — is it the value of that attribute at the time
the policy was first violated? That state may no longer be valid
when the policy violation ceases. Is it the application’s current
expected value of that attribute, supposing it has continued to
update what it would be without any policy effects? That may
work in many cases, but in other cases, the application may
have made different decisions if it had known about the policy
violation. For example, an application whose objects are made
transparent due to a policy may wish to remove the objects
in question. These considerations illuminate a key tradeoff be-
tween application flexibility and more straightforward, policy-
oblivious behavior.

Design Decision: Inform Applications About Policies. We
choose to inform applications when their objects start or stop
violating policies, so they can react appropriately. Under this
model, if an app whose object is modified by a policy wishes
to, for example, remove that object or display an error message
to the user, it can do so. Similarly, this design allows appli-
cations flexibility in determining appropriate attribute values
after an object stops violating a policy, rather than having Arya
revert object attributes oblivious to application semantics.

In choosing to deliver information to apps about when their
objects violate policies, we uncover an additional challenge:

Challenge: Privacy Risks. Sharing too much information
about policy violations with applications can compromise
privacy. Recall that, for privacy reasons (and building on prior

work [18]), an application may not have access to a full video
feed but rather limited recognizer inputs, e.g., planar surfaces.
Now suppose, for example, that when an application’s object
is made transparent because it overlapped a real-world pedes-
trian, Arya triggered a callback to the application informing
it not only how its AR object was affected but also which
policy was violated. While sharing the details of the violated
policy could be useful (e.g., allowing the application to move
it object to stop violating the policy), it also raises privacy
concerns. Specifically, it can reveal information to applications
about real-world objects (e.g., that a pedestrian is present) or
about other applications’ AR objects.

Design Decision: Provide Limited Feedback to Applica-
tions. To mitigate this privacy risk, Arya does not share the
full details of policy violations with applications. Instead,
it informs applications only when attribute thresholds on its
objects change (e.g., when an object is made transparent, or
when the maximum allowable alpha value increases when a
policy is no longer violated), so that it can react appropriately.
However, Arya does not provide any details about the policy
condition that triggered the threshold change.

4) DESIGN SUMMARY

In summary, we identified key design questions regard-
ing how to specify AR object policies and avoid conflicts
between policies (Section IV-C1), how to enforce policies
(Section IV-C2), and what to do when objects cease to violate
policies (Section IV-C3). To address these questions and the
challenges they raise, we developed an output policy spec-
ification framework in which policies consist of restricted,
composable conditions and enforcement mechanisms, with
privacy-conscious feedback to applications when violations
occur or cease.

We consider the design questions and challenges that we
uncovered through this process to be contributions in and of
themselves. While our proposed solutions meet our security
goals, future AR system designers may wish to make different
design choices. Our work surfaces a number of challenges and
tradeoffs that must be considered, which we hope will help
guide potential alternate design paths.

V. IMPLEMENTATION

We now describe our prototype implementation of Arya.
Developing our prototype gives us the opportunity to deeply
explore and evaluate Arya’s AR output policy module, and
iteratively feeds back into our design process. Our prototype
consists of several parts: an AR simulator and virtual scenes
to represent the real world, the Arya core implementation
(including the output policy module and infrastructure to
support multiple applications), standalone applications that run
on Arya, and AR output policies that are enforced by Arya.
We detail these components in turn.

AR Simulator. In practice, a full-fledged AR system has many
moving parts — crucially, it continuously senses and processes
real-world input, which feeds into applications as well as, in
our design, the output policy module itself. However, real-
world input is by its nature noisy and variable, as we discuss
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in Section VII. Even if we had perfect sensor hardware and
sensor data processing algorithms, we would still like to
evaluate in controlled, possibly hard-to-stage scenarios (e.g.,
while driving).

Since the focus of our work is not on improving or evalu-
ating AR input processing (a topic of other research efforts,
e.g., [9, 22, 31]), and to support controlled experiments, we
abstract away the input handling part of Arya for our prototype.
Instead, we create an AR simulator, which consists of a
virtual reality (VR) backend to represent the real world. This
approach is similar to driving simulators commonly used in
other research, e.g., [48].

Specifically, rather than outfitting our prototype with real
hardware sensors, we build on the Unity game engine, using
Unity virtual environments, or “scenes”, to represent the real
world. This technique allows us to isolate the output manage-
ment portion of the system and reliably “detect” our simulated
real-world objects. AR applications running on Arya can create
virtual objects to place into these scenes, and Arya’s output
policy module can regulate those objects given information
about the fully-specified underlying VR world.

Virtual Scenes Representing the Physical World. A benefit
of our AR simulator is that it easily allows us to test out-
put policies in different Unity scenes that represent various
real-world scenarios. Specifically, we developed three scenes
to represent HMD and automotive scenarios: an “in-home”
scene,3 an “AR-windshield” scene, and an “office” scene.
These scenes are shown in Figure 6; the bare scenes, without
AR applications running, are shown in the left column of
that figure. We emphasize that these scenes represent the real
world, and that no virtual content created by AR applications
is shown in the bare scenes.

Arya Core. Up to this point, we have described only our
prototyping infrastructure for representing a model of the real
world. We now turn to Arya itself. We build Arya’s core also
on top of Unity, written in 3767 lines of C# code4. Loading
this core into a new scene requires only a few user interface
actions within the Unity editor. While Arya interfaces with our
virtual scenes, it is largely modularized.

The Arya core includes infrastructure for running multiple
AR applications on top of it, including handling multiple
application threads and managing communication over local
sockets. Arya exposes APIs to those applications for querying
the real-world scene as well as for creating and modifying AR
objects (such as Object.Move() and CreateObject()).

We implement recognizers in our prototype by labeling
specific “real-world” objects in our virtual scenes as objects
of interest, e.g., people, billboards, and signs. This information
about the real world, as well as the state Arya keeps about ap-
plications’ AR objects created and modified through its APIs,
feeds into Arya’s output policy module. This module enforces
policies on application output, as detailed in Section IV-C2.

3We augmented a pre-built scene, “Brian’s House”, purchased from the
Unity Asset Store: https://www.assetstore.unity3d.com/en/#!/content/44784

4We use the CLOC tool for calculating lines of code: https://github.com/
AlDanial/cloc/releases/tag/v1.70

Application Interface. Our prototype supports multiple stan-
dalone applications running atop the Arya core, which can
simultaneously create and interact with AR objects and aug-
ment the same “real-world” scene. Applications are isolated
by running as separate OS processes, such that their only
interaction is implicitly by augmenting the same “reality.”

Arya applications are written in C# and extend our base class
ARApplication. This base class contains 889 lines of C#
code and provides the infrastructure for communicating with
the Arya core over local sockets to make API calls (e.g., to
create or modify objects). We describe case study applications
that we implemented for our evaluation in Section VI.

Prototype Policies. Finally, we prototype an AR output policy
framework. Policies are written as standalone C# modules that
extend our ARPolicy base class and are programmatically
instantiated by the Arya core. As described in Section IV, poli-
cies follow a well-defined structure consisting of a condition
and a mechanism. The Arya core provides a fixed set of AR
object attributes (used in conditions) and enforcement mecha-
nisms that policies can employ. Table II details the specific case
study policies we implemented. We stress that the conditions
and mechanisms we chose to implement are not the only
possible options that Arya can support. Additional attributes
could be defined, as could additional mechanisms that meet our
composability criteria (moving objects towards “less intrusive”
states). For example, our most complex attribute (determining
if one AR object occludes another object) consists of only 49
lines of code, suggesting that developing new attributes could
be easily done.

VI. EVALUATION

Our evaluation goals are two-fold. First, we seek to evaluate
Arya’s ability to support and enforce a variety of policies from
different sources. Second, since policy enforcement is on the
critical path for rendering output, we measure the performance
overhead introduced by our prototype’s output policy mod-
ule. Our results suggest that Arya is a promising approach
for constraining AR output — not only does it successfully
address, for the first time, many output security issues, but
it also does so with reasonable performance. We use these
results to surface additional lessons and recommendations for
future AR platform developers.

A. Case Studies: Policy Expressiveness and Effectiveness
We evaluate the efficacy of Arya’s output policy module

through case study applications that run within our three virtual
scenes, described in Section V: a home, a driving scene, and
an office. We design our case study applications to exhibit both
(a) acceptable or desirable behaviors, as well as (b) behaviors
that violate one or more of our prototype policies detailed
in Table II. Figure 6 shows screenshots of our applications
running in these scenes both without (center column) and
with (right column) policy enforcement active. The left column
shows the bare scenes, with no applications running.

Case-Study Applications. We developed two applications per
scene that test our various policies. Our focus is to exercise
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Identifier Conditions Mechanisms

P1 If an AR object’s speed exceeds X Set the object’s speed to X
P2 If an AR object is within X feet of the user Set the object’s alpha value to 0
P3 If an AR object occupies more than X percent of the display Set the object’s alpha value to 0
P4 If an application attempts to create a head-locked object Deny the creation request
P5 If a user’s vehicle is in motion Set the alpha value of all applicable AR objects to 0
P6 If an AR object is occluding pedestrians or road signs Set the object’s alpha value to 0
P7 If an AR object is occluding exit signs Set the object’s alpha value to 0
P8 If an AR object’s alpha value is less than X Disable user interactions with the object
P9 If an AR object is not bounded by a real-world billboard Set the object’s alpha value to 0

P10 If an AR object is occluding another application’s AR object Set the object’s alpha value to 0

TABLE II: Implemented Policies. This table details the conditions under which our prototype policies are violated and the mechanisms Arya
uses to enforce them. This list matches the policies in Table I. X represents a parameterized value specified by individual policies. We note that
policies may be selectively applied to specific applications or groups of applications — for example, P9 may only apply to an advertising app.

our output policies, and thus we did not implement complex
application-level logic. Nevertheless, these applications are
inspired by real applications that might (or already do) exist
for these emerging platforms.

HMD in the Home. For the home scene (top row of Figure 6),
we created a “Virtual Pet” app, which displays a world-
locked virtual cat that can move independently in the user’s
environment. However, the application moves the cat at a
distractingly fast speed through the user’s view, and it displays
a head-locked spider that the user cannot look away from.
Additionally, we built a tabletop game5 in which the user
increases their score by hitting coins with a ball. However, the
application pops up in-game purchase notifications that block
the output of other applications and may annoy the user.

AR Windshields. For the driving scene (center row of Figure 6),
we created an advertising application that displays targeted ads
over real-world blank billboards. However, the application also
displays ads throughout the rest of the user’s view, potentially
creating a driving hazard. Additionally, we implemented a
“notification” application that displays dummy text message,
calendar, and email alerts. Unfortunately, it continues to gen-
erate distracting alerts while the car is in motion.

HMD in the Workplace. For the office scene (bottom row
of Figure 6), we imagine a group of engineers using AR
to design a new automobile.6 We built an application that
allows users to view their car models from different angles
simultaneously. Additionally, we created an application that
displays information to users about their colleagues, such as
their names and roles in the company. While both of these
applications do not exhibit intentionally malicious behavior,
their outputs sometimes obscure the user’s view by taking up
too much of the screen, appearing too close to the user’s face,
or blocking out important information in the real world such
as exit signs.

Security Discussion. As illustrated in Figure 6, Arya success-
fully allows multiple case study applications to concurrently
display content while simultaneously enforcing our prototype
policies to prevent malicious or undesirable output behaviors.

5Inspired by https://unity3d.com/learn/tutorials/projects/roll-ball-tutorial.
6Inspired by an application for HoloLens: https://www.youtube.com/watch?

v=yADhOKEbZ5Q.

Specifically, referring to policies by their identifiers in Table II:
• In the home scene, P4 prevents the head-locked spider

from being created. Additionally, P10 prevents the in-
app purchase dialog from occluding the cat (a virtual
object from another application), and P1 prevents the
cat from moving too fast.

• In the driving scene, P6 prevents virtual ads from ob-
scuring real-world pedestrians, and P9 constrains them
to appearing only over real-world billboards. P5 prevents
notifications from popping up while the car is in motion.

• In the office scene, P7 prevents the modeling application
from blocking real-world exit signs. Meanwhile, P2 and
P3 make objects that get too close to the user or take
up too much space partially transparent.

These case studies exercise all but one of the policies we
implemented (Table II). The exception is P8, which disables
user input on obscured AR objects. Though we implemented
this policy, we cannot exercise it, because our prototype
is designed to focus on generating output and hence lacks
meaningful user input for application interactions.

Through these case studies, we confirm the ability of our
policy framework to support policies that constrain a range of
behaviors in different contexts. Our case studies also highlight,
for completeness, an output safety risk that our current policies
cannot mitigate: risks with unsafe or frightening content,
such as spiders. Our policies — just like conventional web
browsers, desktops, and mobile devices — do not prevent ap-
plications from displaying specific undesirable objects. This
issue presents a potential avenue for future work.

B. Performance Evaluation
Arya’s output policy module directly mediates content that

applications wish to display and thus lies on the critical path
for rendering. As such, the output policy module should incur
minimal overhead. While our prototype implementation is not
optimized or representative of a full-fledged AR system, ana-
lyzing its performance can nevertheless shed light on possible
output bottlenecks and other considerations that must go into
implementing an output policy module in a production system.

Our case-study applications successfully exercise our proto-
type policies, but they contain relatively few AR objects. To
identify potential bottlenecks, we next analyze the performance
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Fig. 6: Case Studies. These screenshots show our case study scenarios: HMD in the home (top), car windshield (center), and HMD in the
office (bottom). The left column shows the bare scenes in our Unity-based AR simulator, representing the real world without any apps running.
From our prototype’s perspective, everything in the bare scene is part of the real world. The center column shows our case study apps running,
exhibiting both desirable and undesirable AR output behaviors. The right column shows the result of policy enforcement, leaving only desirable
AR output. Note that Unity’s alpha adjustment mechanism leaves transparency artifacts to outline where violating AR objects would be.

of the output policy module under heavier workloads, i.e.,
when there are many objects present. We first profile the
performance of our output policy module in the absence of
our application communication infrastructure to isolate the
performance impact of our policies. We then analyze our com-
munication infrastructure and conduct a full-system evaluation.

1) PROFILING THE OUTPUT POLICY MODULE

We begin by profiling our prototype’s output policy module
without the overhead of application communication. To isolate
the impact of the output policy module, we create a simple
evaluation scene containing several objects (a “person”, a
“billboard”, and an “exit sign”). Rather than having a separate
application process create and update AR objects, we instead
programmatically trigger API calls directly in Arya’s core on a
per-frame basis. From the output policy module’s perspective,
these requests appear to come from an actual application.
This setup simulates application behaviors but eliminates any
performance impact of the communication infrastructure and
allows us to focus on the output policy module itself. This
methodology also allows us to ensure the same amount of
work occurs each frame, enabling repeatable experiments.

Our primary performance metric for profiling the output
policy module is the frame rate, or average frames-per-second
(FPS), of Arya’s Unity backend. Since Arya’s core functions

(handling API calls and enforcing policies) operate on a per-
frame basis, extra overhead introduced by the output policy
module directly decreases the frame rate, making FPS a mean-
ingful metric. For each data point in our measurements, we
calculated the average FPS over a 30 second interval (after an
initial 10 second warm-up period), repeating each trial 5 times.
We conduct two evaluations with this experimental setup: first,
we compare the individual performance of the policies we
implemented, and then we investigate policy performance as
we scale the number of virtual objects in the scene.

Individual Policy Performance. We begin by trying to un-
derstand the performance impact of our individual policies
relative to a baseline scene without any policy enforcement.
These results are shown in Tables III and IV.

In designing this experiment, our goal is to fully tax the
system, such that differences between policies become visible.
To do so, we simulate the following application behaviors:
we create N overlapping objects directly in front of the user,
and move each object a small amount every frame. For these
experiments, we chose N objects such that the baseline would
be under load — i.e., less than 60 FPS, which is considered a
standard for smooth gameplay in many PC video games [13] —
so that we could see the effects of policies. We experimentally
determined that N = 500 objects would give us a baseline
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Baseline P1 P2 P3 P6 P7 P8 P10

Avg FPS 51.4 51.3 48.0 39.2 49.0 43.7 43.8 32.3

Std Dev 1.2 1.3 1.1 1.5 0.4 1.6 1.1 1.8

TABLE III: Profiling Policy Performance. As described in Sec-
tion VI-B1, we calculate the average frame rate of the Arya core
with different active policies, compared to a baseline with no active
policies. Policy identifiers in this table match those in Tables I and II.
In our experimental scenes, we load the system by having 500 objects
that each move once per frame, and each tested policy is violated on
every frame. Results are averaged over five 30-second trials.

Baseline P4

Avg FPS 4.6 57.7

StdDev 1.0 2.0

Baseline P9

Avg FPS 32.6 30.7

StdDev 1.0 1.2

TABLE IV: Profiling Policy Performance. For two policies, we use
a different experimental setup, with different baseline measurements,
than used in Table III. For P4, which acts on the CreateObject()
API, we create and delete objects every frame rather than moving
them. For P9, we create virtual objects locked to a real-world
billboard. Since the object-locking functionality itself incurs overhead
(independently of policies), we generate a separate baseline. As in
Table III, results are averaged over five 30-second trials.

frame rate of less than 60 FPS.
We designed the scene such that every frame, each virtual

object violates each policy we implemented (see Table II),
though we only activate and evaluate one policy at a time.
Two of our policies required slightly different experimental
setups to trigger violations: P4 requires that the baseline
setup repeatedly attempt to create objects each frame, and P9
requires the baseline setup to contain objects that are locked
to real-world objects (in this case, billboards). The results for
these two policies are in Table IV, and the caption further
details the specific experimental setups.

Tables III and IV show the results of these experiments. We
observe a range of performance impacts across our different
policies. For example, P1 (which limits the speed at which
objects can move) and P2 (which makes objects too close to the
user transparent) incur virtually no additional overhead over
the baseline. On the other hand, P10 (which makes virtual
objects that obscure other virtual objects transparent) incurs
an almost 20 FPS hit.

A key observation is that the complexity of object at-
tributes directly influences policy performance. For example,
P1 simply sets a threshold on objects’ movement speeds,
which is easily checked and enforced when an application
calls object.Move() with a speed parameter. On the other
hand, P10 incurs more overhead because it must detect virtual
objects that occlude others in every frame, requiring costly
raycasting operations. This lesson suggests that optimizing
attribute computations and intelligently caching information
will be critical for such a scheme to work in practice.

This lesson is further supported by our experience apply-
ing preliminary optimizations to P10. Initially, P10 incurred
significant overhead due to redundant raycasting operations
between overlapping objects, resulting in an average frame

Fig. 7: Performance with Multiple Policies and Scaling AR Objects.
We investigate the performance impact of combining multiple policies
and how that impact scales with increasing numbers of AR objects in
the scene. We find that the performance overhead of multiple policies
is less than the sum of the overhead from those policies individually,
and that the performance hit of adding AR objects (unrelated to
policies) dominates the impact of policy enforcement.

rate under 2 FPS. However, by optimizing P10 to not repeat
computation on AR objects that the policy has already acted
upon, we significantly improved its performance. This suggests
that pursuing policy optimizations can have a great impact.

Finally, we note that P4, a policy that denies certain
OnCreate() calls, actually improved performance over the
baseline. This is a result of the baseline scene repeatedly
creating and deleting headlocked AR objects, in contrast to P4
simply denying the requests. Thus, we observe that policies
that deny object creation could also be used as a denial-of-
service protection against applications attempting to create
many objects.

Policy Performance Scaling with AR Objects. The above
benchmark provides a single snapshot of how our policies
compare, with a fixed number of virtual objects (500). How-
ever, we also wish to understand (1) how policy performance
scales as the number of active AR objects that violate them
increases, and (2) how performance is affected by multiple
simultaneously running policies.

Using the same experimental setup from Table III, we
compare the baseline scene to several policies, as well as
combinations of policies, as we vary the number of active
AR objects present. We select the policies for this experi-
ment based on the results in Table III, choosing our best
performing policy (P1) and two worst-performing policies
(P3 and P10). Figure 7 shows the results of this experiment.
Note that we cap the maximum FPS at 60 using Unity’s
Application.targetFrameRate feature.

Our results reveal several interesting lessons. First, policy
overhead is not additive. The performance hit incurred by
several policies combined, even those that leverage different
attributes, is less than the sum of their overheads individually.
This finding is promising, since in practice, multiple policies
may indeed be active at once. Even if the list of policies
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1 App 2 Apps 3 Apps 4 Apps

Avg Msgs/App/Second 1808 1020 646 508

Std Dev 221 115 251 141

TABLE V: Arya Message Throughput. To inform our choice of
parameters for a full system evaluation (shown in Figure 8), we
first characterize the performance of our unoptimized application
communication infrastructure, by which applications use local sockets
to communicate with the Arya core to make API calls. The results
are averaged over five 30-second trials.

increases, we expect overlapping work between policies. For
example, the cost of loading objects in memory could be
amortized across multiple policies, and multiple policies may
require similar computations about objects.

Second, we observe that the performance impact of addi-
tional virtual objects dominates the impact of policies. That
is, as the number of AR objects increases, the frame rate of
the baseline with no policies drops below 60 FPS, scaling with
the number of objects. Although the frame rate with multiple
active policies drops below 60 FPS more quickly, the impact of
multiple policies scales with number of AR objects similarly
to the baseline, after the initial performance hit of activating
any policies. This is perhaps not surprising: more complex
applications will run more slowly. However, the fact that the
performance impact of policy enforcement does not become
increasingly worse with more AR objects is promising.

2) FULL SYSTEM EVALUATION

Our above experiments isolate the performance impact of
the output policy module and evaluate it with respect to
varying numbers of AR objects and policies. However, we
also wish to understand the impact of the output policy
module in the face of multiple prototype applications simulta-
neously running on Arya. Since our primary focus was on
the output policy module, other elements of the system —
specifically, its handling of multiple application threads and
local socket communications — are unoptimized. To isolate the
performance impacts of these unoptimized components, we
first conduct a microbenchmark evaluation to profile Arya’s
application communication infrastructure. Using the results of
this microbenchmark, we choose parameters for a meaningful
full system evaluation such that we do not hit bottlenecks due
to communication and accidentally mask the impact of the
output policy module.

Communication Microbenchmark. We first measure the
throughput of Arya’s message processing infrastructure. We
connect application processes to Arya over local sockets,
after which the applications saturate the connections with
messages, which Arya then processes as fast as it can. Table V
summarizes the message throughput of Arya with increasing
numbers of concurrently running applications, where one mes-
sage corresponds to one API call. As we increase the number
of applications, the number of messages Arya can process
per application decreases. This result is expected, since each
application runs as a separate process, and communication
between Arya and each app run on separate threads.

Fig. 8: Full System Evaluation. This graph shows the results, in terms
of Arya’s core frame rate, of running 1-4 applications with 7 active
policies, compared to a baseline with no active policies. As described
in Section VI-B2, the total number of objects is fixed at 48, split
evenly across the number of applications in a given trial. Note that
this graph’s y-axis does not start at 0, so that the small differences in
performance are visible. We find that under this reasonable workload,
the performance impact of policy enforcement is minimal.

Putting It All Together. Finally, we evaluate our full pro-
totype. We compare the average FPS under workloads with
different numbers of applications communicating over sockets,
and with many active policies. As before, we designed a scene
in which there are multiple virtual objects, each moving once
per frame, and we calculate the average FPS over a 30 second
interval.

We use the results of our socket microbenchmark to de-
termine a realistic workload — i.e., a total number of AR
objects — that will avoid communication bottlenecks. We fix
the total number of AR objects for this experiment at 48,
evenly split across the number of running applications (1-4).
Each application calls the object.Move() API on each of
its objects approximately 30 times per second. We arrive at 48
objects based on the results from Table V: Arya can support
up to about 1800 messages per second, and 48× 30 < 1800,
and it is evenly divided by 1, 2, 3, and 4 (number of apps
we test). While 48 objects is much less than the 500 we used
in our profiling experiments above, those experiments were
specifically designed to tax Arya, whereas 48 represents a
more reasonable workload for applications. For example, our
case study apps consisted of only a handful of objects each.
Additionally, in practice, apps may not call APIs on each of
their objects continuously, though we do so in our experiments.

We compared this workload, with all seven policies from
Table III active and continuously violated, to the baseline. Our
results are shown in Figure 8. The error bars represent the
standard deviation of 5 trials. The result is promising: we find
that under this realistic, 48-object workload, the performance
impact of policy enforcement is negligible over the baseline.
Whereas our earlier profiling of the output policy module
highlights bottlenecks (e.g., attributes that are expensive to
compute) under load, our full system evaluation suggests that
even our unoptimized prototype can handle multiple applica-
tions and multiple policies under a realistic workload.
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VII. DISCUSSION

Designing a full-fledged operating system for AR platforms
that supports strong security, privacy, and safety properties
while enabling rich application functionality is challenging.
Prior work addresses many input privacy challenges for AR,
and in this work, we make significant strides towards securely
handling visual output. However, many challenges remain.
We step back and reflect on these challenges, and we make
recommendations for designing future secure AR systems.

Handling Noisy Input Sensing. While our prototype used
simulated AR environments to enable controlled output-related
experiments, real AR systems will need to handle potentially
noisy sensor inputs. Input noise may confound output policy
management (e.g., if a recognizer fails to detect a person).
Thus, future work must explore how to mitigate risks from
noisy input — e.g., considering how to deal with ambiguity and
probabilities, and how to determine appropriate defaults. For
example, recognizers may need to output confidence values —
e.g., confidence that there is a person in the video feed — and
the output policy module may need to use confidence values
across multiple frames to make determinations.

Constraint-Solving Policy Framework. By supporting policy
mechanisms that compose by design, Arya avoids challenges
raised by potentially conflicting or flip-flopping policies. How-
ever, this design choice excludes some policy mechanisms,
particularly those that move AR objects (since they might
move objects to locations where they violate other policies).
Some systems may wish to support such policies: for example,
automatically repositioning a safety dialog on an AR wind-
shield to ensure that it remains visible but does not obscure
pedestrians. Future work should consider whether it is possible
to design a more complex policy framework that supports
policies that may conflict. One approach may be to allow
applications to express AR object attributes as constraints
rather than fixed values (e.g., specifying several acceptable
locations where an AR objects may be displayed), giving
the output policy module the responsibility of solving those
constraints in the face of all active policies. However, such
a system would still need to answer the question of what to
do when a given set of constraints cannot be solved. Prior
work has considered similar constraint-solving approaches for
laying out UIs in more traditional platforms (e.g., tablets or
phones) [12]. Techniques from this work may be applicable
here, though the AR context also raises new challenges (e.g.,
the potential for constant constraint solving due to rapid
changes in the real world).

Application Prioritization. With many applications poten-
tially competing to display output that is subject to a variety of
policies, we argue that Arya could benefit from a prioritization
scheme that favors certain applications over others. While not
the focus of this study, we observe, for example, that a safety-
critical application might receive priority over a game if their
outputs conflict or if the user encounters a dangerous situation.

API Extensibility. Arya hides low-level data from untrusted
applications, providing high-level abstractions for applications

to receive input (recognizers [18]) and to display output (AR
objects). While this model effectively restricts the capabilities
of malicious or buggy applications, it may also present flexi-
bility challenges for honest applications (similar to the input
flexibility challenges faced in [18]). A key question is thus
how Arya should expose mechanisms for adding additional
functionality without compromising the security of the system.
While also not the focus of our study, we observe that
an extensibility model analogous to OS device drivers, with
modules developed by reputable third parties, could facilitate
more flexible options for application developers.

Non-Visual AR Output. Arya focuses on managing visual
output, but as AR systems continue to evolve, we will likely
see increased richness in non-visual output, such as auditory
or haptic. Thus, future work should explore how the design
choices and lessons presented in this paper can be applied to
other types of AR output. We expect that some challenges and
design choices will be similar (e.g., a condition/mechanism-
based policy framework) while others will differ. For example,
beyond blocking certain audio output entirely, are there other,
less strict mechanisms that may be viable (similar to partial
transparency of visual content)?

Low-Level Support for AR Objects. Arya relies on the AR
object abstraction, by which an application’s visual output
consists of multiple non-rectangular regions of pixels, rather
than a single rectangular window. The traditional window
abstraction is deeply embedded in today’s operating systems
and their interactions with graphics and display hardware. In
our prototype, these issues were below the abstraction level
of our implementation, which was built atop the Unity game
engine. However, future work — and certainly non-prototype
AR systems interfacing more directly with hardware — will
need to consider how the AR object abstraction can and/or
should be incorporated into lower-level design choices.

VIII. RELATED WORK

The computer security research community has recently
identified the need to address security and privacy for emerging
AR systems (e.g., [8, 39]). Arya leverages recent work in this
area, particularly work on limiting AR application access to
potentially sensitive sensor data (e.g., [18, 19, 36, 40, 45]).
Also related, SurroundWeb [51] allows applications to project
onto surfaces in a room, but considers primarily privacy
concerns (not sharing video information about the room) rather
than output security. PrePose [11] supports defining new input
gestures (e.g., hand motions) while mitigating privacy and
security threats from sensing applications.

To date, most work on AR security and privacy has focused
on input-related issues. By contrast, Arya focuses on output.
It builds on prior work that identified the need to securely
handle AR output and leverages the AR object model from that
work [21], but dives much deeper, uncovering and addressing
additional fundamental challenges.

MacIntyre et al. [24] proposed an earlier version of AR
objects, but without a focus on security. Greenberg et al. [14]
discuss “dark” design patterns in ubiquitous proximity-based
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computing more generally; several of these patterns (e.g.,
“captive audience”) are related to the AR output threats we
consider. Ng-Thow-Hing et al. [34] discuss design guidelines
for automotive AR applications, some of which (e.g., limiting
distraction) can be enforced by Arya’s policies.

Researchers have previously considered the challenge of
constraining and securing application output in more tradi-
tional platforms (e.g., [10, 38, 43]). While AR platforms can
build on lessons from these prior platforms, the existence of
virtual 3D objects that can overlay on the user’s view of the
real world raises new challenges.

IX. CONCLUSION

Immersive augmented reality technologies, such as head-
mounted displays like Microsoft’s HoloLens or automotive
windshields, are becoming a commercial reality. Though the
computer security research community has begun to address
input-related risks with emerging AR platforms, little has been
done to address output risks. Our work considers these risks —
for example, buggy or malicious applications that create virtual
content that obscures the user’s view of the real world (or
the virtual content from other applications) in undesirable or
unsafe ways.

To address these risks, we design, implement, and evaluate
Arya, an AR platform that supports multiple applications si-
multaneously augmenting the user’s view of the world. Arya’s
primary contribution is the design of an output policy module
that constrains AR application output according to policies
(e.g., preventing virtual content from obscuring a real-world
person). We identify and overcome numerous challenges in
designing an AR output policy specification and evaluation
framework that supports composable, effective, and efficient
policies. We evaluate our prototype implementation of Arya
with prototype policies drawn from various sources. We find
that Arya prevents undesirable behavior in case study applica-
tions, and that the performance overhead of policy enforcement
is acceptable even in our unoptimized prototype.

Now is the time to consider the security and privacy risks
raised by emerging AR technologies. Modifying the user’s
view of the world is a key feature of AR applications, and left
unconstrained, this ability can raise serious risks. We argue
that future AR platforms must consider and address these
issues if they are to safely and securely support multiple,
simultaneously running applications as well as continuous use
of immersive AR as the user moves about the physical world.
The design challenges we raise in this paper, and the solutions
we propose through Arya, represent a promising step towards
secure AR output.
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