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Abstract—Detecting network anomalies can help protect
sensitive data, prevent attacks, and strengthen network
security. Toa is an open source, pseudo-real time network
monitoring system (NMS) that provides an easy to deploy
web interface for system and network administrators
to monitor high volumes of network traffic. Through
visualization, this NMS allows the detection of network
anomalies regarding availability, network and protocol
performance, and network attacks, although not automat-
ically.

The current work presents an algorithm to optimize
and automate the process of anomaly detection with
adaptability to the context. For the purpose of our project,
an anomaly is defined as anything that deviates from the
normal behavior of the network, such as network malfunc-
tions and network attacks. To this end, we implemented
statistical algorithms that use distinct time ranges, and
an exponential smoothing algorithm to facilitate anomaly
detection.

1. Introduction

Due to the high level of complexity of current
network systems, and an ever increasing frequency of
network attacks, the automatic identification of anoma-
lies in the network behaviour is of great importance.
Network traffic flows represent complex data, and col-
lecting and analyzing this data is a difficult endeavor
[L11[21(3].

System administrators have the difficult task of
monitoring the network for anomalous traffic behavior
such as outages, configuration changes, attacks, among
others [2]. Using the Toa monitoring system, the in-
put and output octet, as well as the input and output
packet network flow data can be visualized to determine
any kind of anomaly.Since the Toa system stores the
network flow information within a database, the data
is extracted using a series of SQL queries. Each data
entry is an aggregate of the input and output octets,
and input and output packets of the networks that are
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being monitored. This allows for easy access, making
it simple and time-efficient to examine large portions
of the data to continuously define network behavior
models [2].

By comparing the multivariate octets, one can ex-
trapolate relations between the data to determine what
may be abnormal behavior. For example, you could
have a very large amount of packets incoming, but each
packet has a very tiny size. This would be considered
an odd event, and would need to be checked out. If one
determines an anomaly exists using the Toa Network,
then the rest of the information pertaining to the event,
including port, origin and destination, can be used to
further assess the anomaly.

The goal of this research project is to implement
an automated anomaly detection back-end feature into
the Toa Networking Flow Monitoring System. This
feature will eventually consist of various algorithms
used simultaneously to try and detect anomalies. Since
the anomaly detection algorithm relies on statistical
methods and algorithms, a goal of this project was to
examine results from different time ranges and different
amounts of data sets.

2. Methodology

Algorithms were implemented using a series of
queries that extract data from the Toa database and
calculate the standard deviation and average for the time
interval specified by the query. The queries took data
from: (1) the past day, (2) the same hour every day for
one week, (3) the same hour for one month, (4) the
same hour for three months, (5) every five minutes for
three months, (6) and intervals of thirty minutes from
a specific hour every day. The idea of using different
times ranges for the same data is to examine the net-
work’s behavior in different contexts, and to see how
the smoothing algorithm reacts with more data. This
data is processed to determine anomalies and normal
behavior within each time range [2].
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Figure 1. Exponential Smoothing Algorithm

First, multiple tests were run to determine that the
queries were giving the correct time, standard deviation,
average, and data set. After these tests were run, the
exponential smoothing algorithm presented in Figure 1
was implemented. The implementation was used to cre-
ate graphs in order to visualize the regular and smoothed
data. With the smoothed data ready to be used, the
standard deviation, along with a particular factor, were
used to determine if a point is an anomaly. If the point
examined minus the average is greater than the standard
deviation times the factor, then that particular point is
an anomaly. See Figure 2 for a graphical representation
of how the anomaly detection process is carried out and
alerts are generated.

After analyzing the data gathered by comparing the
different queries and their anomaly detection counts,
as well as their efficiency, a few of the queries were
eliminated. We ended up with only the (1) every 5
minutes for 24 hours, (2) same time every day for
2 weeks, (3) same time, same day, every week for 2
months; each of these with regular and smoothed data.
Currently, these queries are continuously running every
5 minutes using a cron job, comparing the last point
only with the standard deviation, average and factor so
as to simulate the algorithm at work with real data. The
information generated by each query is being recorded
onto text files, with each entry consisting of the current
ID being examined, the query, the data point being
examined, as well as that points regular and smoothed
standard deviation, regular and smoothed average, input
and output octets, and input and output packets.
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Figure 2. Anomaly detection and alert generation

3. Conclusion

In its current state, the anomaly detection system
can be deployed to use with the Toa network flow
monitoring system, but we want to run further tests
with real and dummy data to further optimize the
implementation. For the same time every day for two
weeks and the same time, same day, every week for two
months queries, it’s necessary to test each one with a
different number of data sets (15, 25, 35 and 5, 10,
15 respectively). Additionally, further tests must be run

with varying alphas and factors to use with the standard
deviation to determine if there is an anomaly present.

We want to implement a linear regression model
to test, as well as look into clustering the data into
segments to assess how efficient anomaly detection
would be with an algorithm such as k Nearest Neighbor.
This would require labeling the clusters of data in
terms or normal or anomalous, therefore further work
is necessary in order to find a way to define what an
anomaly is within a contextual and time sensitive model
for the network [3][4]. These algorithms must be tested
the same way as the current smoothing algorithm to
determine their efficiency. If they are determined to be
of use to our cause, then we will consider implementing
a majority vote algorithm where if the majority of the
algorithms detect an anomaly in the current data point,
then an alert is triggered. In the long run, we wish to
implement an email system for alerts once we have
reduced the amount of false positives.

Since the Toa system has a visualization platform
already integrated, implementing visualization features
to view the data for any of the algorithms to compare
with the regular data would be useful. Creating a fea-
ture where one can select the specific time, amount of
data sets, query and algorithm is left for future work;
this feature would greatly facilitate examining the data.
These visualization features would have to be able to
extract the data from the database using time ranges
selected by the user and then generate the graphs.
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