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Trusted fabrication is not a panacea:

7 Only 5 countries have cutting-edge fabs on-shore

7 Building a new fab takes $$$$$$, years of R&D

7 An old fab could mean 108× performance hit
accounting for speed, chip area, and energy

Can we get trust more cheaply?



Can we build Verifiable ASICs?
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• Makes sense if V +P are cheaper than trusted F

• Reasons for hope:
• running time of V < running time of F (asymptotically)
• speed of cutting-edge fab might offset P ’s overheads

• Challenges remain:
• Hardware issues: energy, chip area
• Need physically realizable circuit design
• V needs to save work at plausible computation sizes
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∧ → × ∨ → +
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Zebra builds on IPs of GKR [GKR08, CMT12, VSBW13]

F must be expressed as a
layered arithmetic circuit.

Note: this is an
abstraction of F,
not a physical circuit!
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V questions P about
F(x1)’s next layer, and
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Extracting parallelism through pipelining

This process continues
until the pipeline is full.

V and P can complete
one proof in each time
step.

F(x1)

F(x2)

F(x3)

F(x4)

F(x5)

F(x6)

F(x7)

F(x8)



Zebra’s design approach

3 Extract parallelism

e.g., pipelined proving

3 Exploit locality

: distribute data and control

e.g., no RAM: data is kept close to places it is needed
e.g., latency-insensitive design: distributed state machine

avoids bottlenecks associated with central controller

3 Reduce, reuse, recycle

e.g., computation: save energy by adding memoization to P
e.g., hardware: save chip area by reusing the same circuits
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Interaction between V and P requires a lot of bandwidth
7 V and P on circuit board? Too much energy, circuit area

3 Zebra uses 3D integration

Protocol requires input-independent precomputation [Allspice13]

3 Zebra amortizes precomputations over many V-P pairs

Several other details (see paper)
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Implementation

Zebra’s implementation includes

• a compiler that produces synthesizable Verilog for P
• two V implementations

• hardware (Verilog)
• software (C++)

• library to generate V ’s precomputations

• Verilog simulator extensions to model
software or hardware V ’s interactions with P



Evaluation method

V P
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y

proof that
y = F(x)
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output Fvs.

Baseline: direct implementation of F in same technology as V

Metrics: energy, chip size per throughput (see paper)

Measurements: based on circuit synthesis and simulation,
published chip designs, and CMOS scaling models

Charge for V, P, communication; retrieving and decrypting
precomputations; PRNG; Operator communicating with V

Constraints: trusted fab = 350 nm; untrusted fab = 7 nm;
200 mm2 max chip area; 150 W max total power

350 nm: 1997 (Pentium II)
7 nm: ≈ 2017 [TSMC]
≈ 20 year gap between
trusted and untrusted fab
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Application #1: number theoretic transform

NTT: a Fourier transform over Fp

Widely used, e.g., in computer algebra
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Application #2: Curve25519 point multiplication

Curve25519: a commonly-used elliptic curve

Point multiplication: primitive used for ECDH



Application #2: Curve25519 point multiplication
Ratio of baseline energy to Zebra energy
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A qualified success

Zebra: a hardware design that saves costs. . .

. . . sometimes.



Summary of Zebra’s applicability

Common to essentially all built proof systems

1. Must have a wide gap between cutting-edge fab for P
and trusted fab for V

2. Must amortize precomputations over many instances

3. Computation F must be very large for V to save work

4. Computation F must be efficient as an arithmetic circuit

5. Computation F must have a layered, shallow, deterministic AC

Applies to IPs, but not arguments
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Arguments versus IPs, redux

Design principle
IPs
[GKR08, CMT12,
VSBW13]

Arguments
[GGPR13, SBVBPW13,
PGHR13, BCTV14]

Extract parallelism 3 3
Exploit locality 3

7

Reduce, reuse, recycle 3

7

Argument protocols seem friendly to hardware?

P computes over entire AC at once =⇒ need RAM

P does crypto for every gate in AC =⇒ special crypto circuits

. . . but we hope these issues are surmountable!
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Recap

V P
x
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proof that
y = F(x)

input

output

+ Verifiable ASICs: a new approach to building trustworthy
hardware under a strong threat model

+ First hardware design for a probabilistic proof protocol

+ Improves performance compared to trusted baseline

– Improvement compared to the baseline is modest

– Applicability is limited:
precomputations must be amortized
computation needs to be “big enough”
large gap between trusted and untrusted technology
does not apply to all computations

https://www.pepper-project.org/
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