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Abstract—Despite a great deal of work to improve the TLS
PKI, CA misbehavior continues to occur, resulting in unau-
thorized certificates that can be used to mount man-in-the-
middle attacks against HTTPS sites. CAs lack the incentives
to invest in higher security, and the manual effort required
to report a rogue certificate deters many from contributing to
the security of the TLS PKI. In this paper, we present IKP, a
platform that automates responses to unauthorized certificates
and provides incentives for CAs to behave correctly and for
others to report potentially unauthorized certificates. Domains
in IKP specify criteria for their certificates, and CAs specify
reactions such as financial penalties that execute in case of
unauthorized certificate issuance. By leveraging smart contracts
and blockchain-based consensus, we can decentralize IKP while
still providing automated incentives. We describe a theoretical
model for payment flows and implement IKP in Ethereum to
show that decentralizing and automating PKIs with financial
incentives is both economically sound and technically viable.

I. INTRODUCTION

Transport Layer Security (TLS) [30] secures much of the en-
crypted client-server communication in the World Wide Web:
HTTPS [77], which runs over TLS, is now estimated to be used
in more than half of all page loads in web browsing [39]. The
security of the TLS public-key infrastructure (PKI) heavily
relies on certificate authorities (CAs), who make a business
out of certifying the authenticity of sites’ public keys. Without
the correct operation of CAs, the use of encryption provides
no benefit, as clients may use a key that does not actually
belong to the legitimate server.

Unfortunately, CAs have shown to be prone to compromises
and operational errors. These failures have occurred all around
the world, including the US [26, 64], France [51], the Nether-
lands [42], Turkey [50], and China [52]. Even Symantec,
which has almost a quarter of the TLS-certificate market
share [10], issued unauthorized certificates for Google and
almost 2,500 unauthorized certificates for both real and unreg-
istered domains as part of a test in 2015 [80, 81]. Thus, while
CAs play a critical role to the security of the TLS ecosystem,
they have failed in this role by issuing unauthorized certificates
in error, maliciously issuing certificates to avoid changing
browser requirements [56], or even selling CA authority as
a service [74]. Some of these failures have led to man-
in-the-middle (MitM) attacks, allowing the interception of
communication with popular sites such as Google, Microsoft
Live, Skype, and Yahoo [65, 66].

We observe that despite the need for CAs to invest more in
security, there are insufficient incentives for them to do so.

CAs that issue unauthorized certificates enable MitM attacks
between clients and domains, who suffer the consequences
of a rogue CA’s misbehavior [59]. These MitM attacks are
often only visible to those being attacked, since an adversary
could present an unauthorized certificate for a domain only to
some clients, so that the other clients do not even know that
the unauthorized certificate exists. Moreover, while CAs may
face the consequence of being distrusted by browsers [52, 72],
some CAs are “too big to fail,” meaning that their removal
would block access to too many HTTPS sites and is thus
unlikely. While proposed solutions to the above problems
exist [54, 83], CAs generally gain little reward for a reputation
of security and face few consequences for misbehaving [14].

We also observe that due to a lack of automation,
reporting unauthorized certificates is time and labor-
intensive. When a CA issues an unauthorized certificate for a
domain, a detector (the entity who discovers the certificate) has
several options. First, a detector can contact the misbehaving
CA directly, because only the CA can revoke the certifi-
cate. However, if the CA is malicious, it may never revoke
the certificate, leaving the domain open to potential MitM
attacks. Even revocation may not help since some widely-
used browsers do not check revocation information at all [55].
The detector could instead contact browser vendors, who can
update client browsers to reject the certificate [49]. However,
such a response is unlikely except for relatively popular sites.
A detector could also pursue legal action against the CA, but
this process may be long, costly and ultimately unfruitful, due
in part to the fact that CAs are located in approximately 52
countries [33], each with its own legal system. Thus due to the
unlikely recourse and the effort required, there are insufficient
incentives for detectors to report unauthorized certificates.

Therefore, in this paper we ask two fundamental questions:
how can we better incentivize correct CA behavior and
the reporting of misbehavior, and how can we automate
the processing of an unauthorized certificate report? In
particular, how can we formally define what it means for a
CA to behave correctly? What incentives can we offer CAs
and detectors? What mechanisms are necessary for automating
the handling reports of misbehavior, and what benefits does
automation provide?

As a first step towards answering these questions, we
propose Instant Karma PKI (IKP), an automated platform
for defining and reporting CA misbehavior that incentivizes
CAs to correctly issue certificates and detectors to quickly



report unauthorized certificates. IKP allows domains to specify
policies that define CA misbehavior, and CAs to sell insurance
against misbehavior. We also propose a formal model for
incentive analysis to show that IKP provides incentives for
CAs and detectors and punishes misbehaving CAs. We further
show that with our incentive structure, even CAs that collude
with other domains or detectors cannot profit financially.

More concretely, for the TLS Web PKI, IKP allows partici-
pating HTTPS domains to publish domain certificate policies
(DCPs), policies that specify criteria that the domains’ TLS
certificates must meet. Any violation of these policies consti-
tutes CA misbehavior. IKP allows participating CAs to sell
reaction policies (RPs) to domains, which specify financial
transactions that execute automatically when an unauthorized
certificate is reported. Domains affected by the certificate, the
detector, and the CA receive payments via these transactions.
The payment amounts are set such that CAs expect to lose
money by issuing unauthorized certificates, and detectors
expect to gain money by reporting unauthorized certificates.
Information about CA misbehavior and RP offerings are pub-
lic, allowing domains to use this information as an indicator of
how likely a CA is to maintain high security and thus protect
against unauthorized certificate issuance.

We have implemented a prototype of IKP in Ethereum [87],
a blockchain-based smart contract platform that provides
important properties for achieving incentivization and au-
tomation. Ether, the cryptocurrency underlying Ethereum, is
a natural basis for implementing financial transactions and
incentives. The smart contract ecosystem provides a public,
automated mechanism for handling detector reports and exe-
cuting financial transactions, ensuring quick responses to CA
misbehavior. Furthermore, Ethereum provides decentralization
so that no trusted third party is needed to register DCPs, RPs,
and financial assets. While incentivization and automation are
possible with a centralized third party, we protect IKP itself
against compromise by building it on top of Ethereum.

To provide realistic incentive amounts, we also analyze
certificate offers from the most widely-used CAs, quantifying
and bound the risks of CA misbehavior. These insights allow
us to predict realistic payment amounts for RP.

In summary, we make the following contributions:
• We present the design of IKP, including a framework for

domain policies and reactions to CA misbehavior.
• We demonstrate through an economic analysis that IKP

incentivizes good CA behavior and punishes misbehavior.
• We implement an IKP prototype in Ethereum and discuss

the present and future technical feasibility of IKP.
• We analyze real-world data from existing CAs to deter-

mine realistic values for RP offerings.

II. PROBLEM DEFINITION AND ADVERSARY MODEL

In a nutshell, the goal of this paper is to provide incentives
for correct CA behavior (i.e., due diligence when issuing
certificates) and automation in processing reports of unautho-
rized certificates from detectors. To achieve this goal, we must
design a system that can 1) define CA misbehavior, 2) evaluate

whether a given certificate constitutes misbehavior according
to the above definition, 3) specify reactions and payments
that will occur in response to CA misbehavior, 4) process
reports from detectors regarding unauthorized certificates, and
5) execute these reactions and payments automatically after a
CA has misbehaved. Achieving these goals allows us to deter
CA misbehavior by choosing payments that provide the ap-
propriate incentives for correct CA behavior and for reporting
unauthorized certificates. These incentives also increase the
number of entities monitoring CAs and thus the probability
that an unauthorized certificate is quickly detected. Automatic
execution of reactions and payments ensures ”instant karma”
in IKP: detectors quickly receive rewards and CAs quickly
receive punishment.

A. Desired Properties

A system achieving the above goals should have at least the
following properties:

• Public auditability: all information required to detect an
unauthorized certificate is publicly accessible.

• Automation: once CA misbehavior has been reported
and confirmed, reactions should automatically proceed
without requiring additional information or authorization.

• Incentivization: entities that expose CA misbehavior
have a positive expected return on investment (ROI).

• Deterrence: CAs have a negative expected ROI for issu-
ing an unauthorized certificate for a domain, regardless
of the entities they collude with.

As secondary goals, the system should achieve decentraliza-
tion (i.e., the absence of a central trusted entity in the system)
and MitM prevention (i.e., the rejection of all unauthorized
certificates by clients).

B. Adversary Model

Our adversary’s goal is to issue a rogue certificate while
maintaining a positive expected ROI. The adversary may
access the long-term private keys of one or more CAs (and
can thus issue arbitrary certificates from these CAs), as well as
those of colluding domains. The adversary may take any action
within the PKI (e.g., issuing/revoking certificates) or within
IKP (e.g., issuing RPs or reporting certificates) to obtain a net
positive ROI among all entities it controls. We assume that
the adversary cannot break standard cryptographic primitives,
such as finding hash collisions or forging digital signatures.
The adversary also cannot compromise the private keys of
arbitrary domains. In our blockchain-based instantiation, we
further assume that the adversary cannot control a majority of
hashing power in the blockchain network.

III. IKP OVERVIEW

In this section, we provide an overview of the key features
of IKP. We begin by introducing its main components, and
then describe the main functions of the system. An extended
version [60] of this paper provides additional material.
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Fig. 1. Overview of the entities and functions in IKP.

A. Architecture

IKP is an extension of the standard TLS architecture, and
thus as in TLS, CAs issue certificates to domains, whose
servers carry out TLS handshakes with clients. As shown in
Figure 1, IKP introduces two new entities: the IKP authority
and detectors.

The IKP authority is responsible for the core functionality
of IKP. Specifically, the IKP authority maintains information
on CAs such as identifiers (e.g., DNS names), public keys
to authenticate to the IKP authority, and financial account
information at which to receive payments. The IKP authority
also stores domain certificate policies (DCPs), which are
provided by domains and can be used to computationally
determine whether a given certificate is authorized for a
domain, and reaction policies (RPs), which specify automatic
reactions that occur if an unauthorized certificate is reported.
The IKP authority is responsible for executing these reactions.
The IKP authority also maintains a balance called the global
fund, which can send and receive payments in IKP.

Detectors are responsible for reporting suspicious certifi-
cates to the IKP authority. They monitor certificates issued by
CAs, and report any certificates they deem to be unauthorized.
Any entity, be it a CA, domain, or client, can detect and report
CA misbehavior. Each detector must have a financial account
at which it can receive rewards for successfully reporting an
unauthorized certificate.

Entities in the standard TLS architecture have additional re-
sponsibilities. CAs who have registered with the IKP authority
can issue RPs, thus acting as a sort of “insurer” against CA
misbehavior. Domains register DCP with the IKP authority,
providing a public policy that defines CA misbehavior (i.e.,
issuing an unauthorized certificate). While Figure 2 shows
intuitive examples of a DCP and an RP, the logic of both DCPs
and RPs is determined by machine-understandable policies
specified by the domain and by the CA, respectively, providing
flexibility in addition to automation and financial incentives.

B. Operation

We now summarize the actions that occur in IKP, some of
which are shown in Figure 2.

Detector

CA A

a.com

IKP Authority
• Collect registration fees
• Store DCPs/RPs
• Process detector reports
• Execute payouts

Reaction Policy (RP)
"If anyone issues an 

unauthorized cert for a.com,
I’ll pay them $X and whoever 
finds such a cert will get $Y“

Domain Certificate
Policy (DCP)

"Only CAs A and B can
issue certificates for a.com" cert {a.com, K’} "Unauthorized 

certificate!"

cert {a.com, K}

Fig. 2. Sample interactions between entities in IKP. As in Figure 1, yellow
denotes a CA and purple denotes a domain.

TABLE I
EXPLANATION OF FIELDS IN A CA REGISTRATION.

Field Use

CA name identify CA
Valid from specify start period of information validity
Payment account receive payments for CA
Public keys list of CA’s public keys
Update keys authorize updates to this information (default: empty)
Update threshold threshold of signatures required for updates (default: 1)

CA registration. A CA registers its information with the IKP
authority. Specifically, the CA registers its identifier, financial
account information, one or more public keys, and an update
policy as shown in Table I. To update its registration, the CA
must provide signatures on the update with a threshold number
of its update private keys.
Domain registration. A domain registers a DCP with the
IKP authority. Specifically, the domain registers its Domain
Name System (DNS) name, one or more public keys, financial
account information, and a checker program that decides
whether a given certificate is authorized for the domain.
RP issuance. A registered domain negotiates the terms of an
RP with a registered CA. The RP contains the domain name,
CA identifier, validity period, a reference to the domain’s DCP,
and a reaction program that contains the payments that occur
in response to CA misbehavior. The domain pays the CA to
issue the RP, with the IKP authority acting as a mediator to
ensure a fair exchange.
Certificate issuance. A domain obtains a certificate from a
CA. The CA does not have to be the same one that issued
the domain’s RP, and does not need to have registered with
the IKP authority. Thus certificate issuance occurs in the same
way as in TLS.
Misbehavior report. A detector sends evidence of CA mis-
behavior (usually an unauthorized certificate) and its financial
account information to the IKP authority. The detector must
pay a small reporting fee to prevent detectors from reporting
all certificates they see. We also use a commitment scheme to
prevent frontrunning of detector reports. The IKP authority
runs the checker program on the certificate to determine
whether the certificate is authorized.
Reaction. If a reported certificate is unauthorized, the IKP
authority triggers a reaction by running the reaction program



specified in the domain’s RP. The reaction program usually
executes financial transactions, which are sent to the financial
accounts of the CA, domain, and detector as appropriate.

The use of checker programs and reaction programs provide
expressivity and extensibility to policies and reactions in IKP.
As we describe in Sections IV and V, DCPs can provide
features such as CA whitelisting, public-key pinning, and
short-lived certificate enforcement, while RPs can provide
financial payouts to parties beyond the CA, domain, and
detector.

IV. DOMAIN CERTIFICATE POLICIES (DCPS)

In this section, we take an in-depth look at domain cer-
tificate policies. In particular, we describe the features and
format of DCPs, and present several examples of DCPs that
enable various useful defenses against CA misbehavior. We
conclude this section by describing the relevant operations for
registering and updating DCPs.

A. Design Principles

We begin by describing the fundamental principles on which
we base our design for DCPs. In particular, we identify
three main design principles: 1) policies are domain-specified,
2) policies offer sufficient expressiveness, and 3) policy infor-
mation is public, authenticated, and consistent. These princi-
ples help ensure that we can use DCPs to determine certificate
authorization (i.e., whether a certificate is considered autho-
rized or not for a given domain) securely and effectively.

1) Domain-specified policies. The information used to deter-
mine certificate authorization is specified by that domain itself.
We observe that only domains know with certainty which
certificates they have and have not authorized. Therefore, to
enable others to deem certificates unauthorized as opposed to
simply suspicious, domains must specify policies governing
their certificates. By adhering to this principle, we can ensure
that any entity with a domain’s policy information can be a
detector and find unauthorized certificates for that domain.

2) Policy expressiveness. The information used to determine
certificate authorization is expressed in a Turing-complete
language and can thus represent arbitrarily complex policies.
Proposed certificate policies in the literature [44, 84] allow
domains to specify only a small set of parameters (e.g., gov-
erning how their certificates should be verified or how errors
in the TLS handshake should be handled). These policies
cannot be changed in a backwards-compatible way without
upgrading all client browsers and possibly all existing domain
policies. Moreover, such policies do not enable the automation
of reaction to CA misbehavior. IKP provides a general format
for DCPs by allowing domains to specify executable code that
determines whether or not a given certificate is authorized and
specifies concrete reaction to misbehavior.

3) Public, authenticated, and consistent information. The
information used to determine certificate authorization is
stored in a publicly accessible location, is globally consistent,
and its authenticity can be verified by the public. Publicly

Domain Certificate Policy (DCP)
Domain Name: a.com
Valid From: 17 Aug 2016 0:00:00 UTC
Version Number: 1
Payout Account: AB01 2345…
Update Keys: 0xdd8cb5a2…
Update Threshold: 1
Checker Program: 0xf4956b3e…

a.com
Accounts:
• AB01 2345…

Keys:
• 0xdd8cb5a2…

Checker Program (0xf4956b3e…)
approved = [CA A, CA B]
def check(cert):
  issuer = parse(cert).issuer
  if (issuer in approved)
    return true
  else
    return false

Fig. 3. A sample DCP with a checker program written in pseudocode.

TABLE II
EXPLANATION OF DCP FIELDS.

Field Use

Domain name identify domain for which the policy is active
Valid from specify start period of DCP’s validity
Version number identify version of this domain’s DCP
Payment account receive payments for domain
Checker program implement the DCP’s certificate policy
Update addresses (default empty) authorize DCP updates
Update threshold (default 1) thresh. of signatures required for DCP updates

accessible information ensures that all potential detectors
can find unauthorized certificates using a domain’s policy
information. Globally consistent information ensures that all
potential detectors see the same policy for a domain and can
thus determine with certainty whether a certificate for that
domain is authorized.

B. DCP Contents

We now describe the contents of a DCP. Figure 3 shows a
sample DCP, and Table II describes the fields of a DCP. In
short, a DCP contains identifying information for the domain,
(its DNS name and financial account information) and for the
policy (the Valid From and Version Number fields).
A DCP also contains the policy itself, namely, the threshold
of signatures required to authorize changes to the DCPs (the
update keys and update threshold) and the checker program.

The Valid From and Version Number fields of a
DCP are used in part to help determine whether or not a
certificate constitutes CA misbehavior. In particular, each RP
is tied to a specific version of a domain’s DCP, and a given
certificate only triggers an RP if 1) the certificate’s validity
period began after the DCP’s Valid From time, 2) the
RP’s Version Number field matches that of the DCP, and
3) the checker program deems the certificate unauthorized
(as described below). Because the DCP defines misbehavior
by the output of the checker program, an update to a DCP
only increments the version number if the checker program is
changed. This prevents a domain from having to renegotiate
an RP for changing DCP fields unrelated to its policy, such as
its financial account information.



The update keys and update threshold protect a domain
against the loss or compromise of a private key. We allow
a domain to update its DCP by authorizing the update with
signatures from a threshold of its update keys. Because DCPs
are crucial to determining CA misbehavior, domains should
protect against unauthorized updates with a sufficiently high
update threshold. Our recovery system is not foolproof; a do-
main is ultimately responsible for managing its own recovery
addresses. However, our approach provides a tunable level of
security and recoverability for each domain. In order to guard
against a mass loss or compromise of its private keys, a domain
can store some of its private keys offline, with trusted peers,
or even with a large group of authorities such as one provided
by the CoSi protocol [82].

C. Sample Checker Programs
We now present example checker programs in IKP. These

examples represent a range of existing proposals to improve
the TLS PKI and demonstrate the flexibility of IKP’s checker
programs. For the following examples, we assume the use of
X.509 v3 certificates [27], but we note that checker programs
can define their own formats or handle multiple formats,
allowing different certificates formats to coexist in IKP. We
also assume access to a method to parse a certificate and
extract the contents of its fields.
CA whitelisting. A checker program can enforce the use of
certain CAs by extracting the Issuer Name field of the
certificate and checking whether the issuer is on a whitelist
of CA names. In order to enforce the use of a specific
set of CA keys, the checker program can instead extract
the Authority Key Identifier extension for X.509
and check the identifier against a whitelist. In either case,
the program first defines a whitelist and then performs the
appropriate check.
Public key pinning. A checker program can implement a form
of public key pinning by extracting the Subject Public
Key Info field of the certificate and checking this key
against a whitelist. Similarly to above, the program defines
the whitelist and performs the appropriate check. We note
that unlike other key pinning solutions, no trust on first use is
necessary because DCPs are public and consistent and thus the
client can simply check the domain’s DCP for the key pins.
Short-lived certificates. A checker program can enforce the
use of short-lived certificates [85] by checking that a certifi-
cate’s validity period does not exceed a given maximum value.
This can be done by extracting the Not Before and Not
After fields from the certificate and calculating the time
difference to determine the length of the certificate’s validity
period, and checking that this length is less than a specified
maximum allowable value.
Wildcard restrictions. A checker program can prevent the
use of wildcard certificates by simply extracting the Subject
Name field and checking that the wildcard character * does
not appear.
Certificate Transparency. A checker program can implement
criteria similar to those of Certificate Transparency [54] by

checking for proof that the certificate has been publicly logged.
The checker program first defines a list of trusted logs. The
program can then query the logs directly or take a proof from
a trusted log as input in addition to the certificate itself.

Combining checker programs. An additional benefit of
public consistent DCPs is that domains can see other checker
programs and model their own from these programs. We
additionally allow domains to call other checker programs.
This feature allows a domain to write a checker program that
simply calls a set of checker programs, thus allowing the
domain to combine existing policies. For example, a domain
can specify that all criteria in the called checker programs
must be fulfilled by requiring that all referenced programs
deem a certificate authorized, or specify that some threshold
of referenced programs must do so by counting the number
of referenced programs that deem the certificate authorized.

D. DCP Operations

We now describe relevant operations for a DCP. Specifi-
cally, we cover the initial registration of a domain’s DCP as
well as the update process.

DCP registration. A domain D requests to initially register
its DCP in the blockchain by sending a message to the IKP
authority containing its DNS name, the contents of its initial
desired DCP, and information to authenticate itself to the
IKP authority. Specifically, to authenticate itself, D provides
a signature on its name and DCP with 1) its DNSSEC [13]
private key, as well as a DNSSEC signature chain to the
ICANN root zone key, or 2) its TLS private key, as well as a
certificate chain from the corresponding public key to a root
CA key. This authentication method, which we call the use of
a bootstrap proof, provides a way for D to show control over
its identifier and public key by leveraging an existing PKI.
Because IKP is tied to TLS and hence to DNS names, we can
use bootstrap proofs to protect DCP squatting by malicious
entities that do not own the names they claim.

It is safer to use DNSSEC-based bootstrap proofs, as
DNSSEC has had far fewer compromises than TLS and only
requires a single root key to be stored by the IKP authority,
However, in a measurement we conducted using data from
Censys [31], we found that only 649 of the top 100,000 most
popular domains use both DNSSEC and HTTPS. Therefore,
few domains will be able to reap the benefits of using
DNSSEC-based bootstrap proofs.

Using TLS-based bootstrap proofs requires the IKP author-
ity to select a list of accepted root CA keys, and also runs the
risk that an unauthorized certificate can be used to register a
DCP. To address the first problem, the IKP authority could
simply select a set of 28 root certificates which are present in
most popular desktop and mobile operating systems and web
browsers [75]. To address the second problem, we can allow
domains to override an existing registration by submitting
multiple independent bootstrap proofs. This approach makes
registration easy for most domains, but allows a domain whose
registration is stolen by an adversary with an unauthorized
certificate to recover by obtaining an additional certificate.



We note that bootstrap proofs can make it more difficult
for legitimate domains to register themselves with the IKP
authority, and are not foolproof. However, given the crucial
role DCPs play in IKP, we need to protect them from being
easily claimed and held by adversaries. We also do not
envision bootstrap proofs as a long-term solution, as they
are based on PKIs that suffer from the problems that we
aim to solve with IKP. We can instead configure the IKP
authority such that as deployment increases, the bootstrap
proof requirement can be relaxed or eliminated.
Updates. A domain D can update its information by sending
a transaction to the IKP contract with its new DCP or registra-
tion and signatures from a threshold number of its update keys.
The IKP authority verifies each of these signatures, checks
that the number of signatures is at least the threshold number
required by D’s current DCP, and if so, updates D’s DCP in
its registry. Recall that the IKP authority only increments the
version number of D’s DCP if the checker program changes.

V. REACTION POLICIES (RPS)
In this section, we take an in-depth look at reaction policies.

In particular, we begin by explaining the principles behind the
design of RPs, and describe the contents of RPs. We then
describe payout reaction programs, which provide financial
incentives in IKP. We conclude this section by describing the
relevant operations for issuing RPs, selecting the relevant RP
for a domain, and executing an RP.

A. Design Principles

We begin by describing the design principles upon which
we base our design of RPs. In particular, we identify three
main design principles for RPs: 1) certificate-independence,
2) policy-adherence, and 3) single-use. These principles help
ensure that reactions to misbehavior do not cause perverse
incentives or unintended consequences. We next discuss the
three principles in detail.
1) Certificate-independence. An RP should be decoupled
from public-key certificates. Like certificates, RPs are negoti-
ated between CAs and domains. However, certificates and RPs
are independent: CAs issue RPs in addition to certificates,
and therefore domains can obtain certificates and RPs from
different CAs. RPs provide a relying party with a measure of
confidence in a domain’s certificates, and serve a fundamen-
tally different role from certificates in the IKP ecosystem. In
particular, an RP protects a domain against any unauthorized
certificate issuances during the lifetime of the RP.
2) Policy-adherence. An RP should be bound to a specific
policy for a domain. In particular, since a DCP may change
over time, an RP should represent a reaction to violations of
a specific version of a domain’s DCP. Binding an RP to a
specific DCP version ensures consistency between the criteria
for certificate authorization and the reaction to the violation of
those criteria. This principle also implies that a domain must
have a DCP before obtaining an RP.
3) Single-use. An RP should be limited to a single instance of
CA misbehavior. Because RPs may execute financial payments

Reaction Policy (RP)
Domain Name: a.com
Issuer: CA C
Valid From: 18 Aug 2016 0:00:00 UTC
Valid To: 17 Aug 2017 23:59:59 UTC
DCP Version Number: 1
Reaction Program: 0x5f8cde12…

DCP
Domain Name:
  a.com
Valid From:
  17 Aug 2016 0:00:00 UTC
Version Number:
  1
…

Payout Reaction Program (0x5f8cde12…)
Affected-Domain Payout: $100
Termination Payout: $10
Detection Payout: $50

Fig. 4. A sample RP with a payout reaction program. The domain name and
version number in the RP must match those of the DCP, and the start of the
RP’s validity must be after that of the DCP.

TABLE III
EXPLANATION OF RP FIELDS.

Field Use

Domain name identify domain for which the RP is active
Issuer CA who issued the RP
Valid from specify start period of RP’s validity
Valid to specify start period of RP’s validity
Version number version of domain’s DCP used to trigger RP
Reaction program implement a response to CA misbehavior

for which funds must be available, enforcing single-use RPs
helps ensure the availability of such one-time resources for
each instance of misbehavior. Single-use RPs also prevent ad-
versaries colluding with domains or detectors from repeatedly
triggering an RP to obtain payouts. Thus each time a CA issues
a certificate that violates a domain’s DCP, one of the domain’s
RPs is triggered and then terminated. We note that domains can
have multiple RPs at a given time to protect against multiple
instances of CA misbehavior. However, we anticipate that in
the vast majority of cases, a domain will only have a single
RP at a given time.

B. RP Contents

We now describe the contents and format of RPs. Figure 4
shows the format of a sample RP, and Table III describes
each field of an RP. Like a DCP, an RP contains identifying
information for the domain as well as for the issuing CA. An
RP also specifies a validity period and identifies the version of
the domain’s DCP for which it is active. Finally, the reactions
that take place are specified as an address to a contract.

A reaction program contains code that can be executed by
the IKP authority when a certificate meeting certain criteria
is reported and the relevant domain’s checker program deems
the certificate to be unauthorized. As described in Section V-C,
we expect reaction programs to execute financial transactions.
After a reaction to CA misbehavior is triggered via a reaction
program, the RP containing the reaction program is destroyed.

A reaction program defines the following three methods:
1) trigger, which executes when an unauthorized certificate
is reported for the domain named in the RP, 2) terminate,
which executes upon request from a domain whose CA issued



an unauthorized certificate, and 3) expire, which executes
upon request from a CA after the RP has expired.

We note that an RP has a start and end time for its
validity, rather than only a start time as a DCP does. An
RP, like a certificate, has a limited validity period, but can
be prematurely terminated if the issuing CA misbehaves. If
an RP is terminated for any reason, the specified amount of
funds is split between the domain and the issuing CA based
on the fraction of the RP’s validity period that has passed. The
exact payouts are detailed below.

C. Payout Reaction Programs

We now provide a framework for payout reaction programs,
which specify a series of financial payments that execute in
response to CA misbehavior. Financial payments are important
to achieving incentivization, since financial payments be quan-
tified and analyzed. Our goal in designing a framework for this
class of reaction programs is to provide a general model for
who should receive payments under different circumstances of
misbehavior.

We identify three relevant parties who may receive pay-
ments if a method from a payout reaction program is executed:
1) the domain, which we denote by D, 2) the certificate-
issuing CA, which we denote by C, and 3) the detector,
which we denote by d. As Figure 4 shows, a payout reaction
program specifies three payouts: affected-domain payouts,
termination payouts, and detection payouts. To ensure that the
IKP authority has a sufficient balance for these payouts, an
amount E is sent to the global fund when the RP is issued.
Affected-domain payouts. The affected-domain payout (writ-
ten a) is paid to domain D in the event that a registered CA
issues an unauthorized certificate in D’s name. The payout
compensates D for the security risk it incurs by having
an unauthorized certificate that could be used in a MitM
attack. The domain does not receive this payout in case of
misbehavior by an unregistered CA.
Termination payouts. The termination payout (written t) is
split between domain D and CA C if D terminates the RP.
The termination payout compensates D for lost trust in C
after its misbehavior and contributes to the costs of obtaining
a new certificate and/or RP. The split of the termination payout
between D and C is proportional to the amount of time left
in the RP’s validity. To ensure that D receives some minimum
amount of funds, we set a systemwide parameter τ that D is
guaranteed to receive. Letting α ≤ 1 denote the fraction of
the RP’s remaining validity, we then have

tD = α · (t− τ) + τ (1)

Because 0 ≤ α ≤ 1, we see that tD is bounded by

τ ≤ tD ≤ t (2)

We note that although C does receive funds from the termina-
tion payout in spite of its misbehavior, we show in Section VI
that C loses funds compared to if it had behaved correctly.
Detection payouts. The detection payout (written δ) is the
amount paid to whomever reports an unauthorized certificate

to the IKP contract. The payout provides an incentive for
entities to monitor CA operations in search of unauthorized
certificates. Domains can negotiate their own detection reward;
high-profile domains may choose to specify a higher detection
payout than domains for which security is less important.
The RP specifies the detection payout for misbehavior by
a registered CA. If a detector reports misbehavior by an
unregistered CA, the detector instead receives a smaller payout
amount m. This reduced payout deters a collusion attack that
we describe in Section VI.

D. RP Operations

We now describe relevant operations for an RP issued in
IKP. Specifically, we cover RP issuance as well as the sce-
narios in which each of the reaction program’s three methods
(trigger, terminate, and expire) are executed.
RP issuance. When a domain D wants to purchase an RP
from a CA C registered in IKP, the two parties first agree on
the terms of the RP or certificate out of band. In particular,
for an RP with a payout reaction contract, D and C negotiate
the payouts a t, and δ, as well as the price ρ of the RP. IKP
sets two constraints on the amounts that must hold:

t < ρ < a+ τ (3)
m < δ (4)

These constraints are justified in Section VI.
Once C and D have agreed on the terms of the RP, we must

ensure that a domain who purchases an RP in IKP obtains what
it agreed on with the CA, and conversely, that the CA receives
the appropriate payment for the RP that it has issued. We can
achieve such a fair exchange by having the IKP authority act
as a third-party escrow.

Specifically, D sends the payment for the RP or certificate to
the IKP authority, along with the hash of the RP or certificate
and C. In turn, C creates and sends the RP or certificate to
the IKP authority. To ensure that the IKP authority has enough
funds to pay out the appropriate parties, C may also need to
send additional funds to the IKP authority (see Section VIII).

The IKP authority then verifies that 1) the RP or certificate
hashes to the value provided by D, 2) the amount of funds
that C has sent over (if necessary) is sufficient to ensure that
the global fund will be able to send the payouts in case of
misbehavior, and 3) the terms of the RP meet the constraints
described above. If any of these criteria do not hold, then the
domain’s fee ρ is returned and the issuance is canceled. If all
of these criteria hold, ρ is transferred to C and any funds sent
with C’s message are transferred to the global fund.
Domain RP selection. The IKP authority maintains a mapping
between domains and a list of their currently-active RPs. When
a domain purchases a new RP, the IKP authority adds the new
RP to the domain’s corresponding list ordered by the validity
ending time. When misbehavior is reported, the IKP authority
triggers the appropriate reaction in the first policy in the list.
This scheme ensures an unambiguous reaction to an instance
of CA misbehavior while also triggering the RP that expires
the soonest.



RP trigger. If C is found to have issued an unauthorized
certificate for a domain D, then the trigger method of D’s
RP is automatically executed. For payout reaction programs, D
receives the affected-domain payout a and its share termination
payout tD, the detector receives the detection payout δ, and
C receives its share of the termination payout t − tD. The
IKP authority then removes the RP from the list of D’s RPs.
The IKP authority also records the time at which a detector
reported misbehavior by C to handle the termination case
below.

RP termination. If C is found to have misbehaved, any
domain D that has an RP issued by C can prematurely
terminate the RP. To do so, D sends a message to the IKP
authority with the RP it wishes to terminate. The IKP authority
checks that the RP’s validity began before C’s last misbehavior
and that the RP has not yet expired, and if so, executes the
terminate method. In this case, D receives its share of the
termination payout tD and C receives its share t− tD.

RP expiration. Once the validity period for an RP belonging
to a domain D has ended, the IKP authority simply removes
the RP from the list of D’s RPs. Because doing so can reduce
the liability of the issuing CA C, the IKP may also note the
reduction in liability and return funds as necessary to C’s
payment account.

VI. ANALYSIS

In this section, we analyze the design of IKP. In particular,
we model the incentives of each entity in the IKP ecosystem
by considering the flow of payments among entities for
each operation (such as RP issuance). Using this model, we
demonstrate two important guarantees that hold in IKP:

1) Incentives for DCP compliance and misbehavior report-
ing: issuing a certificate that complies with a domain’s
DCP or reporting a certificate that violates a domain’s
DCP results in a higher payout than alternative actions.

2) Disincentives against misbehavior and collusion attacks:
falsely reporting a valid certificate as unauthorized or
issuing a certificate that violates a domain’s DCP does
not result in a profit for a misbehaving detector or
CA, respectively, regardless of who the detector or CA
colludes with.

In the course of our analysis, we derive constraints on RP
terms that must hold for the above properties to be true.

A. Model

We begin by analyzing the payments that occur within the
model described by the constraints in the previous sections.
Table IV summarizes the payout amounts for each action in
IKP. For most of our analysis we consider a single RP lifetime
and certificate issuance, and use the following notation:

• D denotes the domain for whom a (possibly unautho-
rized) certificate is issued,

• R denotes the CA that issues the RP to D,
• C denotes the CA that issues the certificate to D,
• d denotes a detector who can choose whether or not to

report the certificate as unauthorized, and

TABLE IV
LIST OF PAYMENTS SENT FOR EACH EVENT. D REPRESENTS THE DOMAIN,

R IS THE CA THAT ISSUES THE RP, C IS THE CA THAT ISSUES THE
CERTIFICATE, d IS THE DETECTOR, AND F IS THE GLOBAL FUND. E

REPRESENTS THE AMOUNT SENT TO THE IKP AUTHORITY BY R.

Event From To Amount

Register CA C F rC

Register domain D F rD

Issue reaction policy D F ρ
R F E
F R ρ

Expire reaction policy F R E

Terminate reaction policy F D tD
F R E − tD

Report false misbehavior d F m

Report internal misbehavior d F m
F D a+ tD
F d δ
F R E − tD
C F a+ δ

Report external misbehavior d F m
F D tD
F d m
F R E − tD

• F denotes the global fund.
Note that R and C may be the same entity, and d may be any
entity (even one of D, R, or C).

To demonstrate the two central properties above, we con-
sider two scenarios of CA misbehavior. In the first scenario,
which we call internal issuance, the certificate-issuing CA C
is registered in IKP and in the second scenario, which we
call external issuance, C is not registered in IKP. Considering
these scenarios separately simplifies our analysis below. In
both scenarios, C issues a certificate to D, and can choose
whether or not to issue a certificate that complies with D’s
DCP or not. Detector d can then choose whether to report the
certificate as unauthorized or not.

For each case, we consider the payments made in the series
of events that must have occurred and can determine the net
reward of each entity by summing the payments it received
and subtracting the sum of the payments it made. We note
that we do not consider payments made outside of IKP, as we
cannot track or constrain these transactions.

Given our model, we can prove the following properties in
the two scenarios:

• Compensation of domains affected by misbehavior: a
domain with a DCP for whom an unauthorized certificate
is issued should receive a higher net payout after a
successful report.

• Rewards for successful detectors: a successful misbehav-
ior report results in a higher net payout for the detector
than an unsuccessful report or no report at all.

• Deterrence of internal misbehavior: a CA that has regis-
tered in IKP and issued an unauthorized certificate for a
domain has a negative net payout.

• Collusion-proofness for external misbehavior: in the sec-
ond scenario, a CA that has not registered in IKP cannot



collude with any set of other entities to gain a positive
net reward from issuing an unauthorized certificate.

The last property highlights the need to consider collusion
attacks in IKP. In particular, we must verify that a misbehaving
C cannot collude with other entities and sum their net rewards
to gain a profit. We observe that C will only collude with
entities that receive a positive net payout on their own, but
can purposely misbehave in order to trigger RP payouts. To
ensure that no possible collusion can result in a profit for C,
we sum the rewards of all positive-reward entities with those
of C to find the maximum profit that C can receive.

In our analysis, we assume that the CA R (who issued the
RP to D) has registered in IKP, and that the domain D has
registered a DCP. We do not consider these operations in our
analysis due to the fact that they occur once and thus should
not factor into the analysis of an individual RP’s lifetime,
which may occur (with its costs) many times.

B. Scenario #1: Certificate Issuance inside IKP

For the first scenario, we consider whether or not C misbe-
haves by issuing a non-compliant certificate, and whether or
not a detector d reports this misbehavior. We assume that the
issuance has taken place and the appropriate payments have
been made. We observe that if no misbehavior is reported,
then the RP will eventually expire, regardless of whether C
misbehaves. Thus we consider only three cases: 1) no detector
reports misbehavior, 2) C issues a compliant certificate and
detector d reports it, and 3) C issues a rogue certificate and
detector d reports it.

The first section of Table V shows the results for this
scenario, that is, how much is paid out to the involved entities,
according to Table IV, aggregated into the three cases.

Regarding the affected domain D, we observe that in the
case of reported misbehavior, D receives an additional a+ tD
than it would if no misbehavior was reported. In order for D to
profit, we require ρ < a+tD. Since we know from Equation 2
that tD ≥ τ and since we want a positive compensation for
all values of tD, we set the slightly stronger constraint

ρ < a+ τ (5)

thus ensuring compensation of affected domains.
Regarding detector d, we observe that if d reports misbehav-

ior correctly, it receives −m+ δ. To ensure that a successful
report is rewarded, the quantity −m+ δ must be positive, and
thus we set the constraint

m < δ (6)

which thus ensures rewards for successful detectors (and
unsuccessful detectors simply lose the reporting fee m).

Regarding CA C, we make a case distinction as follows.
We first consider the case C = R, that is, the same CA has
issued an RP and a certificate to domain D. In this case, we
observe (after summing up the entries for R and C) that for the
CA to lose money due to a possible misbehavior, we require
ρ < a + tD + δ. Again, since tD ≥ τ and we want a loss of
money for all possible values of tD, we obtain the stronger

TABLE V
REWARDS FOR EACH ENTITY IN DIFFERENT SCENARIOS.

Entity Unreported Rep.+Behave Rep.+Misbehave

Scenario #1: Certificate issuance by IKP-CA C

D −ρ −ρ −ρ+ a+ tD
d 0 −m −m+ δ
R ρ ρ ρ− tD
C 0 0 −a− δ
F 0 m m

Scenario #2: Certificate issuance by non-IKP-CA C

D −ρ −ρ −ρ+ tD
d 0 −m 0
R ρ ρ ρ− tD
C 0 0 0
F 0 m 0

inequality ρ < a + τ + δ which ensures the deterrence of
internal misbehavior for this scenario. However, this constraint
is subsumed by Equation 5, which sets a tighter bound on ρ.

The case of C 6= R is similar. The RP-issuing CA R should
still profit since it has not misbehaved, and we thus require
ρ > tD. Because of t ≥ tD from Equation 2, we simply let

ρ > t (7)

and obtain a positive incentivization for R. Regarding the
misbehaving CA C, we simply require the values a and δ
to be positive, which is satisfied by definition.

Finally, to avoid collusion attacks in the first scenario, we
consider the entities besides C receiving a positive reward.
We observe that although both D and d profit in the case of
misbehavior, if we sum the rewards of D, d, R, and C, the
result is −m < 0, and thus a collusion between C and all
other parties does not profit.

C. Scenario #2: Certificate Issuance outside IKP

In the external scenario, we assume that the certificate-
issuing CA C does not register with IKP. We investigate,
as before, whether or not C misbehaves, and whether or not
d reports misbehavior. We again assume that domain D has
purchased an RP from CA R, and we again observe that
if no misbehavior is reported, then the RP expires and C’s
misbehavior status does not matter.

The second area of Table V shows the results for the external
scenario, that is, how much is paid out to the involved entities,
according to Table IV, aggregated into three cases as above.

We concentrate on the differences from the previous sce-
nario. First, note that the misbehaving domain C is not
punished and thus it is not deterred from misbehavior. The
reason is that external misbehavior cannot be deterred from
within IKP. On the other hand, the CA also does not receive
any payments for good behavior if outside IKP. Similarly,
detectors are not rewarded for spotting external misbehavior.
Handing out rewards would eventually drain the global fund.

Regarding the affected domain D, we have to consider
collusion attacks since a positive payout for an affected domain
might incentivize a malicious external CA to collude with that
domain. We thus consider again the entities besides C that



make a positive reward: As C does not need to pay anything,
colluding with any entity with a positive reward results in
net profit. Colluding with R does result in a net profit, but the
profit is less than collusion would yield if C behaved, and thus
this is not a viable strategy for C. However, C can collude
with the affected domain D if the reward −ρ+ tD is positive.
To avoid this, we set ρ ≥ tD, and since tD ≤ t and we
want this constraint to hold for all values of tD, we obtain the
stronger constraint ρ ≥ t which provides collusion-proofness
in the external scenario. However, this constraint is subsumed
by Equation 7. We note that this constraint does not imply that
an affected domain is losing money. The domain receives the
termination payout, which partially offsets the cost of the RP,
and additionally benefits from the fast detection offered from
having an RP. For the same reason, we additionally set the
detector d’s reward to m instead of δ in the case of external
misbehavior (see Table IV), so that the detector’s expected
reward is zero (see Table V).

We observe that honest CAs issuing RPs benefit from
joining IKP, as they receive rewards in any case. We further
stress that domains have no financial loss when joining IKP
and purchasing RPs since they receive positive compensation
for internal misbehavior and offset their loss in case of external
misbehavior. We also observe that the constraints set by
Equation 5, Equation 6, and Equation 7 can be easily satisfied
by C, who can select ρ, a, δ, and t based on the values of
the constants τ and m. We explore realistic values for these
parameters in Section IX-B.

VII. BLOCKCHAIN BACKGROUND

In this section, we provide a brief overview on blockchain-
based cryptocurrencies, which we use to instantiate IKP. In
particular, we describe the fundamental principles underlying
blockchains through Bitcoin, and then describe Ethereum
(which we use to implement IKP) and the advantages it
offers over Bitcoin. For further details on all issues related
to blockchains, we refer readers to a more complete view of
decentralized cryptocurrencies [21].

A. Blockchain Principles and Bitcoin

At a high level, decentralized cryptocurrencies such as
Bitcoin [67] are public ledgers created and maintained through
decentralized, peer-to-peer consensus. These ledgers are most
commonly implemented as blockchains, chains of blocks
linked by hash pointers to the previous blocks and containing
lists of transactions. This structure provides full history of
all past transactions and prevents the transactions from being
retroactively modified.

Bitcoin implements transactions with a small, limited-
capability scripting language called Script [1]. The use of
Script enables a wider range of transactions such as paying
to any account, to no account (thus destroying the coin), or to
the first account to solve a puzzle. Script is deliberately non-
Turing-complete because nodes must process Script to verify
transactions and malicious Script transactions could otherwise
cause nodes to loop forever. Script can also be used to store
non-financial transactions in the ledger, such as a key-value

store (used by proposals such as Namecoin [68] to implement
a DNS-like system).

Most blockchains grow through the mining process, in
which nodes in the network race to find a value v that, when
hashed with the hash of the previous block and the transactions
since that previous block, results in a hash value of a certain
form [15]. In Bitcoin, the hash must be of a certain form
(i.e., the computed hash value must be smaller than a target
value tuned) so that a new block is found approximately every
ten minutes. Using a cryptographically secure hash function
requires a brute-force search to find v, making mining a proof-
of-work scheme [32]. A node or miner is incentivized by the
block reward, a set amount of currency given to whomever
extends the blockchain by recording the new transactions,
finding v, and then broadcasting the new block.

Because multiple miners may find v at different times,
the blockchain can fork, resulting in different versions of the
blockchain. Miners decide on which version to mine on by
Nakamoto consensus: each miner picks the chain with the
greatest length. Though multiple chains may be tied for the
longest, one of the chains will eventually become longer than
the others due to the probablistic nature of mining. Nakamoto
consensus also ensures that an adversary cannot fork from
a much earlier block, as the adversary would have to mine
enough blocks to outrun the current longest chain, which
becomes more difficult the earlier the desired block is.

The security of blockchain-based cryptocurrencies relies on
the fact that no entity controls a majority of the hashing power
of the network. Otherwise, that adversary can reverse previous
transactions (called a double-spending attack) or selectively
suppress transactions by outpacing the rest of the network’s
mining power in the long run. Controlling the network in
this way is commonly called a 51% attack in the blockchain
community, though recent work has shown that with patholog-
ically malicious behavior, controlling a smaller percentage of
the hashing power is sufficient to double-spend or to suppress
transactions [37, 40, 70, 79]. Blockchain proponents argue that
such an attack is unlikely to be sustained because doing so
would devalue the currency as the network loses trust in the
reliability of the currency.

B. Ethereum

Ethereum [87] generalizes the ideas behind blockchains
and Bitcoin Script, enabling the storage of arbitrary state and
Turing-complete computation in the blockchain. Transactions
in Ethereum represent computations in the Ethereum Virtual
Machine (EVM), and the language used for these computations
– in contrast to Bitcoin’s Script – is Turing-complete. To deter
malicious transactions that cause nodes to carry out expensive
or nonterminating computations, the sender of a transaction
must send gas, additional funds that compensate miners for
their computational and storage costs when executing the
transaction. Operations in the EVM are priced in units of gas
and each transaction specifies a gas price, offering a tuneable
incentive for miners to execute the transaction. Ethereum thus
offers a richer computational environment than Bitcoin does.
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Fig. 5. IKP architecture in our Ethereum instantiation.

Code in Ethereum is stored in smart contracts, autonomous
accounts that run their code upon receiving a transaction. A
contract maintains its own data storage and balance, access
to both of which is governed completely by its code (though
all contract data and balances can be publicly read on the
blockchain). Contracts allow for the creation of autonomous
agents whose behavior is entirely dependent on their code
and the transactions sent to them, thus providing functionality
comparable to that of a centralized party in a transparent,
decentralized manner. This benefit has been utilized in such
ambitious efforts such as Decentralized Autonomous Organi-
zations (DAOs), which aim to automate governance of a central
entity using decentralized smart contracts [43]. Ethereum thus
offers the possibility of decentralized trusted entities, a feature
not possible in Bitcoin.

VIII. IKP IN ETHEREUM

We now describe our instantiation of IKP in Ethereum,
whose architecture is shown in Figure 5. We instantiated the
IKP authority as a smart contract called the IKP contract, thus
providing a decentralized authority that does not need to be
trusted. Ethereum also provides a natural computation platform
for checker and reaction programs, and its cryptocurrency
Ether can be used as the currency for financial payments made
in IKP.

However, Ethereum had two limitations that made instanti-
ating IKP difficult:

1) Necessary solvency: CAs need to pay enough into the
global fund to cover reaction payouts resulting from their
own misbehavior.

2) Report frontrunning: detector reports (and the corre-
sponding detection payouts) can be stolen if an entity
such as a miner submits a detector’s report as its own.

Both of these required slight modifications to the centralized
version of IKP.

In this section, we first describe the general changes we
made to IKP. We then describe the techniques we used to
ensure solvency and to prevent frontrunning.

A. Modifications for Ethereum

Because all payments in our instantiation of IKP will be
in Ether, the financial account information of CAs, domains,
and detectors are simply Ethereum addresses used to send
and receive Ether transactions. Since Ethereum addresses also
represent public keys, we also use addresses as update keys
for CAs registrations and DCPs. Using Ethereum addresses in
this way allows us to take advantage of the built-in signature
verification support for messages from addresses (i.e., transac-
tions). We note that CA public keys (described in Table I are
not Ethereum addresses, as they represent public keys used to
verify certificate signatures.

All messages to the IKP contract are sent as transactions
with the appropriate funds and parameters. This includes reg-
istration messages for CA information and for DCPs, messages
sent for RP issuance, detector reports, and messages sent to
terminate an RP. Because Ethereum requires each entity to
pay the gas costs of the computation that results from the
transaction, the incentives discussed in Section VI may not
exactly hold. However, we note that the current maximum that
an entity would pay for a transaction is around 4 million gas,
which is currently worth $3.14 USD at the standard price, and
thus with current certificate prices, the gas costs are unlikely
to make a significant difference in the incentives.

Checker programs and reaction programs are also imple-
mented and stored as smart contracts, which we call check
contracts and reaction contracts, respectively. Because each
contract is its own account, referencing a checker program or
reaction program in a DCP or RP respectively can be done
by simply storing the address to the relevant check contract
or reaction contract. Similarly, combining checker programs
or reaction programs can be done by calling check contracts
or reaction contracts by address.

B. Ensuring Solvency

To ensure solvency, we need to first show that CAs pay
enough into the global fund to cover any reaction payouts that
may occur if they misbehave. We can achieve this by having
the IKP contract maintain a balance for each CA, keeping track
of the payments that come in from the CA (most often from RP
issuance). Each CA must maintain a certain minimum balance
(called the solvency threshold) in order to issue new RPs.
We define the solvency threshold for a CA C as the sum of
the maximum affected-domain payout, the maximum detection
payout, and the sum of all termination payouts, computed over
all of C’s currently active RPs. This threshold ensures that for
any single instance of C misbehaving, all of C’s RP customers
and the detector will receive their appropriate payouts.

When C initially registers, it must pay a registration fee rC ,
which prevents frivolous CA registration. When C wants to
issue a new RP, it must provide sufficient funds to maintain
its solvency threshold. However, C can also add money to its
balance without issuing an RP or add more than is necessary



Algorithm 1 IKP contract handling a misbehavior report.
1: procedure PROCESS REPORT

Input: detector address d, certificate C
2: D ← get subject name from C
3: DCPD ← lookup D in DCP map
4: CC← get check contract address from DCPD

5: if !CC.check(C) then
6: RPLD ← lookup RP list for D
7: RP← get reaction contract address from RPLD[0]
8: RP.trigger(d)
9: delete RP from RPLD

10: end if
11: end procedure

when issuing an RP. Exceeding the solvency threshold may
attract potential customer domains by giving them greater con-
fidence that C will be held accountable in case of misbehavior.
If C issues multiple unauthorized certificates and drops below
its solvency threshold, it may not have enough funds for all
of its payouts. In this case, C’s registration fee rC is used
towards the payout amount until its balance is depleted. For the
remaining payout amount, the IKP contract records the debts
and the entities owed, and this record can be used as a basis
for legal action against C. Thus while IKP cannot provide full
protection in all cases, it improves upon the existing ecosystem
by providing some automatic reactions, and only requiring
manual intervention in extreme cases.

The IKP contract stores metrics for each registered CA,
namely, the total payout value of the CA’s current RPs, the
time of the CA’s last misbehavior, the total number of RPs
the CA has issued, and the total number of instances of
misbehavior for the CA. These metrics can help domains
evaluate whether or not a CA is trustworthy.

When choosing a CA from whom to purchase an RP or
certificate, we note that a domain can query the CA’s balance
and its outstanding liabilities (the sum of all payouts in all of
its payout reaction contracts). This provides the domain with
a measure of confidence of how solvent the CA is in case of
misbehavior. Moreover, the outstanding liability amount also
serves to provide the domain with a measure of the CA’s own
confidence in its security of issuing certificates.

C. Preventing Frontrunning

To report misbehavior, a detector needs to send an unautho-
rized certificate to the IKP contract. However, we must ensure
that misbehavior reports (each containing an unauthorized
certificate) cannot be stolen via frontrunning by blockchain
miners. We achieve this by using a protocol similar to the
domain registration protocol of Namecoin [69] to report mis-
behavior: a detector d first sends a “pre-report” containing
the reporting fee and a commitment hash H(C‖s) to the IKP
contract, where C is the certificate to report and s is a secret
known only to d. After waiting for a certain number of blocks,
d opens the commitment by sending C and s to the IKP
contract. A miner or other entity that sees a pre-report does not
know s and hence cannot determine what C is until d opens the
commitment. Because reporting misbehavior requires waiting
for a set number of blocks, frontrunning is not possible.

TABLE VI
COST OF VARIOUS IKP OPERATIONS.

Approximate Cost Approximate Cost

Operation Gas USD Operation Gas USD

Verif. cert. 31 012 $0.0238 Bootstrap proof 681 731 $0.5232
Register CA 91 400 $0.0701 Register DCP 152 579 $0.1171
Update CA 34 656 $0.0266 Update DCP 181 226 $0.1391
Order RP 49 024 $0.0376 Pre-report cert 63 951 $0.0491
Create RP 226 892 $0.1741 Report cert 149 284 $0.1146
Terminate RP 99 461 $0.0763 Send payouts 107 962 $0.0829
Expire RP 39 823 $0.0306 CA Balance 39 716 $0.0305

IKP Contract Creation 1 660 319 $1.2742

Upon receiving the detector’s report, the IKP contract
checks that the certificate and secret sent by d matches the
committed value sent earlier. The contract then carries out the
check shown in Algorithm 1. If the check contract returns
deems C unauthorized, the IKP contract triggers the reaction
contract for the oldest of the domain’s RPs. We note that in
addition to the reporting fee, a detector d must also pay the
gas costs for the work performed by the IKP contract.

IX. EVALUATION

In this section, we investigate the technical feasibility and
real-world challenges of IKP in today’s blockchains. In par-
ticular, we detail our prototype implementation in Ethereum,
and describe why the current limitations of Ethereum make a
full-fledged deployment of IKP challenging. We also analyze
real-world CA data to determine reasonable quantities for
systemwide parameters based on existing prices.

A. Prototype Implementation

We implemented IKP in 290 lines of Solidity, a high-level
Ethereum language that resembles JavaScript. Our code is
available at https://github.com/syclops/ikp. We
faced numerous challenges during our implementation. In the
current version of Ethereum, full X.509 certificate parsing is
prohibitively expensive, exceeding the current maximum limit
on gas allowed by a single transaction. Accordingly, for the
purpose of check contracts, we had to resort to leveraging
the DER-encoded format [2] of the certificates, recursively
extracting type-length-value encoded byte strings and finding
the desired object identifier (OID) such as the domain’s
common name (usually defined as its DNS name).

Additionally, the current version of Ethereum does not
support RSA signature verification, which hindered our effort
to determine the approximate cost of operations in IKP. We
overcame this obstacle by using a modified version of the
JavaScript-based Ethereum virtual machine [18]. The modifi-
cation adds RSA verification and sets its cost to be 200 gas; for
comparison, the cost of verifying an ECDSA signature using
the secp256k1 curve costs 3000 gas. We obtained a roughly
similar ratio of running times in comparing signature verifi-
cation between these two algorithms on our own machines.
While RSA verification is not officially part of Ethereum,
support for signature algorithms other than ECDSA has been



considered [19] and is currently planned for future versions of
Ethereum [23].

To measure the approximate costs of running various IKP
operations, we ran the functions of our prototype implementa-
tion in a test Ethereum network. We measured the approximate
computational steps (in Ethereum’s gas) and approximate
cost (in US dollars) for creating the IKP contract and for
each operation supported by the IKP contract. To convert the
cost in gas to USD, we used the current standard price of
1.8 × 10−8 Ether ≈ 7.67 × 10−7 USD per unit of gas. For
the purposes of testing, we assumed that all strings (used for
domain and CA names) were a maximum of 32 bytes, and
that the public keys for certificate verification were 2048-bit
RSA keys.

Table VI shows the costs of various operations in gas and
USD. We observe that by far the highest cost in the system
is for checking a bootstrap proof. Much of this cost comes
from simply handling data that is the size of a standard 2048-
bit certificate, since we can also see that the cost of verifying
an RSA-signed certificate is relatively low. However, since we
are dealing with amounts (under $1 USD) that are drastically
smaller than the cost of most certificates, we can conclude that
barring large fluctuations in the gas price, gas limit, or price of
Ether, it is both technically and financially feasible to deploy
IKP in the Ethereum blockchain.

B. CA Certificate Offerings

To get an estimate of sample RP payout values, we collected
data from the most popular CAs. In particular, we examined
each of the standard TLS certificate offerings of the 20 CAs
with a market share of at least 0.1%, representing 99.9% of
all TLS certificates on the Web [10]. For each certificate,
we noted the cost of a 1-year certificate (ignoring discounts
for purchasing multi-year certificates) and the relying party
warranty provided with the certificate. In total, we examined
70 certificate offerings across 18 CAs (Deutsche Telekom did
not specify a warranty amount, and Let’s Encrypt does not
offer a warranty because its certificates are free). For each
certificate available for purchase, we also calculated the risk
as the price divided by the warranty. We note that this is an
upper-bound for the actual risk that the CAs face.

Figure 6 shows the CDF for the cost, warranty, and cal-
culated risk of each of these certificates. Of the certificates
we examined, the prices ranged from $7 (Starfield’s Standard
SSL) to $1999 (Symantec’s Secure Site Wildcard), and the
warranty amounts ranged from $10k to $10M. Some of these
warranties, however, had caveats; for example, IdenTrust, who
offers a $10M warranty, stipulates that each transaction is
covered to a maximum of $100k and each relying party is
covered to a maximum of $250k. As shown in Table VII, the
risk for each certificate varied widely, ranging from around
0.001% up to almost 8.5%.

To set sample RP values, we can conservatively estimate
the risk of a CA to be 10%; thus the affected domain payout
could be 10 times the RP cost. Using the median cost of a
certificate as a reference, we can estimate that a standard RP
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Fig. 6. Empirical CDFs of certificate costs, warranties, and assessed risks
from the most popular CAs [10].

TABLE VII
RISK UPPER-BOUNDS INFERRED FROM CA CERTIFICATE AND WARRANTY

AMOUNTS (IN US DOLLARS) FROM CA WEBSITES.

CA Certificate Cost Warranty Risk

Highest-Risk

GlobalSign [5] Wildcard $849 $10, 000 8.49e−2
GlobalSign DomainSSL $249 $10, 000 2.49e−2
StartCom [9, 71] Ext. Validation $199 $10, 000 1.99e−2
StartCom Org. Validation $119 $10, 000 1.19e−2
Entrust [7] Wildcard $699 $100, 000 6.99e−3
. . . . . . . . . . . . . . .
Certum [3] Commercial SSL $25 $222, 000 1.13e−4
Starfield [8] Standard SSL $7 $100, 000 7.00e−5
Comodo [4] EV SSL $99 $1, 750, 000 5.66e−5
IdenTrust [6] Multi Domain SSL $299 $10, 000, 000 2.99e−5
IdenTrust Standard SSL $99 $10, 000, 000 9.90e−6

Lowest-Risk

will cost ρ = $299, and thus a = $2990. Similarly, we can use
the risk to estimate that 10% of RPs may be terminated early,
and thus set the minimum termination payout as τ = $29.90.
We can estimate the reporting fee to be a small but non-trivial
amount, such as m = $5. Given these values, we can see
that the constraints from Section VI are easily satisfiable, for



example, ρ = $299, a = $2990, t = $150, and δ = $100.

X. DISCUSSION

In this section, we discuss the insights, various limitations
and proposed future work of IKP.
Blockchain Weaknesses. Blockchains have several weak-
nesses which have been demonstrated in practice. For example,
mining pools controlled a majority of hashing power in the
network before [22], allowing double-spending attacks and
suppression of selected transactions. Section XI describes
attacks that can be mounted with less than half of the network’s
hashrate. Moreover, there may be bugs in the IKP contract
which could result in exploits such as the one that plagued
the DAO in Ethereum [24], and check and reaction contracts
may have bugs as well. Learning to write secure contracts is
difficult [29], but we can build on existing work such as smart
contract formalization [45] to make IKP more robust.
Compelled Certificates. In this work, we did not explicitly
attempt to defend against nation-states who can compel CAs
to issue unauthorized certificates, as they are irrational adver-
saries with an effectively unlimited budget. However, client-
side extensions (described below) can prevent MitM attacks
even by such adversaries and record the certificate for out-of-
band responses.
Deployment Benefits. While detectors and miners can ben-
efit financially in IKP, domains, CAs, and clients can also
benefit from deploying IKP. Beyond RP payouts, domains
can be quickly alerted to CA misbehavior because of detec-
tor payouts. IKP also protects against misbehavior by both
internal and external CAs, and thus allows domains to have
greater confidence in their CAs, particularly those with good
proven reputations. CAs in IKP profit from good behavior,
and selling RPs provides a value-added service by which
CAs can compete with free certificate services such as Let’s
Encrypt [34]. Moreover, CAs can use IKP to prove a history
of good behavior, attracting more business.
Protecting Clients. In this paper, we described ways to
compensate domains affected by potential MitM attacks, but
even with RP-based payouts, clients have no protection from
the use of unauthorized certificates. To protect clients, we
can extend the IKP authority to record each unauthorized
certificate. A browser extension can then check this data during
the TLS handshake or maintain a local copy of unauthorized
certificates and reject any certificate that IKP has confirmed to
be unauthorized. A browser extension could even contribute
to this certificate blacklist, checking certificates the client sees
against the relevant domain’s DCP and reporting the certificate
if the it violates the DCP.

In our Ethereum instantiation, the first browser extension
could be implemented using events, which leverage the logging
functionality of the Ethereum virtual machine. Events cause
a logging opcode to execute in the Ethereum VM, storing
information in the receipt of the transaction that generated the
event [87]. Event information is not accessible to contracts,
but rather is designed for use in applications that can access
the blockchain history. A third-party service or the clients

themselves could then store the blockchain history to maintain
the certificate blacklist.

The second browser extension could be implemented by
sending certificates to the relevant domain’s check contract.
Because these checks do not modify any state, they do not cost
any gas to execute, and can even be run locally. The certificates
also do not need to be checked synchronously. If an unau-
thorized certificate is discovered, the browser extension could
automatically carry out the pre-report and reporting steps.
This automated reporting mechanism provides an incentive for
clients to deploy IKP and further deters CA misbehavior by
increasing the chance that an unauthorized certificate will be
quickly detected.

Future Work. We next plan to explore the following improve-
ments to IKP. First, we plan to further investigate possible
designs for check and reaction contracts, such as how a system
such as Town Crier [88] could be used to allow these contracts
to interface with real-world data. We also plan to implement
our browser extensions described above. Finally, we plan to
leverage work in mechanism design [16, 73] to formally verify
the incentive structure of IKP.

XI. RELATED WORK

In this section, we discuss work related to IKP. In particular,
we cover four main areas: log-based PKIs enhancements,
alternatives to CA-based PKIs, incentives on blockchains, and
insurance schemes.

A. Log-Based PKI Enhancements

Log-based PKI enhancements provide an alternate approach
to deterring CA misbehavior. They leverage high-availability
servers called public logs that maintain append-only databases
of certificates issued by CAs. Logs maintain Merkle hash
trees [63], which allow a log to provide efficient proofs that a
certificate is present in the log and that no previously recorded
certificates have been tampered with or deleted [28, 54]. These
proofs are sent to a client along with a domain’s certificate
to show that a log has recorded the certificate, ensuring that
an adversary attempting to use an unauthorized certificate has
exposed it to the public. Monitors can then watch logs for
suspicious certificates and report any instances of suspected
misbehavior.

The core idea of log-based PKI enhancements is that by en-
suring certificates are publicized, misbehavior can be quickly
detected, thus deterring CAs from issuing unauthorized cer-
tificates. Such exposure can also help detect unauthorized
certificates issued by accident [80]. Most log-based PKI en-
hancements rely on the domain to take action against unautho-
rized certificates [54], since only the domains themselves know
which certificates are authorized. Other approaches require the
domain to publicize policies used to determine which of its
certificates are authorized [44, 84].

Certificate Transparency (CT) [54] was the first to propose
the use of public logs in their current form, though earlier
proposals such as Sovereign Keys [33] used similar entities.
However, CT provides no support for revocation, nor does it



provide any information as to whether the logged certificates
are authorized. Revocation Transparency [53] and CIRT [78]
both provide mechanisms to enable revocation checking in
public logs. AKI [44] embeds policies into certificates that
enable recovery from private key loss or compromise, and
uses a checks-and-balances system among clients, domains,
CAs, logs, and validators (who monitor logs) to detect and
report misbehavior. ARPKI [17] presents a formally-verified
extension of AKI that provides stronger security guarantees.
PoliCert [84] separates policies from certificates and supports
multiple certificates per domain, hierarchical policies that
apply to all subdomain certificates, and domain-specified error
handling. While the idea of policies inspired DCPs in IKP,
no log-based PKI enhancement offers incentives for correct
behavior or automatic responses to misbehavior.

B. Alternatives to CA-based PKIs

Some previous approaches have also sought to diminish or
eliminate the role of CAs by providing authenticity through
other sources. For example, DANE [41] allows domains to
place public keys or certificates in DNSSEC [13], but does
not preclude CAs. Additionally, the security of DNSSEC
inherently relies on a PKI of its own roots at ICANN,
which is a single point of failure for the system and has not
been widely deployed. Public key pinning schemes such as
Chrome’s HTTPS pin [48], HPKP [35], or TACK [58] store
information about a domain’s public key at the client browser.
Perspectives [86] and Convergence [57] leverage the public
keys observed by notary servers throughout the Internet to
detect MitM attacks. However, in both of these approaches,
it is difficult to determine whether a domain has legitimately
changed its key or if a MitM attack is taking place, since the
domain does not provide any other information such as a DCP
to characterize its certificates.

Other work has sought to move PKI functionality onto
the blockchain. For example, Blockstack [11] (formerly One-
Name) leverages the Bitcoin blockchain to provide a name
registration service that also allows entities to bind public keys
to their names. However, Blockstack uses its own namespace
and a pricing rule based on the name length and the presence
of nonalphabetic characters, and does not attempt to secure
names that exist in today’s DNS. Certcoin [38] leverages
Namecoin [68] to implement a blockchain-based PKI, stor-
ing identity information in a Merkle hash tree and using
the Kademlia DHT [61] for fast lookup. However, Certcoin
does not protect existing names, and does not provide any
recoverability for identities that are falsely claimed on the
blockchain. EthIKS [20] does not implement a PKI on its own,
but rather uses the Ethereum blockchain to audit a centralized
key server for CONIKS [62]. However, neither EthIKS nor
CONIKS provides any means for responding to equivocation
or other misbehavior by key servers.

C. Blockchain-based Incentives

Most previous studies of incentives in blockchains have
been concerned with the incentives of mining. The miner’s

dilemma [36], for example, analyzes the mining pools’ game-
theoretic incentives to infiltrate and attack one another. The
selfish mining attack [37] shows that mining in the Bitcoin
network is not incentive compatible. Subsequent work further
improves on the strategy [79] and demonstrates that composing
with network attacks such as the eclipse attack [40] can
increase the revenue of selfish mining with less than half of
the network hashing power [70]. These works are orthogonal
to IKP, focusing on the incentives of blockchain consensus
rather than of applications built on the blockchain.

Other work has examined incentives that can be built on
top of the blockchain. For example, Andrychowicz et al.
examined incentives to ensure the security of multi-party
computation in the Bitcoin blockchain [12]. They showcase the
feasibility of timed commitments in Bitcoin as well as a lottery
protocol. Kumaresan and Bentov examined incentivization for
verifiable computation and proposed a mechanism to non-
interactively reward bounties for solving hard problems [46].
The presented approach, however, is impractical as it suffers
from the limitations of Bitcoin’s language script and from
the hybrid model that relies on ideal functionalities, which
are implemented through costly garbled circuits and zero-
knowledge proofs. While support for zero-knowledge proofs is
planned for Ethereum [25], we instead focus on the incentives
of a TLS-like PKI built on the blockchain.

D. Insurance Schemes

Even before cryptocurrencies, the idea of electronic insur-
ance policies were used to evaluate services in distributed
systems [47]. The idea of insurance was also proposed as
an example of an authentication metric that followed good
design principles [76]. However, both of these proposals offer
little accountability and cannot be effectively realized without
cryptocurrencies. Certificates-as-an-Insurance (CaaI) was the
first to propose the idea of integrating insurance into TLS
certificates as a means of balancing CA control and liability,
but only presented challenges and principles for desgning
such a system [59]. Our work on IKP adds a cryptocurrency-
based instantiation of the CaaI model as well as proofs of
incentivization compared to log-based PKIs.

XII. CONCLUSIONS

In this paper, we proposed IKP, a platform for reporting
unauthorized certificates and responding to CA misbehavior in
an automated and incentivized fashion. We described the full
process from registering a CA to claiming reaction payouts.
We developed a model describing reaction payouts, which
helped us discover the constraints to guide the negotiation
of reasonable reaction policies. Finally, we discussed the
deployability incentives in today’s Internet and created an
decentralized instantiation of IKP based on Ethereum. Our
work does not stop all misbehaving CAs, nor does it always
enforce accountability on CAs that are misbehaving. We
observe, however, an urgent need to incentivize good CA
behavior in this way in order to make TLS more secure, and
we argue that IKP is a first concrete step towards that goal.
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