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Abstract—Malware classifiers based on machine learning mod-
els have become increasingly popular. These classifiers use a com-
bination of structural and dynamic features to detect malware
in various domains, including PDF, binaries, and web pages. We
propose to use genetic programming techniques to automatically
generate variants of malicious web pages that evade state-of-
the-art classifiers. Our method builds on the approach Xu et al.
(NDSS 2016) developed for successfully evading PDF classifiers.
Adapting this method to web page classifiers poses additional
challenges because of the dynamic and hybrid strategies used by
those classifiers and the complex structure of web pages.

I. WEB MALWARE

Malware classifiers attempt to determine if a given sample
is malicious or benign; they often use machine learning (ML)
techniques to train models that classify malware based on
structural features. In 2011, Curtsinger et al. created a classifier
called Zozzle that uses mostly-static structural features as
classification parameters [1]. However, static analysis methods
have been shown to be vulnerable to various adversarial
methods. Obfuscation is a particularly common practice in em-
bedded JavaScript that often prevents static analysis. Further-
more, dynamic code generation poses challenges for structural
feature analysis, since much of the code is not visible to the
classifer. More recent web malware classifiers combine static
and dynamic features of web pages to yield more effective
detection results. Dynamic features of a code sample can be
analyzed by running the code in a sandbox and examining
the resulting trace. JStill, created in 2013, is an example
of such a hybrid (static and dynamic) JavaScript malware
classifier, specifically focusing on detection of obfuscated code
[2]. Collecting dynamic features may be impractical for high-
traffic systems because of the overhead required to execute
code, and is also prone to malware that hides its behavior
from test environments. Another type of feature used in many
web malware classifiers is external information such as domain
registration and website history. The scope of this project
is limited to evasion attempts via content-based features and
therefore excludes such external information, which may not
be easily manipulated by an attacker.

Machine learning models are based on features of a training
data set, but are applied for predicting unfamiliar testing data
sets. Thus, the effectiveness of an ML model is dependent on
the resemblance between the training and testing data sets.
This is often straightforward for randomized training sets of
static data. However, adversarial malware authors represent a
dynamic data source that can alter code, resulting in malware

with features that deviate from the training dataset of the
classifier. The goal of this work is to evaluate the robustness
of web malware classifiers against adaptive adversaries with
access to the classifier by automatically exploring the space
of possible evasive variants.

II. EVOLVING EVASIVE VARIANTS

Our goal is to automatically find evasive variants that
preserve the essential malicious behavior of a seed sample,
but are misclassified as benign by a target classifier. We
use genetic programming techniques to conduct a heuristic
search for evasive variants. Genetic programming depends
on a fitness function that defines a sample's progress toward
some goal and attempts to maximize that fitness function by
repeatedly performing mutations on samples and selecting
samples with better fitness. This process is repeated over
multiple generations until a threshold fitness is reached. Xu
et al. showed that genetic programming techniques could be
adapted to generate classifier-evading variants of PDF malware
[3]. That experiment was able to achieve a 100% evasion
rate for its target classifiers PDFRate and Hidost in no more
than 16 hours using random mutation operations. This was
possible because both target classifiers relied on superficial
static features that could be modified without disrupting the
malicious behavior.

This project applies the approach of Xu et al. toward evad-
ing web malware classifiers by attempting to evade state-of-
the-art JavaScript-based classifiers. Whereas there exist PDF
malware classifiers that utilize static structural features, all
modern web malware classifiers examine both structural and
dynamic features. This adds complexity, since there is now a
level of indirection between the transformations that can be
done by the genetic operators and the measured features. If
classification is done primarily based on dynamic features,
evasive web malware variants must have different runtime
behavior than their non-evasive counterparts. This suggests the
need for transformation operators that alter dynamic behavior,
but without disrupting malicious behavior, such as inserting
insignificant events, changing the order of idempotent events,
and removing unnecessary events.

III. DESIGN

The prototype system is shown in Figure 1. We target the
creation of malicious JavaScript that can evade state-of-the-art
web malware classifiers. We are still deciding on appropriate



targets and may need to construct our own prototype classi-
fiers; unfortunately, many published classifiers that would be
well suited for our experiment are not available to researchers
for experimentation. One representative classifier is JSDC
[4], which uses both static and dynamic features in three
categories: textual (DOM structure), inner-script (embedded
AST), and inter-script (external resources). These features are
used to train 4 ensemble classification models — Random
Forest, J48, Nave Bayes, and Random Tree — to determine
maliciousness. Samples that are classified as malicious are
also categorized into attack patterns. Another possible tar-
get classifier, Lux0r [5], is a JavaScript malware classifier
that was original implemented for PDF-embedded JavaScript.
Lux0r primarily uses API reference patterns as features for
its classifier. It has been tested against adversarial mimicry
attacks involving addition of code, making it an ideal target
for evasion.

Fig. 1. The experimental system for generating evasive variants.

We begin the experiment with a set of web pages known to
contain malicious JavaScript. These pages are verified to be
malicious by our oracle, which is a virtual environment using
Cuckoo sandbox [6]. Maliciousness is defined according to
behavior indicative of malicious intention, such as an unre-
quested download or suspicious file system activity. Based on
the web page's dynamic behavior in the sandbox, a signature
is developed that captures the essential malicious behavior, but
is robust enough to still match variants that alter the behavior
in superficial ways. This behavioral signature is used to test
all the generated variants in the experiment. Samples that
are confirmed malicious are analyzed by the target classifiers,
which return a binary result of malicious or benign for each
sample. Samples that are classified as benign by the target
classifiers but still match the malicious behavioral signature
are considered evasive. Otherwise, we mutate the samples to
create new variants.

In order to perform these mutations, we first extract all
of the scripts using BeautifulSoup [7]. The scripts are then
converted into AST form using the parser Esprima [8]. Muta-
tions are conducted by randomly performing the insert, delete,
replace, and crossover genetic programming operations on

random nodes of each sample's AST. A set of benign web-
pages provides supplementary AST nodes. Thus, the mutations
introduce nodes from the benign ASTs to the malicious trees.
After mutation, the AST is then translated back to code form
using the JavaScript code generator Escodegen [9]. Mutated
variants are re-inserted in their respective web pages, replacing
the original scripts. Since we expect that many of these
variants will be corrupted or lose their malicious behavior,
we verify their maliciousness in the oracle. Because of the
challenges in finding transformations that preserve syntactic
integrity of the JavaScript code while changing the dynamic
behavior, we expect a random search similar to the approach
for PDF malware will not be effective. Instead, language-
specific transformation rules will be developed and combined
with random transformations. Transformations that produce
valid, but dynamically different code, will be collected and
reused for other samples as inputs for the next cycle of the
system. We will explore strategies that focus on identifying
the script on the page primarily responsible for the malicious
behavior, and modifying only that script, as well as strategies
that transform all scripts on the page.

IV. CURRENT STATUS

We are currently in the early stages of conducting this
research, with many open questions to explore. We are nearly
finished building a prototype evasive variant search system,
and are exploring options for building a prototype target
classifier for the experiment.
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