
Poster: Steps Toward Automated Proof-Carrying
Hardware Intellectual Property (PCHIP) Framework

Mohammad-Mahdi Bidmeshki and Yiorgos Makris
Department of Electrical Engineering, The University of Texas at Dallas

Email: {bidmeshki, yiorgos.makris}@utdallas.edu

Abstract—Proof carrying hardware intellectual property
(PCHIP) introduces a new framework in which a hardware
intellectual property (IP) is accompanied by formal proofs of cer-
tain security-related properties, ensuring that the acquired IP is
trustworthy and free from hardware Trojans. PCHIP framework
adds extra burdensome tasks in the hardware IP development
process, hindering its wide acceptance by the hardware design
community. In this poster, we review the PCHIP framework
and present our efforts toward automating PCHIP, in order to
simplify the adoption of PCHIP by hardware IP developers and
consumers and, thereby, increase hardware IP trustworthiness.

I. INTRODUCTION
Financial and other market realities have made integrated

circuit (IC) design and manufacturing a highly geographi-
cally dispersed endeavor. As such, contemporary ICs have
also become more vulnerable to inconspicuous modifications
resulting in the proliferation of malicious capabilities known as
hardware Trojans, and many research efforts have been devoted
to preventing and/or detecting hardware Trojan inclusion in
various phases of IC design and fabrication. Utilization of
previously developed designs in the form of hardware intel-
lectual properties (IPs), in-house or third-party, is commonly
practiced in the hardware design flow, in order to enhance
time-to-market of the final product. Among various types
of hardware IPs, Soft IPs delivered in the form of HDL
code, are more susceptible to malicious modifications and
hardware Trojan insertion due to their flexibility and the fact
that functional testing can by no means reveal the design
capabilities exhaustively. Moreover, soft IPs are also widely
used in FPGA-based designs. Consequently, hardware Trojans
concealed in soft IPs have a significantly wider domain of
action, as compared to hardware Trojans which are implanted
during the later fabrication stages. Considering this intensified
threat, prevention and/or detection of hardware Trojans in soft
IPs has become extremely important. Proof carrying hardware
IP (PCHIP) achieves this principal objective by utilizing formal
methods, and adopting ideas from proof carrying code in
software domain [1].

The overall view of PCHIP framework is depicted in Fig. 1.
In this framework, along with the HDL code for a design, IP
developers are required to develop and deliver another essential
piece: formal proofs that the code abides by a set of security
properties that are agreed upon by both the IP developer and
the IP consumer. These properties do not necessarily impose
restrictions on the details of implementation. Rather, they
institute a high level boundary of trusted functionality, which
prevents misbehavior or unsolicited actions. For example, a
security property for a microprocessor IP could be defined as
follows: Each instruction is only allowed to access memory
locations which are specified in the corresponding fields of

its op-code [2]. This property prevents stealthy information
leakage. However, it does not restrict the details of instruction
implementation. As another example, security properties might
impose restrictions on the flow of information in a design
[3], [4], [5] to avoid propagation of sensitive information to
unauthorized sites within the chip and eventual leakage.

Mechanized proof development and checking requires a
theorem proving language and proof checking environment,
such as Coq [6] and CoqIDE, respectively. Therefore, in order
to be applicable and leverage the rich collection of hardware
IPs developed in HDLs such as Verilog and VHDL, PCHIP
defines conversion rules from HDLs to a Coq representa-
tion. Consequently, PCHIP does not intervene in the current
hardware IP design and test methodology, as is the case
when introducing a new formal HDL. Rather, it adds extra
steps in parallel to the current design methodology, namely
conversion to Coq representation, stating security properties
as theorems in Coq, constructing proofs for such theorems
based on the hardware design and delivering those proofs
along with the HDL code to the IP consumer. PCHIP does
not inflict IP consumers with much extra burden. Along with
the IP developers, they need to agree on the desired security
properties. The onerous task of proof development is, then, the
responsibility of the IP developers.

PCHIP is a very promising framework, can be employed
in various types of hardware designs, and can be adaptively
modified to fit the requirements of the design and IP con-
sumer. For example, the applicability of PCHIP to ensure the
trustworthiness of microprocessor IPs in terms of instruction
set architecture (ISA) [2], and cryptographic cores [3], [4]
in terms of information flow policies has been successfully
demonstrated. However, the broad adoption of PCHIP faces
a few challenges. First, developing security properties is not
straightforward. These properties are usually specific to each
design, and cannot be reused for others. Second, convert-
ing HDL code to a formal representation, such as the Coq
language used in PCHIP, and developing proofs for security
properties, requires additional knowledge of formal methods,
theorem proving environments, and proof writing. Even for
someone who has this expertise, the process is tedious and
time consuming, making the barrier to entrance rather high for
IP developers. Evidently, automating the PCHIP framework to
the extent possible, targeted in this work, could make it more
appealing and could help in its broader utilization, leading to
lower risk in hardware IP acquisition.

II. VeriCoq: AUTOMATED VERILOG TO COQ CONVERTER
Towards automating PCHIP framework, we introduced

VeriCoq [7], a Verilog-to-Coq converter based on the rules
developed in the PCHIP framework. VeriCoq supports most of



Trusted IP BundleIP Developer

Proof Development

IP Consumer

Coq IDE

Pass/Fail

DeliveryPreparation Evaluation

Design

 in Coq

Proofs of 

Security 

Property 

Theorems

Security

Properties

Functional

Specifications

Design 

in Coq

T
h

e
o

re
m

s

HDL Code

Fig. 1. PCHIP framework

the synthesizable Verilog constructs and converts parameters,
arrays, module hierarchy, and module instantiations effec-
tively to their Coq representation. While automating the entire
PCHIP framework is a much broader endeavor and may not
be completely feasible, given the strenuous details of proof
construction, VeriCoq is a fundamental step towards this end.
Crucially, it not only automates the conversion process, but
also makes proof construction by IP developers and proof
checking by IP consumers less perplexing, since both can
rely on the common Coq representation of the Verilog code,
which is now automatically generated by VeriCoq, as indicated
by shaded arrows in Fig. 1. It is extensively applicable to
convert various designs, such as microprocessor IPs, to their
corresponding Coq representation [2].

III. VeriCoq-IFT : AUTOMATED PCHIP FRAMEWORK FOR
INFORMATION FLOW POLICIES

In cryptographic hardware, the emphasis goes on the flow
of information in the design, not the actual functionality and
one goal is to prevent sensitive information leakage. For this
purpose, PCHIP introduces a framework with information
flow tracking capabilities [3], [4], which assigns a sensitivity
(secrecy) level tag to the signals in the design. By tracking
those signals through the design, this methodology ensures
that no sensitive information reaches the outputs without going
through proper sensitivity reducing (declassifying) operations.
We developed VeriCoq-IFT [5], shown in Fig. 2, which re-
defines this base framework toward automation of the entire
process, and is a step toward a fully automated PCHIP frame-
work, focusing on information flow policies. In addition to
automating the conversion of the HDL code to the Coq formal
representation, VeriCoq-IFT automatically generates security
property theorems to ensure the abidance of the design by the
information flow policies, constructs proofs for such theorems
and checks their validity for the design with minimal user
intervention. VeriCoq-IFT gathers required user inputs through
special comments inside the HDL design. Users only need to
provide such information in the HDL code and VeriCoq-IFT
performs the rest of the work automatically.

We successfully tested this automated framework by uti-
lizing it to evaluate the trustworthiness of several genuine and
Trojan infested DES and AES cryptographic cores. Specifi-
cally, we evaluated two implementations of DES algorithm
provided in [8]. The first DES core is designed for area
efficiency and implements only a single round of encryption.
Several iterations are then invoked to perform the entire

IFT Policy 

Theorems

Design 

in Coq

Proofs of 

IFT Policy Theorems

V
e

ri
C

o
q

-I
F

T

C
o

q
 I

D
E

HDL Code

Pass/Fail

Fig. 2. Automated PCHIP framework for information flow policies

encryption. Automatic evaluation of this core using VeriCoq-
IFT reveals a design flaw capable of leaking sensitive infor-
mation. We also employed VeriCoq-IFT to evaluate a genuine
implementation of AES and various Trojan infested AES
designs provided in [9]. While the proof of security theorems
passed for the genuine AES design, they were not valid
for Trojan infested AES cores. This means that VeriCoq-IFT
could successfully capture hardware Trojans capable of leaking
sensitive information.

IV. FUTURE WORK
In our ongoing research, we plan to expand the capabilities

of VeriCoq-IFT and VeriCoq by adding support for a few
other Verilog constructs which are not supported in the current
version. We also plan to explore more automation possibilities
in the general PCHIP framework for various hardware designs
like microprocessor IPs and communication cores. Moreover,
we are working on a hierarchy preserving conversion to
the Coq representation which reduces the burden of proof
construction and enables the development of hybrid libraries
containing the HDL code and various lemmas, to be used
for higher level designs and proofs. The expansion of the
automated PCHIP framework will help its wide adoption in
hardware design community, resulting in a more secure and
trustworthy third party IP acquisition protocol.

REFERENCES
[1] G. C. Necula, “Proof-carrying code,” in Proc. Symp. Principles of

Programming Languages. ACM, 1997, pp. 106–119.
[2] Y. Jin and Y. Makris, “A proof-carrying based framework for trusted

microprocessor IP,” in Proc. IEEE/ACM Int. Conf. Computer-Aided
Design, 2013, pp. 824–829.

[3] Y. Jin and Y. Makris, “Proof carrying-based information flow tracking
for data secrecy protection and hardware trust,” in Proc. IEEE VLSI Test
Symposium, 2012, pp. 252–257.

[4] Y. Jin, B. Yang, and Y. Makris, “Cycle-accurate information assurance by
proof-carrying based signal sensitivity tracing,” in Int. Symp. Hardware-
Oriented Security and Trust. IEEE, 2013, pp. 99–106.

[5] M.-M. Bidmeshki and Y. Makris, “Toward automatic proof generation
for information flow policies in third-party hardware IP,” in Int. Symp.
Hardware-Oriented Security and Trust. IEEE, 2015, pp. 163–168.

[6] INRIA. (2014, Oct.) The Coq proof assistant. [Online]. Available:
http://coq.inria.fr/

[7] M.-M. Bidmeshki and Y. Makris, “VeriCoq: A Verilog-to-Coq converter
for proof-carrying hardware automation,” in Int. Symp. Circuits and
Systems. IEEE, 2015.

[8] OpenCores. [Online]. Available: http://opencores.org/
[9] Trust-Hub. [Online]. Available: https://www.trust-hub.org/


