Poster: Solving Private Systems of Linear Equations
with Garbled Circuits

Phillipp Schoppmann and Adria Gascén
University of Edinburgh

$1565903 @sms.ed.ac.uk agascon@inf.ed.ac.uk

I. MOTIVATION

The advent of the big data revolution has made it possible
to analyse ever more complex datasets for scientific and social
insights. At the same time, a widespread concern for the use
given to these datasets has spurred an interest in privacy-
preserving data analysis. The goal of this line of research is
to build frameworks allowing individuals to contribute their
personal data for aggregate analysis without compromising
their privacy. Secure multi-party computation (MPC) provides
fundamental tools for the design of such frameworks, specially
since MPC implementations published in recent years have
showcased the practical feasibility of theoretical constructions
pioneered by Yao [1]. However, generic approaches to MPC
rarely scale to problem sizes commonly found in real-world
applications of privacy-preserving data analysis involving mas-
sive datasets. The search for practical alternatives has lead
to the design of hybrid approaches that carefully combine
several MPC techniques. Identifying building blocks common
to these solutions is an important endeavor if we hope to
make progress in the design of robust and scalable tools
for privacy-preserving data analysis. In this work we initiate
a systematic study of methods for solving private systems
of linear equations in a setting commonly found in private
linear regression [2] and collaborative filtering [3] protocols.
Methods for solving private systems of linear equations have
been considered before, but no thorough comparison between
different approaches can be found in the literature. Our goal
is to provide such comparison and derive guidelines for
practitioners that can lead to more efficient implementations
tailored for privacy-preserving data analysis.

II. PROBLEM, METHODS, AND RELATED WORK
A. Systems of Linear Equations

We focus on systems of linear equations Ar = b with
A € R4%d 3 symmetric positive definite matrix. Under these
assumptions A is invertible and the system admits a unique
solution. These systems arise naturally in many contexts,
including data analysis problems involving least-squares and
ridge regression. The three algorithms for solving Az = b
that we consider in this paper are specially designed for
positive definite systems. Even when Ax = b admits a unique
solution, numerically finding such solution exactly can be a
challenging problem due to finite precision effects. This is a

Borja Balle
Lancaster University
b.deballepigem @lancaster.ac.uk

well-understood phenomenon in numerical linear algebra, and
has led to the development of numerous numerical algorithms
since the time of Gauss. An important observation is that
these problems generally arise when the condition number
k(A) given by the ratio between the largest and the smallest
eigenvalues of A is large. We will see in Section III how
this affects the accuracy in our experiments. Another pertinent
observation is that when the system arises from a data analysis
problem, a solution whose precision is on the same order of
magnitude of the variance of the input data is typically good
enough. This motivates the use of iterative methods producing
approximate solutions after a small number of iterations.

B. Privacy Setup and Threat Model

In our setting, two parties P, and P> hold secret additive
shares (A;, b;) of the matrix A and vector b in a linear system
Ax = b; that is, A = Ay + As and b = by + by. The goal is to
have the parties compute the solution x of Az = b, in a way
that (i) does not rely on a trusted third party, and (ii) the parties
do not learn anything about each others input beyond what is
revealed by the solution x. We assume a semi-honest threat
model, where, intuitively, the parties are motivated to learn
about each other inputs, but will not deviate from the protocol.
This exact problem arises in [2] as an intermediate step in a
ridge regression protocol combining partially homomorphic
encryption and garbled circuits. We rely on Yao’s garbled
circuits protocol [1] to solve the 2-party computation problem
above. Yao’s protocol allows two parties to evaluate a function
f (represented as a circuit) in a secure way in the sense of
our constraits (i) and (ii) above, and in the presence of a semi-
honest adversary (see [4] for precise definitions of security in
2-party computation and the semi-honest threat model).

C. Solution Methods

Three different methods for solving positive definite linear
systems are compared: Cholesky, LDLT, and CGD. The first
two rely on well-known decompositions of matrices which
simplify the solution of a system of linear equations by
allowing efficient Gaussian elimination without pivoting. The
main difference is that Cholesky computes a factorization
of the foom A = LLT with L a lower-triangular matrix,
while LDLT yields A = LDL" with lower-triangular L and
diagonal D. It is easy to convert one factorization to the
other, but Cholesky requires the computation of square roots,

while LDLT can be done without square roots but involves a
few more multiplications. We consider both methods because
computing of square root in a garbled is done using an iterative
procedure, which can be costly and introduce extra numerical
errors. The last method is conjugate gradient descent (CGD), a
well known iterative method frequently employed for solving
large-scale positive definite systems in sparse settings. CGD
iteratively minimizes the residual ||Az — b|| by providing a
sequence of points guaranteed to converge to the solution of
the system. Iterative methods are appealing for data analysis
problems because they provide a natural way to trade-off
computation time and accuracy by running a fixed number
of iterations. This choice of methods is motivated by several
reasons, namely: (a) they are standard methods and their com-
putational complexity has been well-studied; (b) they are rel-
atively robust to numerical errors arising from finite-precision
effects which makes them suitable for GC implementations; (c)
they admit data-agnostic implementations because they do not
involve pivoting strategies. Solution of positive definite linear
systems with a garbled circuits implementation of Cholesky’s
method was presented in [2]. To the best of our knowledge,
LDLT and CGD have not been studied before in this context.
Other authors have considered expensive privacy-preserving
protocols for matrix factorization as an intermediate step for
solving systems of linear equations; we do not consider these
approaches because their computational complexity is higher
than the methods we propose even in non-private scenarios.

D. Implementation Details

Our implementation is based on Obliv-C [5], a framework
for automatic generation of MPC protocols. It uses Yao’s gar-
bled circuits, which get compiled from a high-level language
based on C. In order to deal with real numbers, we implement
fixed-point arithmetic on top of Obliv-C basic types, including
the square root computation of [2]. In contrast to floating
point arithmetic, fixed point computation is in general prone to
numerical error propagation, specially in iterative algorithms.
To cope with that, we adapted a scaling method originally
developed for computing the Lanczos kernel in fixed-point
settings [6] to CGD.

III. PRELIMINARY RESULTS
A. Experimental Setup

We test implementations of the three methods presented
above with randomly generated linear systems with varying
dimensionality and condition number. For a fixed dimension
d, we randomly generate positive definite systems of linear
equations by taking A = X X T /m with X € R?*™ a random
matrix with i.i.d. standard Gaussian entries, and b = Az
with z € R? a random vector with i.i.d. entries uniform in
[—1, 1]. By taking different choices for m > d we get positive
definite systems (A, b) with varying condition number. In our
experiments we use dimensions in the range 3 < d < 100 and
generate systems with m = Cd for C € {5, 10, 50,10000}.
In each of these settings we generate 5 different systems and
report the mean where appropriate.

g.x108 100 100,
71| — cGD1 10-1 x CGD1 F mean(x) = 3.65
o — CGD 2 = x CGD2 =10"" F mean(x) = 1.79
— c@D5 x 102 . ceD5 X
S5t — cap1o =00 xxx CGD10 || =qo-2
24| — capis x xxn coDts |
é 3 Cholesky %10 g Cholesky |{ x 19-3
o - =
) LoL™ 51079 o 5
H . 31074
1 = .
7| 5|
=% 40 e 80 00 0o ToT 10 76 8 10 12 14

condition number x iteration /

size d

Fig. 1. Experimental results

B. Results

Our results are summarized in Fig. 1. The leftmost plot
displays how the circuit size for different methods (and differ-
ent number of iterations in CGD) scale with the dimension d.
Circuit size is directly correlated with execution time. Thus,
we see that if the number of iterations is independent of
d then for large dimensions CGD is always more efficient
than Cholesky and LDLT (which behave almost the same).
The effect the number of iterations of CGD has on the
accuracy (measured in terms of relative error) is displayed
in the middle plot. As expected, since in general CGD needs
d iterations for exactly solving a linear system, limiting the
number of iterations makes the method less accurate than
Cholesky/LDLT. Interestingly, we see that this difference di-
minishes as the condition number approaches one, which is
the typical setting for least squares regression with bounded
features and ridge regularization. The rightmost panel shows
the progress in accuracy of CGD as the number of iterations
increases, averaged over multiple systems and multiple d for
two different settings of m. We see how (in average) when the
condition number is small the error in CGD stabilizes after
very few iterations.

C. Discussion and Future Work

While iterative methods do not reach the accuracy of exact
approaches, we show how computation times can be reduced
considerably, at calculable costs in terms of accuracy. Fur-
thermore, the effect of the condition number on both accuracy
and convergence speed indicates the value of our approach for
low condition numbers often encountered in large real-world
problems. In future work we will make our implementation
freely available, test it with larger systems, and use it to build
robust privacy-preserving data analysis tools.

REFERENCES

[1] A. C. Yao, “How to generate and exchange secrets,” in Symposium on
Foundations of Computer Science (FOCS), 1986.

[2] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and
N. Taft, “Privacy-preserving ridge regression on hundreds of millions of
records,” in IEEE Symposium on Security and Privacy (SP), 2013.

[3] V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft, and
D. Boneh, “Privacy-preserving matrix factorization,” in ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2013.

[4] Y. Lindell and B. Pinkas, “A proof of security of yao’s protocol for two-
party computation,” J. Cryptology, 2009.

[S5] S.Zahur and D. Evans, “Obliv-c: A language for extensible data-oblivious
computation,” Cryptology ePrint Archive, Report 2015/1153, 2015.

[6] J. L. Jerez, G. A. Constantinides, and E. C. Kerrigan, “A low complexity
scaling method for the lanczos kernel in fixed-point arithmetic,” IEEE
Transactions on Computers, 2015.

