
NORAX: Enabling Execute-Only Memory
for COTS Binaries on AArch64

Yaohui Chen∗ Dongli Zhang∗ Ruowen Wang† Rui Qiao∗

Ahmed M. Azab† Long Lu∗ Hayawardh Vijayakumar† Wenbo Shen†

∗ Stony Brook University † Samsung Research America

Abstract—Code reuse attacks exploiting memory disclosure
vulnerabilities can bypass all deployed mitigations. One promis-
ing defense against this class of attacks is to enable execute-
only memory (XOM) protection on top of fine-grained address
space layout randomization (ASLR). However, recent works
implementing XOM, despite their efficacy, only protect programs
that have been (re)built with new compiler support, leaving
commercial-off-the-shelf (COTS) binaries and source-unavailable
programs unprotected.

We present the design and implementation of NORAX, a
practical system that retrofits XOM into stripped COTS binaries
on AArch64 platforms. Unlike previous techniques, NORAX
requires neither source code nor debugging symbols. NORAX
statically transforms existing binaries so that during runtime
their code sections can be loaded into XOM memory pages
with embedded data relocated and data references properly
updated. NORAX allows transformed binaries to leverage the
new hardware-based XOM support—a feature widely available
on AArch64 platforms (e.g., recent mobile devices) yet virtually
unused due to the incompatibility of existing binaries. Further-
more, NORAX is designed to co-exist with other COTS binary
hardening techniques, such as in-place randomization (IPR). We
apply NORAX to the commonly used Android system binaries
running on SAMSUNG Galaxy S6 and LG Nexus 5X devices. The
results show that NORAX on average slows down the execution
of transformed binaries by 1.18% and increases their memory
footprint by 2.21%, suggesting NORAX is practical for real-world
adoption.

I. INTRODUCTION

Modern commodity operating systems employ code in-
tegrity protection techniques, such as data execution pre-
vention (DEP), to prevent traditional code injection attacks.
Consequently, recent attacks [1], [2] increasingly leverage
code-reuse techniques to gain control of vulnerable programs.
In code reuse attacks, a target application’s control flow is
manipulated in a way that snippets of existing code (called
gadgets) are chained and run to carry out malicious activities.

Knowledge of process memory layout is a key prerequisite
for code-reuse attacks to succeed. Attackers need to know
the exact binary instruction locations in memory to assemble
the chain of gadgets. Commodity operating systems widely
adopt address space layout randomization (ASLR), which
loads code binaries at random memory locations unpredictable

to attackers. Without knowing the locations of needed code or
gadgets, attackers cannot build code-reuse chains.

However, memory disclosure attacks can use information
leaks in programs to de-randomize code locations, thus de-
feating ASLR. Such attacks either read the program code
(direct de-randomization) or read code pointers (indirect de-
randomization). Given that deployed ASLR techniques ran-
domize the load address of a large chunk of data or code,
leaking a single code pointer or a small sequence of code
allows attackers to identify the corresponding chunk, infer its
base address, and calculate the addresses of gadgets contained
in the chunk.

More sophisticated fine-grained ASLR techniques [3]–[7]
aim at shuffling code blocks within the same module to make
it more difficult for attackers to guess the location of binary
instructions. Nevertheless, research by Snow et al. [1] proves
that memory disclosure vulnerabilities can bypass the most
sophisticated ASLR techniques.

Therefore, a robust and effective defense against code-
reuse attacks should combine fine-grained ASLR with memory
disclosure prevention. Some recent works proposed to prevent
memory disclosures using compile-time techniques [8]–[10].
Despite their effectiveness, these solutions cannot cover COTS
binaries that cannot be easily recompiled and redeployed.
These binaries constitute a significant portion of real-world
applications that need protection.

XnR [11] is a recent work that enables executable-only
memory (XOM [12]), which prevents code in memory from
being read as data, and in turn, blocks leaking of code
locations. However, XnR implements XOM at the OS level via
paging-based access control, which can cause high overhead.
Moreover, XnR cannot directly protect COTS binaries that are
not originally built to make use of this protection.

Other defenses against memory disclosure follow the idea of
destructive code reads [13], [14]: code is destroyed upon being
read, and therefore cannot be later executed as part of a code
reuse exploit. Unfortunately, it has been shown that destructive
code reads can be bypassed through code reloading [15]. In
addition, such defenses are not suitable for Android, where
all apps load system libraries at the same locations [16].

Therefore, a memory read in one app enables code reuse
attacks in any other app.

In this work, we propose NORAX 1, which protects COTS
binaries from code memory disclosure attacks. NORAX allow
COTS binaries to be loaded in hardware-enforced XOM,
a security feature supported by recent ARM CPUs (i.e.,
AArch64). Such CPUs are widely seen on today’s mobile
devices. Without NORAX, to use the XOM feature, binaries
need to be (re)built with the necessary compiler support. This
requirement stands in between the valuable security feature
and a large number of COTS binaries (e.g., all Android system
executables and libraries) that are already running on AArch64
CPUs but were not compiled with XOM support. NORAX

removes this requirement. It automatically patches existing bi-
naries and loads their code to XOM-enforced memory regions,
without affecting binaries’ normal execution. As a result,
binaries without special (re)compilation can benefit from the
hardware-backed XOM feature and be protected against code
memory disclosure. Further, when used together with ASLR,
NORAX enables robust mitigation against code reuse attacks
for COTS binaries. It is worth noting that we use Android as
the reference platform for building and evaluating NORAX.
However, NORAX’s approach and techniques are generally
applicable to other AArch64 platforms.

NORAX consists of four major components: NDisassem-
bler, NPatcher, NLoader, and NMonitor. The first two perform
offline binary analysis and transformation. They convert any
COTS binary built for AArch64 without XOM support into
one whose code can be protected by XOM during runtime.
The other two components provide supports for loading and
monitoring the patched, XOM-enabled binaries during run-
time. The design of NORAX tackles a fundamentally difficult
problem: identifying data embedded in code segments, which
are common in ARM binaries, and relocating such data
elsewhere so that during runtime code memory pages can be
made executable-only while allowing all embedded data to be
readable.

As a evaluation, we apply NORAX to Android system
binaries running on SAMSUNG Galaxy S6 and LG Nexus
5X devices. The results show that NORAX on average slows
down the transformed binaries by 1.18% and increases their
memory footprint by 2.21%, suggesting NORAX is practical
for real-world adoption.

In summary, our work makes the following contributions:

• We discover and address the gap between the highly
valuable XOM feature and existing binaries, which need
but cannot use the feature without recompilation.

• We design and implement a comprehensive system that
converts COTS binaries to be XOM-compatible without

1NORAX stands for NO Read And eXecute.

requiring source code or debugging symbols.
• We show that code-data separation problem, although

undecidable in principle, is in practice achievable on
AArch64 platforms using our novel embedded data de-
tection algorithm.

• We perform rigorous and extensive evaluations with
stripped system executables and libraries on Android and
show that NORAX is practical, effective and efficient.

The rest of the paper is organized as follows: In § II we
lay out the background for execute-only memory and explain
the code-data separation challenges tackled by NORAX; In
§ III we derive the requirements for a practical solution and
then present the design of our system; In § IV we discuss in
details the system implementation and the optimization for our
reference platform Android; We then examine the correctness
of NORAX and evaluate its performance in § V. We contrast
the related works in § VI and analyze the compatibility of
NORAX with other COTS hardening techniques and its current
limitations in § VII. We conclude the paper in § VIII.

II. BACKGROUND

NORAX makes use of the modern MMU support in
AArch64 architecture to create execute-only memory, which
is a hardware feature now widely available yet virtually
unused due to compatibility issues. To bridge the gap, NORAX

reconstructs COTS binaries running on commodity Android
smartphones to enforce the R ⊕X policy. In the rest of this
section, we explain the necessary technical background and
the challenges we face when building the system.

AArch64 eXecute-Only Memory (XOM) Support: AArch64
defines four Exception Levels, from EL0 to EL3. EL0 has the
lowest execution privilege, usually runs normal user applica-
tions; EL1 is usually for hosting privileged systems, such as
operating system kernel; EL2 is designed for hypervisor while
EL3 is for secure monitor.

In order to enforce the instruction access permission for dif-
ferent Exception Levels, AArch64 leverages the Unprivileged
eXecute Never (UXN) bit, Privileged eXecute-Never (PXN)
bit and two AP (Access Permission) bits defined in the page
table entry [17]. For the user space program code page, the
UXN bit is set to “0”, which allows the code execution at
EL0, while PXN is set to “1”, which disables the execution
in EL1. With such UXN and PXN settings, the instruction
access permissions defined by AP bits are shown in Table I.
It is easy to see that we can set the AP bits in page table
entry to “10”, so that the kernel running in EL1 will enforce
the execute-only permission for user space program, which is
running in EL0. In other words, the corresponding memory
page will only permit for instruction fetch for user space
program, while all read/write data accesses will be denied.

TABLE I: Access permissions for stage 1 EL0 and EL1

AP[2:1] EL0 Permission EL1 Permission
00 Executable-only Read/Write
01 Read/Write, Config-Executable Read/Write
10 Executable-only Read-only
11 Read, Executable Read-only

However, the kernel still has the read permission to that page,
which means that it can help the user space program read
the intended memory area if necessary, but need to perform
security checks beforehand.

Position-Independent Binaries in Android: Position-
independent code (PIC) is the kind of code compiler generates
for a module that does not assume any absolute address, that
is, no matter where the module is loaded, it will be able
to function correctly. The mechanism works by replacing all
the memory accesses using hard-coded addresses with PC-
relative addressing instructions. Position-independent executa-
bles (PIE) are executables that employ PIC code. In Android,
ever since version 5 (codename: Lolipop), in order to fully
enjoy the benefit of ASLR, all the executables are required
to be compiled as PIE. To enforce this, Google removed the
support for non-PIE loading from the Bionic Linker [18].
Nowadays, smartphones equipped with AArch64 CPU are
most likely running Android OSes after Lolipop, meaning
the majority of them will only have binaries, including both
executables and shared libraries, that are compiled to be
position independent.

Code-Data Separation: To convert a stripped binary to be
XOM-compatible, there is one fundamental problem to solve,
namely code-data separation. Note that separating data from
code for COTS binaries is, in general, undecidable as it is
equivalent to the famous Halting Problem [19]. But we found
that in the scope of ARM64 position-independent binaries,
which are prevalent in modern Android and iOS [20] Phones,
a practical solution is possible. Basically, a feasible solution
should address the two following challenges.

1) Locating Data In Code Pages: We generally refer to data
residing in executable code regions as executable data. There
are two types of executable data allowed in ELF binaries.

• Executable sections: The first kind of data are those ELF
sections consisting of pure read-only data which could
reside in executable memory. Defined by contemporary
ELF standard, a typical ELF file has two views: linking
view and loading view, used by linker and loader respec-
tively. Linking view consists of ELF sections (such as
.text, .rodata). During linking, the static linker bundles
those sections with compatible access permissions to
form a segment – in this case, executable indicates read-
able. The segments then comprise the loading view. When

an ELF is being loaded, the loader simply loads each
of the segments as a whole into memory, and grant the
corresponding access permissions. A standard ELF has
two loadable segments. One is readable and executable,
which is normally referred as “code segment”. This
segment contains all the sections with instructions (.plt
and .text, etc.), and read-only data (.gnu.hash, .dynsym,
etc.); the other segment is readable and writable, referred
as “data segment”, it contains the program data as well as
other read/writ-able sections. For our goal to realize non-
readable code, we mainly focus on the code segment.
In this segment, generally only .plt and .text contain
instructions used for program execution, but as explained
before, they are mixed with other sections that only
need to be read-only, thus we cannot simply map the
memory page to execute-only as oftentimes these sections
could locate within the same page. For instance, Table II
shows the code segment layout of an example program,
all except the last two sections in this code segment
are placed within the same page. To make things more
complex, the segment layout varies for different ELFs.

• Embedded data: The second kind of data in the code
pages is those embedded data in the .text section. For
optimization purpose, such as exploiting spatial locality,
compilers emit data to places nearby their accessing code.
Note that albeit recent study [21] shows that in modern
x86 Linux, compilers no longer generate binaries that
have code interleaved with data, to the opposite of our
discovery, we found this is not the case for ARM, we
examined the system binaries extracted from smartphone
Nexus 5X running the factory image MMB29P, Table III
reveals that code-data interleaving still prevails in those
modern ARM64 Linux binaries, indicating this is a real-
world problem to be solved.

TABLE II: ELF sections that comprise the code segment of
the example program, the highlighted ones are locate in the
same page.

Section Name Address Type
.interp 0000000000000238 PROGBITS
.note.android.ident 0000000000000250 NOTE
.note.gnu.build-id 0000000000000268 NOTE
.gnu.hash 0000000000000288 GNU HASH
.dynsym 00000000000002c8 DYNSYM
.dynstr 00000000000005b0 STRTAB
.gnu.version 00000000000006e2 VERSYM
.gnu.version r 0000000000000720 VERNEED
.rela.dyn 0000000000000740 RELA
.rela.plt 0000000000000830 RELA
.plt 00000000000009a0 PROGBITS
.text 0000000000000ab0 PROGBITS
.rodata 0000000000000f08 PROGBITS
.eh frame hdr 00000000000010d0 PROGBITS
.eh frame 0000000000001110 PROGBITS

TABLE III: Android Marshmallow system binaries that have
embedded data in Nexus 5X.

Module #.	of	Real	
Inline	Data	
(Byte)	

#.	of	Norax	
Inline	Data	
(Byte)	

#.	of	Gadgets	
found	in	
extracted	
inline	Data	

vold 0x0	 0x0	 0	
toybox	 0x8	 0x10	 0	
toolbox 0x14	 0x30	 0	
dhcpcd 0x28	 0x58	 4	
Logd 0x0	 0x0	 0	
installd 0x0	 0x0	 0	
app_process64	
(zygote)

0x0	
	

0x0	

0	

qseecomd N/A	 0x0	 0	
surfaceflinger 0x0	 0x0	 0	
rild 0x0	 0x0	 0	
libart.so 0x4534	 0x4654	 8	
libstagefright.so 0x128	 0x148	 5	
libcrypto.so 0x9a8	 0xa3c	 25	
libmedia.so 0f60	 0x10b2	 0	
libc.so 0x12e4	 0x13b4	 5	
libc++.so 0xc		 0xc		 0		
libsqlite.so 0x3a4	 0x57c	 13	
libbinder.so 0x0	 0x0	 0	
libm.so 0x4f3b	 0x51bc	 48	
libandroid.so	 0x0	 0x0	 0	
Total	 0xc577	 0xce1a	 108	

		
#	of	
binaries	

#	of	binaries	w/	
embeded	data	 Percentage	

/system/bin	 237	 167	 70.46%	
/system/lib64	 255	 101	 39.61%	
/vendor/lib64	 111	 39	 35.14%	
/vendor/bin	 4	 2	 50.00%	

2) Updating Data References: In addition to finding out the
locations of executable data, we also need to relocate them and
update their references. It turns out that references updating
is also non-trivial. In our system, as shown in Table IV,
the majority of the ELF sections inside code segment are
expected to be relocated to a different memory location so that
appropriate permission can be enforced. The sections that are
left out, such as .interp and .note.∗ are either accessed only
by OS or not used for program execution so we can leave
them untouched. For those sections listed in Table IV, they
have complex interconnections, both internally and externally.
As shown in Table V, various types of references exist in a
given ELF. Due to this complexity, the references collection
is conducted across the whole NORAX system by different
components in different stages including both offline and
during load-time.

TABLE IV: Sections in the executable code page that are
handled by NORAX

(.gnu).hash .dynsym .dynstr .gnu.version .rela.dyn
.rela.plt .text (embedded data) .rodata .eh frame .eh frame hdr

TABLE V: ELF section reference types

Reference Type Example
Intra-section references .text refers to .text (embedded data)
Inter-section references .text refers to .rodata
External references dynamic linker refers to .dynsym, .rela.∗
Multiple external references C++ runtime/debugger refer to .eh frame

III. NORAX DESIGN

A. System Overview

The goal of NORAX is to allow COTS binaries to take
advantage of execute-only memory (XOM), a new security
feature that recent AArch64 CPUs provide and is widely avail-
able on today’s mobile devices. While useful for preventing
memory disclosure-based code reuse [1], [2], XOM remains
barely used by user and system binaries due to its require-
ment for recompilation. NORAX removes this requirement
by automatically patching COTS binaries and loading their
code to XOM. As a result, existing binaries can benefit rom
the hardware-backed protection against direct code memory

disclosure attacks. While we demonstrate NORAX on Android,
the ideas behind NORAX are generally applicable to any
AAarch64 platform.

Design Principles: To make NORAX widely useful in practice,
we set the following design principles for NORAX:

• P1 - Backward compatibility: Changes introduced by
NORAX to binaries must not break their standard struc-
tures or compilation conventions (i.e., patched binaries
can run on devices without NORAX support). Otherwise,
patched binaries may become incompatible with existing
loaders, linkers, or orthogonal binary-hardening solutions
(e.g., code diversification techniques). Furthermore, NO-
RAX must not make special assumptions about binaries
to facilitate analysis and patching.

• P2 - Completeness: NORAX must have complete cover-
age of embedded data. It must detect all embedded data in
a binary accessed by code and ensure that these accesses
still succeed when XOM enforcement is in place. On the
other hand, NORAX can only have very few, if not zero,
false positives (i.e., misidentifying code as data).

• P3 - Correctness: NORAX must not alter or break a
patched binary’s original function or behavior, needless
to say crashing the binary.

• P4 - Low Overhead: NORAX should not introduce im-
practical overheads to the patched binaries, including both
space overhead (e.g., binary sizes and memory footprint)
and runtime slowdown.

NORAX Workflow: NORAX consists of four major compo-
nents: NDisassembler, NPatcher, NLoader, and NMonitor, as
shown in Figure 1. The first two components perform offline
binary analysis and transformation and the last two provide
runtime support for loading and monitoring the patched,
XOM-compatible executables and libraries. In addition to
disassembling machine code, NDisassembler scans for all
executable code that needs to be protected by XOM. A major
challenge it solves is identifying various types of data that
ARM compilers often embed in the code section, including
jump tables, literals, and padding. Unlike typical disassem-
blers, NDisassembler has to precisely differentiate embedded
data from code in order to achieve P2 and P3 (§III-B). Taking
input from NDisassembler, NPatcher transforms the binary so
that its embedded data are moved out of code sections and
their references are collected for later adjustment. After the
transformation, NPatcher inserts a unique magic number in the
binary so that it can be recognized by NLoader during load-
time. NPatcher also stores NORAX metadata in the binary,
which will be used by NLoader and NMonitor (§III-C). When
a patched binary is being loaded, NLoader takes over the
loading process to (i) load the NORAX metadata into memory,

Fig. 1: NORAX System Overview: the offline tools (left) analyze the input binary, locate all the executable data and their
references (when available), and then statically patch the metadata to the raw ELF; the runtime components (right) create
separated mapping for the executable data sections and update the recorded references as well as those generated at runtime.

(ii) adjust the NPatcher-collected references as well as those
dynamically created references to the linker-related sections
(e.g .hash, .rela.*), and (iii) map all memory pages that
contain code to XOM (§III-D). During runtime, NMonitor,
an OS extension, handles read accesses to XOM. While such
accesses are rare and may indicate attacks, they could also be
legitimate because NPatcher may not be able to completely
recognize dynamic references to the relocated embedded data
(e.g., those generated at runtime). When there are missed data
references, the access will trigger an XOM violation, which
NMonitor verifies and, if legitimate, facilitates the access to
the corresponding data (§III-E).

B. NDisassembler: Static Binary Analyzer

NDisassembler first converts an input binary from machine
code to assembly code and then performs analysis needed
for converting the binary into an XOM-compatible form. It
disassembles the binary in a linear sweep fashion, which
yields a larger code coverage than recursive disassembling
[21]. However, the larger code coverage comes at a cost
of potentially mis-detecting embedded data as code (e.g.,
when such data happen to appear as syntactically correct
instructions).

NDisassembler addresses this problem via an iterative data
recognition technique. Along with this process, it also finds in-
structions that reference embedded data. The data recognition
technique is inspired by the following observations:

• Although it is difficult to find all instructions referencing
some embedded data at a later point in the running
program, it is relatively easy to locate the code that
computes these references in the first place.

• To generate position-independent binaries, compilers can
only use PC-relative addressing when emitting instruc-
tions that need to reference data inside binaries.

• AArch64 ISA only provides two classes of instruc-
tions for obtaining PC-relative values, namely the ldr

(literal) instructions and adr(p) instructions.

NDisassembler uses Algorithm 1 to construct an initial set
of embedded data (IS) and a set of reference sites (RS).
For embedded data whose size cannot be precisely bounded,
NDisassembler collects their seed addresses (AS) for further
processing. As shown in Line 5–9 in Algorithm 1, since
the load size for ldr-literal instructions is known, the
identified embedded data are added to IS. On the other hand,
the handling for adr instructions is more involved, as shown
in Line 10–27. NDisassembler first performs forward slicing
on xn — the register which holds the embedded data address.
All instructions that have data dependencies on xn are sliced,
and xn is considered escaped if any of its data-dependent
registers is either (i) stored to memory or (ii) passed to another
function before being killed. In either case, the slicing also
stops. If not all memory dereferences based on xn can be
identified due to reference escaping, the size of the embedded
data cannot be determined. Therefore, NDisassembler only
adds the initial value of xn to AS, as a seed address (Line
24–26).

Line 10–23 of Algorithm 1 deal with the sliced instructions.
If a memory load based on xn is found, RS is updated with the
location of the original address-taking instruction. Moreover,
NDisassembler analyzes the address range for each memory
load. Note that oftentimes the address range is bounded
because embedded data are mostly integer/floating point con-
stants, or jump tables. In the former case, the start address of

Algorithm 1 Initial embedded data and references collection

INPUT:
code[] - An array of disassembly output

OUTPUT:
IS - Initial set of embedded data
AS - The set of seed addresses for embedded data
RS - The set of reference sites to embedded data

1: procedure INITIALSETCOLLECTION

2: IS = {}
3: AS = {}
4: RS = {}
5: for each (ldr-literal addr) ∈ code[] at curr do
6: size = MemLoadSize(ldr)
7: IS = IS ∪ {addr, addr+1, ..., addr+size-1}
8: RS = RS ∪ {curr}
9: end for

10: for each (adr xn, addr) ∈ code[] at curr do
11: escaped, depInsts = ForwardSlicing (xn)
12: unbounded = False
13: for each inst ∈ depInsts do
14: if inst is MemoryLoad then
15: RS = RS ∪ {curr}
16: addr expr = MemLoadAddrExpr(inst)
17: if IsBounded(addr expr) then
18: IS = IS ∪ {AddrRange(addr expr)}
19: else
20: unbounded = True
21: end if
22: end if
23: end for
24: if escaped or unbounded then
25: AS = AS ∪ {addr}
26: end if
27: end for
28: end procedure

memory load is typically xn plus some constant offset, while
the load size is explicit from the memory load instruction. In
the latter, well-known techniques for determining jump table
size [22] are utilized. In both cases, the identified embedded
data are added into IS. However, if there is a single memory
load whose address range cannot be bounded, NDisassembler
adds the seed address to AS.

If Algorithm 1 is not able to determine the sizes of all
embedded data, the initial set (IS) is not complete. In this
case, the seed addresses in AS are expanded using Algo-
rithm 2 to construct an over-approximated set of embedded
data (DS). The core functions are BackwardExpand (line
4) and ForwardExpand (line 5). The backward expansion
starts from a seed address and walks backward from that

Algorithm 2 embedded data set expansion

INPUT:
AS - The set of seed addresses for embedded data
IS - Initial set of embedded data

OUTPUT:
DS - conservative set of embedded data

1: procedure SETEXPANSION

2: DS = IS
3: for addr in AS do
4: c1 = BackwardExpand (addr, DS)
5: c2 = ForwardExpand (addr, DS)
6: DS = DS ∪ c1 ∪ c2

7: end for
8: end procedure

address until it encounters a valid control-flow transfer in-
struction: i.e., the instruction is either a direct control-flow
transfer to a 4-byte aligned address in the address space, or
an indirect control-flow transfer. All bytes walked through
are marked as data and added to DS. On the other hand,
the forward expansion walks forward from the seed address.
It proceeds aggressively for a conservative inclusion of all
embedded data. It only stops when it has strong indication
that it has identified a valid code instruction. These indicators
are one of the following: (i) a valid control-flow transfer
instruction is encountered, (ii) a direct control-flow transfer
target (originating from other locations) is reached, and (iii)
an instruction is confirmed as the start of a function [23]. In the
last case, comprehensive control-flow and data-flow properties
such as parameter passing and callee saves are checked before
validating an instruction as the start of a function.

Finally, DS contains nearly all embedded data that exists in
the binary. Although we could further leverage heuristics to
include undecodable instructions as embedded data, it is not
necessary because our conservative algorithms already cover
the vast majority (if not all) of them, and the rest are mostly
padding bytes which are never referenced. Theoretically, fail-
ure to include certain referenced embedded data could still
happen if a chunk of data can be coincidentally decoded as
a sequence of instructions that satisfies many code properties,
but in our evaluation of over 300 stripped Android system
binaries (V-A), we never encountered such a case.

RS contains a large subset of reference sites to the embed-
ded data. Since statically identifying all indirect or dynamic
data references may not always be possible, NDisassembler
leaves such cases to be handled by NMonitor.

C. NPatcher: XOM Binary Patcher

With the input from NDisassembler, NPatcher transforms
the binary in two steps. First, it relocates data out of the code

segment so that the code segment can be loaded to XOM
and protected against leaks and abuses. Next, it collects and
prepares the references from code (.text) to the embedded data
(.text) and to .rodata section.

Data Relocation: An intuitive design choice is to move the
executable data out of the code segment. But doing so violates
the design principle P1 as the layout of the ELF and the offsets
of its sections will change significantly. Another approach is
to duplicate the executable data, but this would increase binary
sizes and memory footprint significantly, violating P4.

Instead, NPatcher uses two different strategies to relocate
those executable data without modifying code sections or
duplicating all read-only data sections. For data located in
code segment but are separated from code text (i.e., read-
only data), NPatcher does not duplicate them in binaries but
only records their offsets as metadata, which will be used by
NLoader to map such data into read-only memory pages. For
data mixed with code (i.e., embedded data), NPatcher copies
them into a newly created data section at the end of the binary.
The rationale behind the two strategies is that read-only data
usually accounts for a large portion of the binary size and
duplicating it in binary is wasteful and unnecessary. On the
other hand, embedded data is usually of a small size, and
duplicating it in binaries does not cost much space. More
importantly, this is necessary for security reasons. Without
duplication, code surrounding data would have to be made
readable, which reduces the effectiveness of XOM.

Data Reference Collections: NPatcher only collects the ref-
erences from .text to .text (embedded data) and to .rodata
because they can be statically recognized and resolved. Other
types of references listed in Table V are either from outside
the module or statically unavailable, which are handled by
NLoader.

For references to embedded data, NPatcher can directly
include them based on NDisassembler’s analysis results. But
there is one caveat – the instructions used to reference em-
bedded data (i.e., adr and ldr-literal) have a short addressing
range. Therefore, when we map their target data to different
memory pages, it is possible that the instructions cannot
address or reach the relocated data. To solve this issue without
breaking P1 (i.e., maintaining binary backward-compatibility),
NPatcher generates stub code to facilitate access to out-of-
range data. The instructions of short addressing range are
replaced with an unconditional branch instruction2, which
points to the corresponding stub entry. The stub code only
contains unconditional load and branch instructions pointing

2ADR can address +/- 1MB, while B(ranch) can access +/- 128MB, which
is far enough for regular binaries.

to fixed immediate offsets. This design ensures that these stub
entries cannot be used as ROP gadgets.

For references to the .rodata, there is no addressing capa-
bility problem, because adrp is used instead of adr. However,
a different issue arises. There are multiple sources from which
such references could come. We identify 5 sources in our
empirical study covering all Android system executables and
libraries. NPatcher can only prepare the locations of the first
three offline while leaving the last two to be handled by
NLoader after relocations and symbol resolving are done.

• References from code (.text): these are usually caused
by access to constant values and strings.

• References from symbol table (.dynsym): when a sym-
bol is located in .rodata, there will be an entry in the
symbol table, whose value field contains the address of
the exposed symbol.

• References from relocation table (.rela.dyn): for a
relocatable symbol located in .rodata, the relocation table
entry’s r addend field will point to the symbol’s address.

• References from global offset table (.got): when a vari-
able in .rodata cannot be addressed due to the addressing
limit(e.g., adrp can only address +/- 4GB), an entry in
the global offset table is used to address that far-away
variable.

• References from read-only global data (.data.rel.ro):
most binaries in Android disable lazy-binding. The
.data.rel.ro section contains the addresses of global con-
stant data that need to be relocatable. After the dynamic
linker finishes relocating them, this table will be marked
as read-only, as opposed to the traditional .data section.

Finally, the metadata (duplicates and references), the data-
accessing stub code (explained in the next point) and the
NORAX header are appended to the end of the original binary,
as shown in Figure 2. Note that by appending the NORAX-
related data to the end of the binary, we allow patched binaries
to be backward-compatible, thus meeting P1. This is because
the ELF standard ignores anything that comes after the section
header table. As a result, binaries transformed by NPatcher can
run on devices without NORAX support installed. They can
also be parsed and disassembled by standard ELF utilities such
as readelf and objdump. Moreover, NORAX-patched binaries
are compatible with other binary-level security enhancement
techniques.

D. NLoader: Plugin for Stock Loader and Linker

Binaries rewritten by NPatcher remain recognizable by and
compatible with the stock loader and linker. They can still
function albeit without the XOM protection. New data sections
added by NORAX, however, are transparent to the toolchain.
They require NLoader’s support to complete the binary loading
and references updating process before their code can be

ELF	Header

Program	Header

.text

.rodata

.data

Section	Header

...

Norax	Header
Stub	Code

…

Embedded	Data	&&	Refs

Y

Fig. 2: The layout of ELF transformed by NORAX. The shaded
parts at the end are the generated NORAX-related metadata.

mapped in XOM. Other than the ones prepared by NPatcher,
as mentioned in § III-A, there are several types of references
to executable data (Table V) which are related to the linker
and only available at runtime. Built as a linker/loader plugin,
NLoader adjusts these references in the following steps:

• Ld-1: It parses and loads NORAX header into memory,
including information about the embedded data in .text
and the stub code accessing embedded data. Then, it
creates duplicated mappings for .rodata and the linker-
referencing sections3, which have been loaded by the
stock linker/loader.

• Ld-2: It updates the .dynamic section to redirect linker to
use the read-only copy of those relocated data sections.

• Ld-3: It collects the .rodata references from .got and
.data.rel.ro, which are only populated after the relocation
is done. It then adjusts all the collected data references
in one pass. Eventually, the memory access level of the
loaded module is adjusted to enforce the R⊕X policy.

The overall workflow of NLoader is shown in Figure 3.
It starts with the executable loading, which is done by the
OS ELF loader (Step 1). Then, the OS loader transfers
the control to the dynamic linker, which in turns creates a
book-keeping object for the just-loaded module. Meanwhile,
Ld-1 is performed to complete the binary loading. Next, the
binary’s corresponding book-keeping object is then populated
with references to those ELF sections used by the linker to
carry out relocation and symbol resolution in a later stage.
Ld-2 is then invoked to update these populated references.
At this point, the preparation for the executable is done. The
linker then starts preparing all the libraries (Step 2). This
process is similar to the preparation of executable, thus Ld-1

3The linker-referencing sections include .(gnu).hash, .dynsym, .dynstr,
.gnu.version, .gnu.version r, .rela.dyn, .rela.plt., etc.

OS	Loader

Dynamic	Linker

find_libraries()

Running
Program

Elf_Reader::lo
ad()

prelink_image
()

link_image()dlopen()

find_library()

load_elf_binar
y()

prelink_image
()

Executable	Loading

Libraries	Loading

Relocation	&	Symbol	
Resolution

Ld-3

Ld-1 Ld-2Ld-2

Ld-1
1

2

3

4

Runtime	Lib	
Loading

Fig. 3: Bionic Linker’s binary loading flow, NLoader operates
in different binary preparing stages, including module loading,
relocation and symbol resolution.

and Ld-2 are called accordingly. When all the modules are
loaded successfully in previous steps with their book-keeping
objects populated, the linker walks through the book-keeping
objects to perform relocation and symbol resolution (Step 3).
In this step, Ld-3 is called for each of the relocated modules to
update all those collected references, including the ones from
.got and .data.rel.ro to .rodata. This is feasible because the
.got entries which reference to .rodata are populated upfront,
same as those in .data.rel.ro.

During runtime, the program may dynamically load or
unload new libraries (Step 4), as shown in Figure 3, which
is also naturally handled by NLoader. To boost performance,
once NLoader finishes updating the offline-updatable refer-
ences, it caches the patched binary so that it can directly load
the cached version without going through the whole references
adjustment process again a next time.

E. NMonitor: Runtime Enforcement and Safety-net

After being processed by the last three NORAX components,
a patched binary that follows the R⊕X policy is ready to run,
which is assisted by NMonitor. At runtime, the converted pro-
gram could still be running with some unadjusted references
to the executable data, which belong to the two following
possible categories.

• Missed references to embedded data: Although in our
evaluation we rarely see cases where an access violation
is triggered by missed embedded data references, such
situation, if mishandled, will cause a program crash.
NDisassembler is unable to discover such cases due to the

limitation of static analysis. These missed data references
would trigger access violations. Note that references to
.rodata from .text do not have this problem, because
whenever an address is calculated that happens to point
at .rodata section, NDisassembler will mark it as a valid
reference regardless of whether a corresponding memory
load instruction is detected or not.

• References to .eh frame hdr and .eh frame: These
sections provide auxiliary information such as the ad-
dress range of functions, the stack content when a C++
exception is triggered, etc. The previous components are
unable to update them because they are used neither by
the converted module itself nor by the dynamic linker.
Instead, we found that C++ runtime and debuggers such
as gdb would reference and read into these two sections
for exception handling or stack unwinding.

NMonitor dynamically handles both categories of unad-
justed references. NMonitor responds to memory violations
caused by any attempted read access to XOM. It checks the
context and the data being accessed. If the context matches the
two cases discussed above and the address being accessed does
belong to the relocated data, NMonitor permits and facilitates
the access; otherwise, it terminates the program.

Specifically, NMonitor whitelists these two kinds of data
and ensures legitimate accesses to them can go through while
potential abuses by attackers cannot. For instance, NMonitor
only allows C++ runtime module to access the .eh frame
sections (updatable through sysctl). For the .text embedded
data, NMonitor only allows code from the over-approximated
hosting function to read them. Note that while this design
helps our system cope with those corner cases, the security
of our system is barely undermined for two reasons: (i) the
majority of the whitelisted data are indeed real data, which are
not even decodable or surrounded by non-decodable data(§ V).
(ii) Different data require the code from different regions to
access them; attackers cannot simply exploit one memory leak
bug to read across all these embedded data.

IV. IMPLEMENTATION DETAILS

NORAX is fully implemented based on two commercial
mobile phones, Samsung Galaxy S6 and LG Nexus 5X. In
this section, we present the implementation of NORAX on LG
Nexus 5X, which is equipped with Qualcomm Snapdragon 808
MSM8992 (4 x ARM Cortex-A53 & 2 x ARM Cortex-A57)
and 2GB RAM. The phone is running Android OS v6.0.1
(Marshmallow) with Linux kernel v3.14 (64-bit). Table VI
shows the SLoC of NORAX on Nexus 5X. In the following,
we provide more details about the implementation.

TABLE VI: The SLoC for all NORAX components.

	
	

Module	 Size	
(Stock)	

Size	
(NORAX)	

File	Size	
Overhead	

#	of	
Rewrite	
Errors	

vold	 486,032	 486,168	 0.03%	 0	
toybox		 310,800	 310,984	 0.06%	 0	
toolbox	 148,184	 148,392	 0.14%	 0	
dhcpcd	 112,736	 112,968	 0.21%	 0	
logd	 83,904	 84,040	 0.16%	 0	
installd	 72,152	 72,296	 0.20%	 0	
app_process64	
(zygote)	

22,456	
	

22,600	
	

0.64%	
	

0	

qseecomd	 14,584	 14,728	 0.99%	 0	
surfaceflinger	 14,208	 14,344	 0.96%	 0	
rild	 14,216	 14,360	 1.01%	 0	
libart.so	 7,512,272	 7,531,256	 0.25%	 0	
libstagefright.so	 1,883,288	 1,887,768	 0.24%	 0	
libcrypto.so	 1,137,280	 1,140,200	 0.26%	 0	
libmedia.so	 1,058,616	 1,062,872	 0.40%	 0	
libc.so	 1,032,392	 1,037,576	 0.50%	 0	
libc++.so	 944,056	 944,248	 0.02%	 0	
libsqlite.so	 791,176	 794,152	 0.38%	 0	
libbinder.so	 325,416	 325,560	 0.04%	 0	
libm.so	 235,544	 274,664	 16.61%	 0	
libandroid.so	 96,032	 96,168	 0.14%	 0	
AVG.	 	 	 1.16%	 0	

System	
Modifications	

Norax	
Components	

SLoC	 Language	

Linux	Kernel	 NLoader,	NMonitor	 1947	 C	
Bionic	Linker	 NLoader	 289	 C++	
Analysis	&	
Rewriting	Modules	

NDisassembler,	
NPatcher	

3580	 Python	&	Bash	
Shell	Script	

A. Kernel Modification

We modified several OS subsystems in order to implement
the design discussed in § III. To start off, the memory man-
agement (MM) subsystem is modified to enable the execute-
only memory configuration (§ II) and securely handle the
legitimate page fault triggered by data abort on reading the
execute-only memory. Specifically, we intercept the page fault
handler, the do page fault() function, to implement the design
of NMonitor discussed in § III-E. Implementing the semantics
for all kinds of memory load instructions is error-prone and
requires non-trivial engineering effort, but above that, there is
one additional caveat, as page fault is one of the most versatile
events in Linux kernel that has very diversified usages, such
as copy-on-write (COW), demand paging and memory page
swappings etc. Also, accessing the same virtual address could
fault multiple times (e.g., First triggered by demand paging,
and then by XOM access violation). If not carefully examined,
irrelevant page fault events could be mistakenly treated as
XOM-related ones, which may cause the entire system to be
unstable or even crash. The solutions proposed in prior works
[11], [14] are not directly applicable here, because in ARM64
Linux kernel, to the best of our knowledge, there is not one
handy feature such as a flag pushed by the kernel, or a register
populated by the hardware to directly indicate whether the
fault is really triggered due to a read into the execute-only
page that we configure.

To precisely pinpoint the related page fault events, we devise
a series of constraints to filter the irrelevant ones. when a page
fault happens, the following checks are performed:

• Check if the faulting process contains NORAX converted
module, this is indicated by a flag set by NLoader when
loading a converted binary. This flag will be propagated
when the process forks a new child, and properly removed
if the new child does an exec to run a new program.

• Check the exception syndrome register on exception level
one (ESR EL1 [24]) for two fields: (i) Exception class
and (ii) Data fault status code. This ensures the fault is
triggered by the user space program, and it faults on the
last level page table entry (we only enforce XOM at pte
entries) because of permission violation.

• Check the VMA permission flags and only handle the
case of reading an execute-only page. All these restric-

tions together ensure that we do not mistake other page
fault events with ours.

To verify the integrity of a violation triggered by XOM,
we extend the task struct to maintain a list of access policies
(§ III-E), one for each module. We also instrument the set pte
function to ensure the permission of a page must follow the
R⊕X policy. This way, we prevent the attacker from tricking
the OS to remap the execute-only memory through high-
level interfaces. The modified kernel subsystems also include
the file system (FS) and system calls where we instrument
the executable loader and implement the design of NLoader
plugins (§ III-D) respectively.

B. Bionic Linker Modification

In a running program, all the libraries needed by the
executable are loaded by the linker. In order to handle those
converted libraries and make the code regions of the whole
process execute-only, we directly modify the linker’s source
code to place hooks before the library loading and symbol
resolution routines as described in § III-D. One quirk of
the Bionic linker is that when loading libraries, it places
those modules right next to each other, leaving no space in-
between. This causes problems from multiple perspectives.
Firstly, it lowers the entropy of the address space randomness
thus undermines the effectiveness of ASLR. Secondly, it also
“squeezes” out the space for NLoader to load the NORAX-
related metadata. To resolve this issue, NPatcher encodes the
size of the total metadata into the NORAX header when it
recomposes the binary, and we instrument the linker such that
when it is loading a library it will leave a gap with the size
of the sum of the encoded number (zero for the unconverted
binaries) and a randomly generated nuance.

C. System Optimization

NORAX is designed with optimizations inherited in the
system, such as updating all possible and updatable references
of the relocated executable data to avoid page faults. However,
given that our implementation is targeting the commercial
Android systems, more optimizations could be done by taking
advantages of several handy features on Android. For example,
we can avoid triggering any page faults by deliberately delay
enabling the execute-only configuration during the loading of
a program until all the necessary modules are loaded and have
their symbols resolved. This is feasible because in Android,
for performance reasons, majority of the modules are compiled
with lazy binding disabled, that is to say, when loading such
module, the linker will promptly resolve all symbols it needs
to execute, instead of walking through the loaded modules
on a demanding basis during runtime to resolve symbols if
compiled otherwise.

Last but not least, a more precise accessing policy for
embedded data is achievable using the commonly available
.eh frame section. This section is compiled into pretty much
all the binaries shipped to user phones based on our prelim-
inary survey on multiple user-build AArch64 based Android
phones from major OEMs like Samsung, LG, HTC etc. For
clarity, we will not expand too much on the technical detail
of the .eh frame section. Basically, we can take advantage of
the PC range field for each Frame Description Entry (FDE) to
facilitate the analysis of NDisassembler.

V. EVALUATION AND ANALYSIS

In this section, we evaluate four aspects of NORAX: (i)
whether it breaks the functioning of patched binaries? (ii) how
accurate is its data analysis? (iii) how much overhead it incurs?
and (vi) how practical is it for wide adoption?

A. Functioning of Transformed Binaries

For this test, we selected 20 core system binaries to trans-
form, including both programs and libraries (Table IX). These
binaries provide support for basic functionalities of an Android
phone, such as making a phone call, installing apps, and
playing videos. We obtain these binaries from a Nexus 5X
phone that runs Android OS v6.0.1 (Marshmallow). These
stock binaries are compiled with compiler optimization and
without debugging metadata.

We tested the functionality of the transformed binaries using
our own test cases as well as the Android Compatibility
Test Suite (CTS) [25]. We modified the system bootstrapping
scripts (∗.rc files), which direct Android to load the system
binaries patched by NORAX. Table VII shows the specific
tests we designed for each system executable and library. For
example, surfaceflinger is the UI composer, which depends
on two libraries: libmedia.so and libstagefright.so. Zygote
(app process64) is the template process from which all app
processes are forked. It uses all of the patched binaries. While
running our functionality tests, we observed an attempt by the
linker to read the ELF header, which is located in the pages
marked executable-only. While this attempt was allowed and
facilitated by NMonitor, our system can be optimized to handle
this case during the patching stage instead.

We also ran the Android Compatibility Test Suite (CTS)
on a system where our transformed binaries are installed. The
suite contains around 127,000 test packages, and is mandatory
test performed by OEM vendors to assess the compatibility of
their modified Android systems. The test results are shown in
Table VIII. NORAX did not introduce any additional failure
than those generated by the vendor customization on the
testing devices. The results from both tests show that the
functioning of patched binaries is not interrupted or broken
by NORAX.

B. Correctness of Data Analysis

To thoroughly test the correctness of our embedded data
identification algorithm described in § III-B, we ran the data
analysis module of NDisassembler against a large test set con-
sisting of all 313 Android system binaries, whose sizes span
from 5.6KB (libjnigraphics.so) to 16.5MB (liblog.so), totaling
102MB. For these binaries, we compare the data identified
by NDisassembler with the real embedded data. Our ground
truth is obtained by compiling debugging sections (.debug *)
[26] into the binaries. We use an automatic script to collect
bytes in file offsets that fall outside any function range and
compare them with the analysis results from NDisassembler.
For the bytes that are not used by any of the functions, we
found that some of them are NOP instructions used purely for
the padding purpose; whilst some are just “easter eggs”, for
instance, in the function gcm ghash v8 of libcrypto.so, the
developers left a string “GHASH for ARMv8, CRYPTOGAMS
by <appro@openssl.org>”. These kinds of data were not
collected by NORAX. Since there are not references to them,
making them non-readable will not break any function.

For the tested binaries, NDisassembler correctly identified
all the embedded data. Only for 28 out of the 313 binaries did
NDisassembler reported false positives (i.e., code mistakenly
identified as embedded data), due to the over-approximate
approach we use (§ III-B). These rare false positive cases are
expected by our design and are handled by NMonitor during
runtime, as we discussed in § III-B. Table X shows a subset
of the results4.

TABLE VII: Rewritten program functionality tests.

Module	 Description	 Experiment	 Suc
cess	

vold	 Volume	daemon	 mount	SDCard;	
umount	

Yes	

toybox		 115	*nix	utilities	 try	all	commands	 Yes	
toolbox	 22		core	*nix	utilities	 try	all	commands	 Yes	
dhcpcd	 DHCP	daemon	 obtain	dynamic	IP	

address	
Yes	

logd	 Logging	daemon	 collect	system	log	for	
1	hour	

Yes	

installd	 APK	install	daemon	 install	10	APKs	 Yes	
app_process64	
(zygote)	

Parent	process	for	all	
applications	

open	20	apps;	close	 Yes	

qseecomd	 Qualcomm's	proprietary	
driver	

boot	up	the	phone	 Yes	

surfaceflinger	 Compositing	frame	
buffers	for	disply	

Take	5	photos;	play	
30	min	movie	

Yes	

rild	 Baseband	service	
daemon	

Have	10	min	phone	
call	

Yes	

		 Pass	 Fail	 Not	Executed	 Plan	Name	
CTS	
normal	 126454	 555	 0	 CTS	
CTS	
NORAX	 126453	 556	 0	 CTS	

4This subset was chosen to be consistent with the binaries used in the other
tests in this section. The complete set of all 313 Android system binaries,
which can be easily obtained, are not shown here due to the space limit.

TABLE VIII: System compatibility evaluation, the converted
zygote, qseecomd, installd, rild, logd, surfaceflinger, libc++,
libstagefright are selected randomly to participate the test to
see whether they can run transparently with other unmodified
system components.

Module	 Description	 Experiment	 Suc
cess	

vold	 Volume	daemon	 mount	SDCard;	
umount	

Yes	

toybox		 115	*nix	utilities	 try	all	commands	 Yes	
toolbox	 22		core	*nix	utilities	 try	all	commands	 Yes	
dhcpcd	 DHCP	daemon	 obtain	dynamic	IP	

address	
Yes	

logd	 Logging	daemon	 collect	system	log	for	
1	hour	

Yes	

installd	 APK	install	daemon	 install	10	APKs	 Yes	
app_process64	
(zygote)	

Parent	process	for	all	
applications	

open	20	apps;	close	 Yes	

qseecomd	 Qualcomm's	proprietary	
driver	

boot	up	the	phone	 Yes	

surfaceflinger	 Compositing	frame	
buffers	for	disply	

Take	5	photos;	play	
30	min	movie	

Yes	

rild	 Baseband	service	
daemon	

Have	10	min	phone	
call	

Yes	

		 Pass	 Fail	 Not	Executed	 Plan	Name	
CTS	
normal	 126,457	 552	 0	 CTS	
CTS	
NORAX	 126,457	 552	 0	 CTS	

TABLE IX: Binary transformation correctness test.

	
	

Module	 Size	
(Stock)	

Size	
(NORAX)	

File	Size	
Overhead	

#	of	
Rewrite	
Errors	

vold	 486,032	 512,736	 5.49%	 0	
toybox		 310,800	 322,888	 3.89%	 0	
toolbox	 148,184	 154,632	 4.35%	 0	
dhcpcd	 112,736	 116,120	 3.00%	 0	
logd	 83,904	 86,256	 2.80%	 0	
installd	 72,152	 76,896	 6.58%	 0	
app_process64	
(zygote)	

22,456	
	

23,016	
	

2.49%	
	

0	

qseecomd	 14,584	 15,032	 3.07%	 0	
surfaceflinger	 14,208	 14,448	 1.69%	 0	
rild	 14,216	 14,784	 4.00%	 0	
libart.so	 7,512,272	 7,772,520	 3.46%	 0	
libstagefright.so	 1,883,288	 1,946,328	 3.35%	 0	
libcrypto.so	 1,137,280	 1,157,816	 1.81%	 0	
libmedia.so	 1,058,616	 1,071,712	 1.24%	 0	
libc.so	 1,032,392	 1,051,312	 1.83%	 0	
libc++.so	 944,056	 951,632	 0.80%	 0	
libsqlite.so	 791,176	 805,784	 1.85%	 0	
libbinder.so	 325,416	 327,072	 0.51%	 0	
libm.so	 235,544	 293,744	 24.71%	 0	
libandroid.so	 96,032	 97,208	 1.22%	 0	
AVG.	 	 	 3.91%	 0	

System	
Modifications	

Norax	
Components	

SLoC	 Language	

Linux	Kernel	 NLoader,	NMonitor	 1947	 C	
Bionic	Linker	 NLoader	 289	 C++	
Analysis	&	
Rewriting	Modules	

NDisassembler,	
NPatcher	

3580	 Python	&	Bash	
Shell	Script	

C. Overheads and Security Impact

Size Overhead: In our functionality test, the sizes of our
selected binaries range from ≈14K to ≈7M, as shown in
Table IX. After transformation, the binary sizes increased
by an average of 3.91%. Note that libm.so is an interesting
case, as its file size increased much more than others. After
manual inspection, we found that this math library has a lot of
constant values hardcoded in various mathematical functions
such as casinh(), cacos(). As an optimization, the compiler
embeds this large set of constant data into the code section to
fully exploit spatial locality, which translates to more metadata
generated by NORAX during the patching stage.

Performance Overhead: We used Unixbench [27] to measure
the performance of our system. The benchmark consists of two

TABLE X: Embedded data identification correctness, empir-
ical experiment shows our analysis works well in AArch64
COTS ELFs, with zero false negative rate and very low false
positive rate in terms of finding embedded data. The last
column shows the negligible number of leftover gadgets in
the duplicated embedded data set.

Module #.	of	Real	
Inline	Data	
(Byte)	

#.	of	Inline	
Data	Flagged	
by	Norax	
(Byte)	

#.	of	Gadgets	
found	in	
extracted	
inline	Data	

vold 0	 0	 0	
toybox	 8	 8	 0	
toolbox 20	 20	 0	
dhcpcd 40	 40	 4	
Logd 0	 0	 0	
installd 0	 0	 0	
app_process64	
(zygote)

0	
	

0	

0	

qseecomd N/A	 0	 0	
surfaceflinger 0	 0	 0	
rild 0	 0	 0	
libart.so 17716	 17716	 8	
libstagefright.so 296	 296	 5	
libcrypto.so 2472	 2512	 25	
libmedia.so 3936	 3936	 0	
libc.so 4836	 4836	 5	
libc++.so 12		 12	 0		
libsqlite.so 932	 1004	 13	
libbinder.so 0	 0	 0	
libm.so 20283	 20291	 48	
libandroid.so	 0	 0	 0	
Total	 50551	 50671	 108	

		
#	of	
binaries	

#	of	binaries	w/	
embeded	data	 Percentage	

/system/bin	 237	 167	 70.46%	
/system/lib64	 255	 101	 39.61%	
/vendor/lib64	 111	 39	 35.14%	
/vendor/bin	 4	 2	 50.00%	

System	
Modifications	

Norax	
Components	

SLoC	 Language	

Linux	Kernel	 NLoader,	NMonitor	 1947	 C	
Bionic	Linker	 NLoader	 289	 C++	
Analysis	&	
Rewriting	Modules	

NDisassembler,	
NPatcher	

3580	 Python	&	Bash	
Shell	Script	

types of testing programs: (i) User-level CPU-bound programs;
(ii) System benchmark programs that evaluate I/O, process
creation, and system calls, etc. We ran the benchmark on
both the stock and patched binaries, repeating three times in
each round. We then derived the average runtime and space
overhead, which are given in Figure 4.

For the runtime overhead, the average slowdown introduced
by NORAX is 1.18%. The overhead mainly comes from the
system benchmark programs, among which Execl shows the
maximum slowdown. Investigating its source code, we found
that this benchmark program keeps invoking the exec system
call from the same process to execute itself over and over
again, thus causing NLoader to repeatedly prepare new book-
keeping structures and destroy old ones (§ III-D). This process,
in turn, leads to multiple locking and unlocking operations,
hence the relatively higher overhead. Fortunately, we do not
find this behavior common in normal programs. In addition,
some simple optimizations are possible: (i) employing a more
fine-grained locking mechanism; (ii) reusing the book-keeping
structures when exec loads the same image.

For space overhead, on average NORAX introduces 1.78%
increase in maximum resident memory and 3.90% increase in
file sizes. Table IX shows the file size increase for individual

0.01 0.05 0.03 0.18 0.01 0.02
1.11 0.86

11.72

1.83

-1.14

0.20

1.77

-0.07

1.84
2.30

1.38

2.30
1.84 1.83 1.84 2.30

0.92

1.79
1.84 1.45 1.47 1.84

4.06 3.90
3.42 3.42

3.42 3.42
2.77

7.77

3.02
3.89 3.58 4.06 3.66 4.14

-2.00

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

Runtime	Overhead(%) Mem	overhead(%) File	 size	overhead(%)

user sys

Fig. 4: Unixbench performance overhead for unixbench bina-
ries, including runtime, peak resident memory and file size
overhead (left: user tests, right: system tests)

programs. Both resutls indicate negligible space overhead for
NORAX system. As explained in § III-C, the space overhead
is proportionate to the amount of embedded data as well as
their references. On the other hand, the NORAX header incurs
a fixed amount of space overhead. If not much embedded
data exist, the references and the header become the major
contributor to the space overhead.

Security Impact: The goal of NORAX is to retrofit the
R ⊕X property into ARM64 COTS binaries. It makes code
sections unreadable and redirects references of embedded data
to duplicate data in read-only memory pages. However, since
we duplicate embedded data, they are in theory still reusable
by adversaries. we conduct a gadget searching experiment in
the duplicated embedded data appended at the end of the
converted binaries. Table X shows the number of available
gadgets we found in those data. As the result shows, available
gadgets are actually very rare even in the binaries that have
a lot of embedded data such as libm.so, we believe this
is because the majority of those duplicated bytes are by
themselves not decodable. Also note that the shown numbers
are actually an upper bound of the available gadgets. Because,
in the executable code section, where the original embedded
data reside, the bytes that form the gadgets may not be placed
next to each other.

D. Practicality Assessment

Szekeres et al. [28] presented three main requirements for
a security solution to be practical:

• Protection: The security feature must enforce a strict
policy and has relatively low false positives and false
negatives.

• Cost: A practical system should incur negligible runtime
slowdown and space overhead.

• Compatibility: The security system should not depend
on the source code availability. In addition, it should
be able to handle different modules individually and the
processed modules should work with those unmodified
ones.

We examine if NORAX meets these three criteria. NORAX

enforces the R ⊕X policy, similar to previous defenses that
needed source code [8], [9], which is the strongest defense
along the line of thwarting direct code read. Regarding the
cost, NORAX only introduces 1̃% slowdown for the majority
of the test cases, 2̃% extra memory and 4̃% disk consumptions,
showing its negligible cost. Finally, NORAX can protect COTS
binaries which come without any auxiliary information, and
it converts and loads different modules individually. Those
converted modules can run seamlessly with the unmodified
ones, indicating good compatibility.

VI. RELATED WORK

A. Code Reuse Attack Mitigations

Over the years, there has been an ongoing race between code
reuse attacks (or ROP in short) and corresponding defense
countermeasures. Such code reuse attacks keep evolving into
new forms with more complex attack steps (e.g., Blind-ROP
[2], JIT-ROP [1]). To defend against them, three categories of
countermeasures (e.g., ASLR, CFI, XOM) have been proposed
from different perspectives. Here we briefly review these de-
fenses, especially execute-only memory, which is the category
of this paper.

Control Flow Integrity (CFI): Enforcing CFI is a general
defense against attacks that hijack control flows, including
code reuse attacks. Proposed a decade ago by Abadi et al. [29],
CFI has been tuned by researchers over the years [30]–[35],
from its early form coarse-grained CFI to its current mature
appearance as fine-grained CFI. The fundamental difference is
that a coarse-grained CFI allows forward edges in the control
flow graph (CFG) to point at any node in the graph and back-
ward edges to return to any call preceded destination, whilst a
fine-grained CFI has a more precise set of destinations for both
forward and backward edges. bin-CFI [36] and CCFIR [37]
enforce the coarse-grained CFI policy on Linux and windows
COTS binaries respectively. Unfortunately, enforcing a fine-
grained CFI requires a more precise CFG to be built as the
ground truth, which is difficult to obtain in practice based on
static analysis, even when source code is available. In addition,
researchers found that it is still possible to launch code reuse
attacks when fine-grained CFI solution is in place due to the
difficulty of extracting a perfect CFG in practice [38]–[41].

Address Space Layout Randomization (ASLR): ASLR is a
practical and popular defense deployed in modern operating

systems to thwart code reuse attacks [42]. It randomizes the
memory address and makes the locations of ROP gadgets
unpredictable. However, the de-facto ASLR only randomizes
the base address of code pages. It becomes ineffective when
facing recent memory-disclosure-based code reuse attacks [1],
[2]. Such attack explores the address space on-the-fly to find
ROP gadgets via a memory disclosure vulnerability. Although
fine-grained ASLR increases the entropy of randomization,
such as compile-time code randomization [43] and load-time
randomization [3], [5]–[7], the memory disclosure attack is
not directly addressed, since code pages can still be read
by attackers [1]. Runtime randomization [44]–[46] is thus
proposed to introduce more uncertainty into the program’s
address space. Their effectiveness depends on who acts faster,
attacker or the re-randomization mechanism. Due to the need
of tracking all the code and data objects and correct their
references, these solutions either require compiler’s assist or
rely on runtime translation, which limit their applications and
incur non-trivial overhead.

eXecute-only Memory (XOM): To address the memory
disclosure attack, researchers proposed execute-only but non-
readable (R ⊕ X) memory pages to hinder the possibility
of locating reusable code (or ROP gadgets). However, one
fundamental challenge to achieve this defense is that it is non-
trivial to identify and separate legitimate data read operations
in code pages.

When source code is available, existing works like Readac-
tor [8], [9] and LR2 [10] rely on compilers to separate
data reads from code pages and then enforcing XOM via
either hardware-based virtualization or software-based address
masking. On the other hand, for COTS binaries, which are
more common in the real-world scenario, XnR [11] blocks
direct memory disclosure by modifying the page fault handler
in operating systems to check whether a memory read is inside
a code or data region of a process. However, it cannot handle
embedded data mixed in code region mentioned in Section
III-A. HideM [47] utilizes split-TLB features in AMD proces-
sors to direct code and data access to different physical pages
to prevent reading code. Unfortunately, recent processors no
longer support split-TLB.

Unlike previous works that mostly target x86, NORAX is
designed to transform legacy COTS to support XOM on top
of latest AArch64 processors. In particular, NORAX focuses
on the code-data separation problem of COTS binary on ARM,
which has not been systematically investigated before.

Destructive Code Read: Apart from execute-only memory,
a different type of approach is to prevent already-disclosed
executable memory from being executed. Rather than being
execute-only, code segments are not executable after their

addresses and values have been leaked. Heisenbyte [13] and
NEAR [14] achieve this by overwriting the values of the
disclosed code addresses with random values (i.e., invalid
opcodes), while keeping the disclosed values in different
memory pages for legitimate data reads. Unfortunately, such
approach has to monitor every read access to the code pages,
which incurs more page faults and high overhead. In addition,
Snow et al. show that such destructive code read can still be
bypassed by reloading multiple code copies or inferring code
layout without reading it [15]. Since NORAX does not allow
the code regions to be read at all, it is not vulnerable to such
attacks.

B. Static Binary Analyses

In this subsection, we compare COTS solutions that have
analysis goal overlap with NORAX.

Executable Data Identification: Zhang et al. [36] and Tang
et al. [13] develop algorithms to identify jump tables embed-
ded in the code using heuristics based on well-defined data
structure patterns. This result is not sufficient for R ⊕ X

policy enforcement. NEAR [14] and HideM [47] adopt a
more aggressive analysis approach, computing CFG based
on similar heuristics for the analyzed binary, and mark all
the unknown regions as data. Although this approach has
merits such as being architecture-generic and is able to tackle
x86-specific challenges like various-length instructions, it in-
evitably incurs relatively high false positives had the CFG
construction process miss any indirect control flow transfer
target. Making a different design choice, NORAX does not
rely on overly aggressive approach or assumptions about data
structures. Instead, its analysis exploits the basic semantics of
AArch64 ISA and achieves a larger and more precise coverage.

Executable Data Access Check: Similar to HideM [47],
NORAX undertakes the route of whitelisting the range of
executable data. This is a strategy to achieve maximum com-
patibility in the case of missing reference update. However,
HideM does not impose restrictions on the accessing subject,
plus the fact that it has more false positives on identifying
embedded data which exposes more gadgets, hence weakening
the security. On the contrary, NORAX enforces configurable
data-read policy to ensure only the legitimate reads can
succeed, such as embedded data should only be read by (over-
approximated) hosting function, and linker-related sections
should only be read by the dynamic linker.

VII. DISCUSSIONS

A. Compatibility with Other COTS Hardening Solutions

Execute-only memory alone cannot defend against the ever-
evolving code reuse attacks. Thus, we bear in mind that it is

important to design NORAX to be compatible with other COTS
hardening solutions that provide fine-grained randomization
and control flow integrity. Following our design principles
(§ III-A), NORAX makes minimum structural changes to
binaries programs, which do not preclude running other binary
analysis and hardening solutions. For example, the size and
location of code and data objects remain unchanged. The
control flow properties are preserved. As a result, changes
by NORAX are self-contained and will not interfere with the
operations of those other solutions.

We examine two representative binary hardening solutions
as examples, In-place randomization (IPR) [4] and bin-CFI
[36]. IPR is a fine-grained ASLR solution and can be used
in tandem with NORAX. It has three transformation passes.
First, it substitutes instructions with semantically equivalent
ones. The only instruction NORAX could replace is adr used
to reference .text inline data. Since adr is the only instruction
available in AArch64 ISA that can obtain PC-relative reference
directly, IPR does not have any alternative candidates to
use. Second, IPR reorders instructions sequences that do not
have dependencies. NORAX is transparent to such reordering
because it does not alter or assume instruction sequences.
Third, IPR performs register reassignments. NORAX preserves
register usages and thus does not affect register reassignments.

Bin-CFI is a coarse-grained CFI solution for COTS binaries
and conceptually compatible with NORAX. It performs indirect
control flow (ICF) analysis and then instruments all the ICF
transfer instructions to ensure they follow control flow graphs.
NORAX only modifies data reference and data accessing in-
structions and does not impact CFG. Note that albeit designed
with maximum compatibility, NORAX does assume to run as
the last pass among other binary hardening techniques. This
ensures NORAX preserves all data references planted by other
passes if any.

B. Current Limitations

Unforeseeable Code: NORAX relies on static binary analysis
and rewriting. The current implementation cannot patch dy-
namically generated code (JIT Compilation) or self-modifying
code. In addition, NORAX cannot patch customized ELF
files consisting of unrecognizable sections that may contain
code and data. For instance, the .ARM.exidx and .ARM.extab
sections contained in the dex2oat program5 are not recognized
by the current implementation of NORAX. Nevertheless, these
limitations are shared by almost all static binary rewriting
works. It is worth noting that modules converted by NORAX

can run alongside programs of this kind seamlessly without
suffering any functionality lost.

5An optimization tool to convert applications’ byte code to native code.

Indirect Memory Disclosure: NORAX prevents attackers
from directly reading the code to search for gadgets loaded
in memory. However, code pointers residing in data areas
such as stack and heap are still vulnerable to indirect memory
disclosure attacks, which can lead to whole function reuse or
call-preceded gadget reuse attacks [48], [49]. This limitation,
however, is shared by all related solutions using binary rewrit-
ing [11], [13], [14], [47]. In addition, a recent study [50] shows
even the most advanced source-code based techniques [8],
[9] are subject to attacks of this kind. We argue that defense
against indirect memory disclosure is another research topic
that warrants separate studies and is out of the scope for this
work.

VIII. CONCLUSION

We present NORAX, a comprehensive and practical system
that enables execute-only memory protection for COTS bina-
ries on AArch64 platforms. NORAX shows that identifying
data from code in COTS binaries, albeit generally undecid-
able, is in practice feasible under the scope of AArch64
platforms. To demonstrate its practicability, we implemented
NORAX on commodity mobile phones including Samsung
Galaxy S6 and LG Nexus 5X, and protect their stock system
binaries from direct memory disclosure attacks. Our evaluation
shows NORAX enforces strong protection, while at the same
time incurs negligible overhead–average 1.18% slowdown and
2.21% memory footprint, suggesting it is suitable for real-
world adoption.

IX. ACKNOWLEDGMENT

We thank the anonymous reviewers for their insightful
comments. We also thank Michalis Polychronakis, Michael
Grace, Jia Ma and Xun Chen for the helpful discussions during
the development of NORAX. This project was supported by
the Office of Naval Research (Grant#: N00014-17-1-2227)
and the National Science Foundation (Grant#: CNS-1421824).
Any opinions, findings, and conclusions or recommendations
expressed in this paper are those of the authors and do not
necessarily reflect the views of the funding agencies.

REFERENCES

[1] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-R.
Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-grained
address space layout randomization,” in Security and Privacy (SP), 2013
IEEE Symposium on. IEEE, 2013, pp. 574–588.

[2] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and D. Boneh,
“Hacking blind,” in 2014 IEEE Symposium on Security and Privacy.
IEEE, 2014, pp. 227–242.

[3] L. V. Davi, A. Dmitrienko, S. Nürnberger, and A.-R. Sadeghi, “Gadge
me if you can: secure and efficient ad-hoc instruction-level random-
ization for x86 and arm,” in Proceedings of the 8th ACM SIGSAC
symposium on Information, computer and communications security.
ACM, 2013, pp. 299–310.

[4] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing the
gadgets: Hindering return-oriented programming using in-place code
randomization,” in 2012 IEEE Symposium on Security and Privacy.
IEEE, 2012, pp. 601–615.

[5] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson, “Ilr:
Where’d my gadgets go?” in 2012 IEEE Symposium on Security and
Privacy. IEEE, 2012, pp. 571–585.

[6] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning, “Address space layout
permutation (aslp): Towards fine-grained randomization of commodity
software.” in ACSAC, vol. 6, 2006, pp. 339–348.

[7] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary stirring:
Self-randomizing instruction addresses of legacy x86 binary code,” in
Proceedings of the 2012 ACM conference on Computer and communi-
cations security. ACM, 2012, pp. 157–168.

[8] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi,
S. Brunthaler, and M. Franz, “Readactor: Practical code randomization
resilient to memory disclosure,” in 2015 IEEE Symposium on Security
and Privacy. IEEE, 2015, pp. 763–780.

[9] S. J. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen, L. Davi,
A.-R. Sadeghi, T. Holz, B. De Sutter, and M. Franz, “It’s a trap:
Table randomization and protection against function-reuse attacks,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015, pp. 243–255.

[10] K. Braden, S. Crane, L. Davi, M. Franz, P. Larsen, C. Liebchen, and A.-
R. Sadeghi, “Leakage-resilient layout randomization for mobile devices,”
in Proceedings of the 2016 Network and Distributed System Security
(NDSS) Symposium, 2016.

[11] M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nürnberger, and J. Pewny,
“You can run but you can’t read: Preventing disclosure exploits in
executable code,” in Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2014, pp. 1342–
1353.

[12] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell,
and M. Horowitz, “Architectural support for copy and tamper resistant
software,” ACM SIGPLAN Notices, vol. 35, no. 11, pp. 168–177, 2000.

[13] A. Tang, S. Sethumadhavan, and S. Stolfo, “Heisenbyte: Thwarting
memory disclosure attacks using destructive code reads,” in Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM, 2015, pp. 256–267.

[14] J. Werner, G. Baltas, R. Dallara, N. Otterness, K. Z. Snow, F. Monrose,
and M. Polychronakis, “No-execute-after-read: Preventing code disclo-
sure in commodity software,” in Proceedings of the 11th ACM on Asia
Conference on Computer and Communications Security. ACM, 2016,
pp. 35–46.

[15] K. Snow, R. Rogowski, J. Werner, H. Koo, F. Monrose, and M. Poly-
chronakis, “Return to the zombie gadgets: Undermining destructive code
reads via code inference attacks,” in IEEE Symposium on Security and
Privacy, 2016.

[16] B. Lee, L. Lu, T. Wang, T. Kim, and W. Lee, “From zygote to morula:
Fortifying weakened aslr on android,” in 2014 IEEE Symposium on
Security and Privacy. IEEE, 2014, pp. 424–439.

[17] “El 0 execute-only memory configuration,” https://armv8-ref.
codingbelief.com/en/chapter d4/d44 1 memory access control.html.

[18] “Android executables mandatorily need to be pie,” https://source.android.
com/security/enhancements/enhancements50.html.

[19] R. Wartell, Y. Zhou, K. W. Hamlen, M. Kantarcioglu, and B. Thu-
raisingham, “Differentiating code from data in x86 binaries,” in Joint
European Conference on Machine Learning and Knowledge Discovery
in Databases. Springer, 2011, pp. 522–536.

[20] “Apple warn developers when the binaries are not compiled as position-
indepent,” https://developer.apple.com/library/content/qa/qa1788/ index.
html.

[21] D. Andriesse, X. Chen, V. van der Veen, A. Slowinska, and H. Bos, “An
in-depth analysis of disassembly on full-scale x86/x64 binaries.”

[22] C. Cifuentes and M. Van Emmerik, “Recovery of jump table case
statements from binary code,” in IEEE International Workshop on
Program Comprehension, 1999.

[23] R. Qiao and R. Sekar, “Function interface analysis: A principled ap-
proach for function recognition in COTS binaries,” in The 47th IEEE/I-
FIP International Conference on Dependable Systems and Networks,
2017.

[24] “Exception syndrome register(esr) interpretation,” http://infocenter.arm.
com/help/topic/com.arm.doc.ddi0500e/CIHFICFI.html.

[25] “Android compatibility test suite,” https://source.android.com/
compatibility/cts/index.html.

[26] “Dwarf standards,” http://www.dwarfstd.org.
[27] D. Niemi, “Unixbench 4.1. 0.”
[28] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in

memory,” in Security and Privacy (SP), 2013 IEEE Symposium on.
IEEE, 2013, pp. 48–62.

[29] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-Flow
Integrity,” in Proceedings of the 12th ACM Conference on Computer
and Communications Security. ACM, 2005, pp. 340–353.

[30] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,
L. Lozano, and G. Pike, “Enforcing forward-edge control-flow integrity
in gcc & llvm,” in 23rd USENIX Security Symposium (USENIX Security
14), 2014, pp. 941–955.

[31] B. Niu and G. Tan, “Rockjit: Securing just-in-time compilation us-
ing modular control-flow integrity,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security. ACM,
2014, pp. 1317–1328.

[32] ——, “Per-input control-flow integrity,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. ACM,
2015, pp. 914–926.

[33] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières, “Ccfi:
cryptographically enforced control flow integrity,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2015, pp. 941–951.

[34] V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz,
“Opaque control-flow integrity.” in NDSS, 2015.

[35] P. Team, “grsecurity: RAP is here,” 2016.
[36] M. Zhang and R. Sekar, “Control flow integrity for cots binaries,” in

Presented as part of the 22nd USENIX Security Symposium (USENIX
Security 13), 2013, pp. 337–352.

[37] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, “Practical Control Flow Integrity and Ran-
domization for Binary Executables,” in Proceedings of the 2013 IEEE
Symposium on Security and Privacy, ser. SP ’13. Washington, DC,
USA: IEEE Computer Society, 2013, pp. 559–573.

[38] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of
control: Overcoming control-flow integrity,” in 2014 IEEE Symposium
on Security and Privacy. IEEE, 2014, pp. 575–589.

[39] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, “Stitching the
gadgets: On the ineffectiveness of coarse-grained control-flow integrity
protection,” in 23rd USENIX Security Symposium (USENIX Security 14),
2014, pp. 401–416.

[40] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “Control-
flow bending: On the effectiveness of control-flow integrity,” in 24th
USENIX Security Symposium (USENIX Security 15), 2015, pp. 161–
176.

[41] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi,
and S. Sidiroglou-Douskos, “Control jujutsu: On the weaknesses of fine-
grained control flow integrity,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2015,
pp. 901–913.

[42] P. Team, “PaX address space layout randomization (ASLR),” 2003.
[43] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Efficient techniques for com-

prehensive protection from memory error exploits.” in Usenix Security,
2005.

[44] L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z. Snow, and F. Monrose,
“Isomeron: Code randomization resilient to (just-in-time) return-oriented
programming.” in NDSS, 2015.

[45] Y. Chen, Z. Wang, D. Whalley, and L. Lu, “Remix: On-demand live
randomization,” in Proceedings of the Sixth ACM Conference on Data
and Application Security and Privacy. ACM, 2016, pp. 50–61.

[46] D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and H. Okhravi, “Timely
rerandomization for mitigating memory disclosures,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2015, pp. 268–279.

[47] J. Gionta, W. Enck, and P. Ning, “Hidem: Protecting the contents
of userspace memory in the face of disclosure vulnerabilities,” in
Proceedings of the 5th ACM Conference on Data and Application
Security and Privacy. ACM, 2015, pp. 325–336.

[48] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, M. Negro, C. Liebchen,
M. Qunaibit, and A.-R. Sadeghi, “Losing control: On the effectiveness
of control-flow integrity under stack attacks,” in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2015, pp. 952–963.

[49] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and
T. Holz, “Counterfeit object-oriented programming: On the difficulty
of preventing code reuse attacks in c++ applications,” in 2015 IEEE
Symposium on Security and Privacy. IEEE, 2015, pp. 745–762.

[50] R. Rudd, R. Skowyra, D. Bigelow, V. Dedhia, T. Hobson, C. L.
Stephen Crane, P. Larsen, L. Davi, M. Franz, A.-R. Sadeghi, and
H. Okhravi, “Address-Oblivious Code Reuse: On the Effectiveness
of Leakage Resilient Diversity,” in Proceedings of the Network and
Distributed System Security Symposium (NDSS’17), Feb 2017.

