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Abstract—Being able to identify the author of a program has
many applications in both academic and commercial environ-
ments. In most use cases, the source code is readily available,
and this is reflected in the literature, as previous work has mostly
focused on source code analyses. In contrast, scant research
has been carried out on identifying the authors of executable
program binaries. This would be most applicable to the analysis
of malware, but it also has applications in other areas, such as
the evaluation of code obfuscators.

Our research builds on and extends the work of previous
studies on source code analysis to the realm of executable
binaries. We take the approach of initially reverse engineering the
executable code to extract a source code representation, before
applying deanonymization techniques and analyzing the results.
Our reasons for reverse engineering are to use the results to better
understand whether elements of style are preserved through
compilation, and of those, which are instrumental in identifying
authors.

Our preliminary results suggest that some logical stylistic
features remain after compilation, however there is far less
variety in these features due in part to the loss of information
after compiling, which goes beyond loss of indentation, comments
and naming conventions. However, the results provide some
encouragement that accuracy can be improved given a more
detailed investigation and experimentation with different feature
sets.

I. INTRODUCTION

A programmer might reasonably assume their anonymity
is secured post compilation. After all, the compiler (if used
without debug flags) applies its own optimizations - reordering
statements and stripping out much identifiable content for
the sake of performance. However, this is not the case, and
previous work has shown that some aspects of programmer
style are preserved after compilation [1]. Discovering what
aspects of style are preserved after compilation would be of
benefit to programmers desiring anonymity and would enable
the development of better obfuscation tools. So far, only
limited research has been published into the aspects of style
that are preserved after compilation.

Consider the iconic “hello, world” [2] program. Even this
simplest of programs can be written in a variety of ways,
depending on the language used. If there are several idioms
for solving a problem as trivial as hello, world (in fact there
are many subtle variations of hello, world), then the number of
different ways a more complex problem can be solved is orders

of magnitude greater. Programmers are creatures of habit [3],
who will attempt to solve similar looking problems in familiar
ways. If different logical styles in a high-level programming
language map to differences at the processor instruction set
level, then identification should be possible.

II. CONTRIBUTIONS

In our work we are looking to extend the ideas of code
stylometry as used by Caliskan-Islam et al. [4] into the realm
of binary program author attribution, checking whether the
same techniques apply and to what extent the compiler acts
to obfuscate the programmer’s logical style. We have tested
the hypothesis that some elements of style are retained after
compilation and confirmed our belief that indeed some of these
aspects are retained, but that the variety and distinguishability
of the features are diminished, resulting in lower overall
success. Moreover, we have managed to apply some of the
techniques of code stylometry relating to control flow graphs
and abstract syntax trees to the realm of binary program author
attribution and identified many areas for future research in this
relatively unexplored area.

III. APPROACH
A. Overview

The initial approach we took was to try and build on the
work of previous researchers, by following a similar path, with
comparable ground truth, then repeating the process but with
the added intermediate step of compilation and decompila-
tion. This provided us with a control group and allowed us
to isolate only those features applicable/not applicable after
compilation. We experimented with different classification
and pattern matching techniques to evaluate which delivered
superior results.

B. Obtaining Source Code

We were able to obtain a large corpus of source code from
the Google Code Jam 2015 competition via a website! that
maintains a database of entrants and solutions by programming
language, represented country and round number. We used
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the Scrapy Python library? to crawl the site and download
solutions in the C programming language.

C. Parsing

After compiling and decompiling our source code corpus,
we were left with two data sets — one containing the original
source code files and the other containing the decompiled
code. In order to extract meaningful features from these files
we employed the Joern® fuzzy parser and analysis tool, as
proposed and developed by Yamaguchi et al. [5]. Joern pro-
duces code property graphs, or CPGs, which are logical graph
structures that represent a combination of several program
metrics in an Abstract Syntax Tree (AST).

D. Extracting Feature Sets

Once each source and decompiled program file had been
parsed by Joern, it was ready for feature extraction. We began
with the frequency of node types in the graph, along with
a total node count. We also included a first/last seen metric
based on location and the maximum child number (i.e. most
siblings) seen in each graph, providing a primitive “breadth”
property. We would like to explore extracting features based
on the relationships between nodes as future work.

There was a noticeable difference in the number of attributes
produced by the original source files (108) compared with the
decompiled binary files (80). The mapping from high- to low-
level is not one to one, therefore when reversing this process
there will be some loss of information.

E. Classification

We used an approach similar to Caliskan-Islam et al. [4]
for classifying the decompiled source code, using the machine
learning platform Weka to run our tests. We experimented with
multiple machine learning algorithms for classifying both the
original and decompiled source code dataset, namely k-NN,
Random Forest and Neural Network.

1) Dataset Specifications: The initial dataset consisted of
1,378 authors with a collective 2,356 solutions. We limited
our study to only those authors with 4 or more solutions to
ensure we had sufficient training data and an unseen sample
for testing. This reduced the dataset to a total 332 collective
solutions by 56 authors. Next, we grouped the 332 instances
into 3 subsets of authors with a minimum of 4, 5 and 6
solutions, respectively, assuming the accuracy would increase
with more training samples.

IV. RESULTS

We present the results for the most accurate classification
algorithm we utilized: Random Forest. We used a 10-fold
cross validation, with 100-tree forests, for both the original
and decompiled source code. We ran separate tests for each
of the 3 data subsets previously mentioned, and for the original
source code we were able to attain an approximate accuracy
of 30-45% for the three datasets using Random Forest. For

Zhttp://scrapy.org
3http://mlsec.org/joern/

40 |- g

30 -

Accuracy %

20 -

Min. 4 Min. 5

codes/author

Min. 6

B B Original Source Code Il Decompiled Source Code

Fig. 1. Random Forest Classifier Results

the decompiled code we achieved accuracies of 14-39%, as
shown in Figure 1.

In most of our tests, the decompiled dataset was classified
with lower accuracy than the original source code. All our tests
were conducted using the same parameters for both these sets.
As mentioned previously, the attribute sets varied between the
two datasets.

V. FUTURE WORK

We have identified a number of avenues for future work
to explore this topic in greater depth. The preliminary results
presented in this paper suggest there is truth to the hypothesis
that logical style is preserved after compilation, however
we realize that deriving the best feature set requires further
refinement. We therefore would like to continue our studies
and attempt to extract a more strongly identifying feature set
from the property graphs produced by Joern, in particular
the relationships between nodes. Examining the relationships
provides context to the graph.

We would also like to experiment with different decompilers
to see the effect this has on classification accuracy. Finally, it
remains as future work to document the actual elements of
style that are distinguishing.
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