
Poster: Modeling of APT Attacks through

Transforming Attack Scenarios into DEVS Models

Jiyeon Kim

Department of Electrical and Computer Engineering

Carnegie Mellon University

Pittsburgh, USA

kimjy@andrew.cmu.edu

Hyung-Jong Kim

Department of Information Security

Seoul Women’s University

Seoul, Republic of Korea

hkim@swu.ac.kr

Abstract—Detection and prevention of sophisticated cyber-

attacks are challenging. Advanced persistent threat (APT)

attacks are one of the most visible attacks that can show such

attack trends. Predicting and defending APT attacks are difficult

due to a variety of attacks conducted at each stage. Simulations

can be a safer and cheaper way of developing countermeasures as

well as analyzing such attacks. Modeling cyber-attacks depends

on attack scenarios and abstraction levels according to

simulation purposes. The simulation models would vary even

when we model a same attack. It is very hard to model a variety

of attack scenarios due to a lack of modeling methodology in

cyber-security area. In this paper, we propose a method for

modeling APT attacks by transforming attack scenarios into

DEVS (Discrete EVent system Specification) simulation models.

DEVS is a modular and hierarchical formalism to specify

discrete event systems. Modeling cyber-attacks as DEVS models

enables us to reuse the modularized models for other scenarios. It

is also easy to implement and execute the models using DEVS

simulation engines.

Keywords—APT attacks; cyber-attack; cyber-security; attack

simulation; DEVS formalism;

I. AUTHORING APT ATTACK SCENARIO

 We author an example scenario based on most common
mechanism of APT attacks. APT attacks usually consist of five
steps: exploration, infection of malicious code, acquisition of
authorization, and information leakage. In order to model such
attacks, we should create a scenario for each step. [1] defines six
elements needed to represent behaviors of cyber-attacks and
defenses. The six elements are as follows: source element,
attack/defense behavior, destination element, processing time,
return state and output. Our scenario contains all the elements so
that the scenario can represent the whole attack flow. We then map
the scenario onto the modeling elements. This work helps modelers
to develop a variety of scenarios as DEVS [2] models easily.

 1

A. Scenario

Step 1. An attacker collects email addresses for 100t (unit time).

Repeat this step (collect) until this behavior succeeds.

Step 2. The attacker sends an email to TargetA, one of the

collected addresses for 10t. Repeat this step until this

behavior succeeds.

This research was supported by Basic Science Research Program through the National Research

Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2013R1A1A2062654)

Step 3. TargetA opens the email from the attacker for 5t.

Repeat this step until this behavior succeeds.

(As a result, the TargetA is infected by malicious code,

and the attacker can acquire an authorization for

TargetA’s internal network, TargetB.)

Step 4. TargetA accesses to TargetB for 20t. Repeat this step

until this behavior succeeds.

Step 5. TargetA requests a critical file by sending a request

message to TargetB for 15t, in order to leak information.

Repeat this step until this behavior succeeds.

Step 6. TargetB copies the file for 30t. Repeat this step until

this behavior succeeds.

Step 7. TargetB transmits the file to TargetA for 10t. Repeat

this step until this behavior succeeds.

Step 8. TargetA transmits the file to attacker for 10t. Repeat

this step until this behavior succeeds.

Step 9. Repeat steps 5 to 8.

B. Mapping a scenario onto modeling elements

Here we extract the six elements from the above scenario

as shown in Table 1.

Table 1. Extraction the modeling elements from our scenario

Step
Source

element

Attack

behavior

Destination

element

Processing

time

Return

state
Output

1 attacker collect email 100 collect -

2 attacker send TargetA 10 send email

3 TargetA open email 5 open -

4 TargetA access TargetB 20 access -

5 TargetA request TargetB 15 request message

6 TargetB copy file 30 copy -

7 TargetB transmit TargetA 10 transmit file

8 TargetA transmit attacker 10 transmit file

We can obtain the attack process from the fields of source

element, attack behavior, destination element and output, as

shown in Fig. 1.

Fig. 1. Process of an APT attack derived from our scenario

II. DEVS MODELING OF APT ATTACK

The six elements correspond to all the DEVS elements.

 Source/destination element –a multicomponent system M

 Attack behaviors/return state – a set of states S

 Output –sets of input X and output Y

 Processing time – a time base T

A. Specification

We can define the sets of DEVS elements for the APT

attack as follows:

An external output coupling (EOC) is as follows:

B. Structure and state diagram

From the specification in Section 2.A and the fields of

processing time and return state in Table 1, we can finally

obtain DEVS models as shown in Fig. 2.

III. ADVANTAGES OF USING DEVS FORMALISM

A modeling of discrete event systems is a process for

tracing changing state variables by input/output events. Since

a cyber-attack simulation progresses based on the interactions

occurred by the attacks and defenses, we are able to observe

the changes of state variables of cyberspace elements during

the simulation. DEVS formalism is one of the specification

methods for discrete event simulations. There are three

advantages in modeling cyber-attacks based on DEVS.

First, from the perspective of modeling theory, DEVS is a

general modeling methodology that provides a mathematical

frame to specify discrete event systems. This allows us to

make use of DEVS regardless of the types of attack

mechanisms or characteristics of the cyberspace elements.

DEVS is also able to separate models from their interfaces by

defining input/output interfaces such as internal, external and

output functions. We do not need to change each model's

design although its connections may change. Therefore, we

can design modular models according to experimental

purposes and can easily interwork with models such as those

that represent cyber-attacks using differential equations.

Furthermore, it is easy to transfer DEVS models into other

types of discrete event system models, because they have

general elements required for the modeling of discrete event

systems. Second, from the perspective of model development,

we can easily model by mapping entities that affect cyber-

attacks in the real world to DEVS objects using an object-

oriented concept. Lastly, from the perspective of model

execution environments, DEVS models can be implemented

and executed independent of the programming language or

simulation engine.

REFERENCES

[1] J.Y and H.J., "Defining Security Primitives for Eliciting Flexible Attack
Scenarios Through CAPEC Analysis." Information Security
Applications. Springer International Publishing, 2014. 370-382.

[2] Zeigler, Bernard P., Herbert Praehofer, and Tag Gon Kim. Theory of
modeling and simulation. 2nd edition. Academic Press, 2000.

[3] Giura, Paul, and Wei Wang. "A context-based detection framework for
advanced persistent threats." Cyber Security (CyberSecurity), 2012
International Conference on. IEEE, 2012.

[4] Tankard, Colin. "Advanced Persistent threats and how to monitor and
deter them." Network security 2011.8 (2011): 16-19.

[5] Baize, Eric. "Developing secure products in the age of advanced
persistent threats." IEEE Security & Privacy 10.3 (2012): 0088-92.

[6] Aslan A., Stephen C. “Learning is Change in Knowledge: Knowledge-
based Security for Dynamic Policies.”2012 IEEE 25th Computer
Security Foundations Symposium. (2012): 308-322.

[7] Guizani, Mohsen, et al. Network Modeling and Simulation: A Practical
Perspective. Wiley. com, 2010.

[8] Kuhl, Michael E., et al. “Cyber attack modeling and simulation for
network security analysis.” Proceedings of the 39th Conference on
Winter Simulation: 40 years! The best is yet to come. IEEE Press, 2007.

[9] Sood, Aditya K., and Richard J. Enbody. "Targeted cyberattacks: a superset of
advanced persistent threats." IEEE security & privacy 11.1 (2013): 54-61.

[10] Smith, Allen M., and Nancy Y. Toppel. "Case study: Using security
awareness to combat the advanced persistent threat." 13th Colloquium
for Information Systems Security Education. 2009.

M = {attacker, TargetA, TargetB}

Xattacker = {file}

Yattacker = {email}

XTargetA = {email, file}

YTargetA = {file, message}

XTargetB = {message}

YTargetB = {file}

Where s0 is an initial state,

Sattacker = {s0, collect, send}

STargetA = {s0, open, access, request, transmit}

STargetB = {s0, copy, transmit}

EOC = {(attacker,TargetA), (TargetA,attacker),

(TargetA,TargetB), (target, TargetA)}

Fig. 2. Structure and state diagram of our APT attack model

