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Abstract—A yet-to-be-solved but very vital problem in forensics
analysis is accurate memory dump data type reverse engineering
where the target process is not a priori specified and could be
any of the running processes within the system. We present
a lightweight system-wide solution that extracts data type in-
formation from the memory dump without its past execution
traces. Our proposed solution constructs the dump’s accurate
data structure layout through collection of statistical information
about possible past traces, forensics inspection of the present
memory dump, and speculative investigation of potential future
executions of the suspended process. First, the engine analyzes
a heavily instrumented set of execution paths of the same
executable that end in the same state of the memory dump
(the eip and call stack), and collects statistical information
the potential data structure instances on the captured dump.
Second, the engine uses the statistical information and performs
a word-by-word data type forensics inspection of the captured
memory dump. Finally, the engine revives the dump’s execution
and explores its potential future execution paths symbolically.
It traces the executions including library/system calls for their
known argument/return data types, and performs backward
taint analysis to mark the dump bytes with relevant data type
information. Our solution’s preliminary experimental results are
very promising (98.1%), and show that it improves the accuracy
of the past trace-free memory forensics solutions significantly
while maintaining a negligible runtime performance overhead
(1.8%).

I. INTRODUCTION

Software reverse engineering has been a challenging and
recurring problem in computer security that aims at recov-
ery of high-level program abstractions [1]-[4]. The results
could potentially be used for various purposes such as mem-
ory forensics, malware development and analysis, reversing
cryptographic algorithms and network protocols, digital right
management, and auditing program binaries. Specifically, a
desirable capability in many of those security and forensics
applications is automatic reverse engineering of data structures
given only the memory dump of a process and without the
execution trace information.

The existing data type reverse engineering solutions are
categorized into three groups. First, static binary executable
analysis techniques extract data structures defined within an
executable through disassembly [5] or symbolic execution [6].
Second, dynamic execution analysis solutions [5], [7] trace the
execution to reverse engineer data types using type-revealing
instructions [7]. Third, static memory analysis techniques per-
form forensics directly on memory dumps for data structures.
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Fig. 1: The High-Level Architecture

Laika [8] sweeps the memory for pointers and assumes all
pointers point at other data structures.

The past work falls short for practical forensics analysis of
applications’ memory dumps: i) static executable analyses can
reverse engineer executable-defined data structure definitions
accurately; however, those approaches by themselves are of
limited use for memory forensics when the execution trace is
not available; ii) dynamic execution monitors cause a very high
performance overhead > 6X on the target process. Hence, it is
infeasible to trace all the running processes on a system as any
of them may be misbehaving and needing forensics analysis;
and i) the static memory analyses are not sufficiently accurate
in practice (e.g., 70% for Laika [8]).

We present a hybrid memory forensics solution that lever-
ages the high accuracy of static executable analyses (i) and
dynamic execution monitoring (ii) to provide a low overhead
and precise static memory dump forensics (iii) when the
execution trace is not available.

Our contributions are thus the following:

* We introduce a trace-free memory data structure forensics
solution with high reverse engineering accuracy and negligible
1.8% runtime overhead.

* We present a probabilistic information fusion method to
combine prior statistical information about possible past traces,
results from the present dump forensics and speculative in-
vestigation of potential future executions of the suspended
process.

* We present a preliminary evaluation on real-world settings,
i.e., CoreUtils suite.

II. DESIGN OVERVIEW

Figure 1 shows our solution’s high-level architecture that
contains a forensics analysis framework to where the user up-
loads the target process’es memory image and the application
executable. The process starts by the engine’s installation on
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the user’s machine. Upon detection of a suspicious running
process by the user or an intrusion detector, the engine’s
client suspends the process and uploads its memory image
for forensics analysis.

The engine performs its forensics analysis through the
following three stages: past, present, and future.

Past. The engine leverages offline analysis to maximize its
runtime analyses’ efficiency once a particular running process
is picked for analysis. To create the data structure definition
database, we implement automated static code analysis mod-
ules to investigate available library and kernel sources search-
ing for data structure definitions. There often exists different
data structures with identical names defined at different points
across the system. The engine maintains the context where
each data structures is defined. The engine explores and ana-
lyzes the memory dump (memdump)’s possible past execution
trace. It starts from the executable’s entry point, and statically
explores the call and control flow graphs for possible paths
to the captured dump’s execution state (the instruction pointer
and the call stack). Using symbolic execution, the engine filters
out the infeasible paths and generates the corresponding test
cases. Through an instrumented execution of the test cases,
the engine logs the structure memory allocations and collects
statistical information about the potential structures on the
captured dump. For instance, if a particular data structure
exists in almost all test case executions, it exists in the captured
dump with higher probability than a data structure that was
never encountered during the test case executions.

Present. The engine performs a forensics analysis of the
captured dump using the created models (data structure defini-
tion database and statistical information). It sweeps the dump
for landmark signatures (inserted by the hooked API), and
extracts every structure’s base address and size. The engine
marks every memory address with possible data types using
the memory value and the engine’s forensics rules. The engine
uses its forensics results and the created models to calculates
a ranked list of the best matching data structures for each
memory location.

Future. The engine revives the captured dump’s execution,
explores all feasible future branches of the code symbolically
to generate test-cases. It runs the executable with the test cases,
while it reverse engineers data type revealing instructions
and the library/system calls with known return/argument data
types. The engine implements backward data taint analysis on
each test-case trace to backtrack the revealed data types to a
memory address of the captured dump.

III. EVALUATIONS

We evaluated our solution on CoreUtils v8.22. We sus-
pended each process at a random execution point, i.e., half
way through its finish time. The user desktop ran Linux kernel
v3.11.

We measured the accuracy of our solution’s ultimate data
type forensics. Figure 2 shows the results for strings and other
data structures of each application separately. Our solution
correctly recognized 99.2% of the strings and 96.7% of the
memdump data structures correctly. Its overall accuracy level
98.1% is very promising even though our solution did not have
access to the execution traces before the memory capture point.

IV. CONCLUSIONS

We presented a hybrid data structure reverse engineering
solution that takes the memory image for a selected running
process on the user’s machine, and determines its semantic
data structure layout without the need for execution traces
before the memory capture point. The engine performs a
static forensics analysis of the captured memory dump, and
its potential past and future execution traces. Our solution
correctly reverses engineers 98.1% of the data structures in
real-world application dumps with 1.8% runtime performance
overhead.
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