Poster: FlowSitter-Labeling and Tracking Simulated
Flows in Cloud-based Network Testbed

Jianing Ding, Peng Zhang*, Rong Yang, Qingyun Liu, and Li Guo
Institute of Information Engineering
Chinese Academy of Science
Beijing, China 100093
{dingjianing,pengzhang,yangrong,liugingyun,guoli} @iie.ac.cn

Abstract—Network testbed is of much value to researchers
because of its ability to study applications running on real
hosts and ”somewhat real” networks. Nowadays, cloud-based
network testbed is emerging as a commercial infrastructure that
eliminates the need for maintaining expensive computing hard-
ware and provides multi-tenant shared resources. The new style
testbed will dynamically schedule multiple tasks on distributed
computing resources and simulate “somewhat real” flows, in
spite of the correlations among these flows, while the tenants are
enjoying the high level of scalability and convenience. Therefore,
keeping track of the identification of a certain flow for correlating
with the tenant or task it belongs to becomes a crucial factor
in evaluating application performance and calculating usage
statistics for the correct tenant. To this end, we design FlowSitter,
a flow labeling and tracking model that utilizes the active network
flow watermarking technique. It labels a flow with its ownership
denoted by bit-based watermark with arbitrary length and tracks
it at decoder entities. FlowSitter is also designed to minimize
sample size and resist various known attacks. Preliminary results
show that FlowSitter can achieve a high positive rate and has
desirable resilience against packet-drop attack.

Index Terms—cloud computing; network testbed; multi-tenant;
flow watermarking; flow tracking

I. INTRODUCTION

Network experimentation environments that emulate some
aspects of the environment-network testbeds-offers great as-
sistance to researches of new protocols and services. In
contrast to simulated environments, testbeds like Emulab[1]
provide more realistic testing grounds for developing and
experimenting with software. Cloud computing, the long-held
dream of computing as a utility, makes network testbeds
even more attractive as a service. If so, a large number of
tenants will publish their simulation tasks into cloud-based
network testbed, and the testbed will dynamically schedule
these tasks on distributed computing resources and simulates
”somewhat real” flows in spite of the correlation among these
flows. That means the simulated flows in same task could be
created from different nodes, which brings a challenge for
evaluating simulation tasks and calculating statistics for the
correct tenant. Therefore keeping flow identification tracked
is of great significance for cloud-based network testbed. Here,
identification could be information related with specific task
and tenant that the testbed can recognize. Apparently, storing

*Corresponding author: Peng Zhang(pengzhang @iie.ac.cn)

the corresponding relation between each flow and its owner-
ship into cache or database is neither efficient nor scalable.
Another method of directly padding identification into packet
payload is obviously bandwidth consuming and no privacy
protected, thus impracticable.

A light-weight method known as active network flow wa-
termarking (ANFW) technique has been extensively employed
in realms of stepping stones and anonymous communication
systems [2]. ANFW embeds special watermarks into flows by
manipulating the inter-packet delays since the randomization
of delays provides the entropy. The flow-dependent nature of
ANFM contributes to its strong correlation with watermarked
flows. Other good characters of ANFM like invisibility, low-
overhead and scalability are also desirable for cloud-based
network testbed. Recent researches have employed ANFW in
various realms beyond the limitation of stepping stones and
anonymous systems.

Unfortunately, even the state-of-the-art ANFW systems are
not suitable for cloud-based network testbed. For example,
their large sample size is not efficient enough for muti-task
processing and less of them combine both bit-based content
and security mechanism at the same time. To address this,
we proposed a cloud-based network testbed applicable ANFW
scheme named FlowSitter for labeling flows with bit-based
identification at watermarker entities, and then tracking the
identification of flows at decoder entities with a relative small
sample size. Additionally, the ANFW roots including invisi-
bility, low-latency, scalability and resilience to attacks are also
considered in designing FlowSitter. Our work is also the first
that addresses identification tracking problem by leveraging
ANFW technique in cloud-based network testbed.

II. OVERVIEW OF FLOWSITTER SCHEME

FlowSitter is an interval-based ANFW model, therefore it
considers the flow as a collection of intervals of length 7T,
with an initial time o. The i, interval includes packets time
sequence P; = {t},t5, ..., t;;g } what we call packets pattern
during a time period I; = [0 + iT,0 + (i + 1)T')], where
C'S; denotes the packets number in I;. Next we will describe
our approach from three perspectives: content, position and
generation. They are also three core designing philosophies of
most ANFW systems.

A. watermark content

The bit information S** with length Lg is transformed
from identification information .S through a private character-
to-bit mapping function map(). We also introduce the binary
value of the length of S’ denoted by H with fixed length
Ly and a pseudo-timestamp PT'S which is the hash value
of watermaker’s current system time. Thus the complete bit-
based content is DS™*" = PTS| H||S", where || is the
string concatenation operator.

B. watermark position

Each time interval is actually a watermark position since
FlowSitter takes a time-based sample size T' for one bit.
This ensures the order of embedding bits into watermark
positions can be determined. Sequential order is not desirable
for security consideration, thus FlowSitter randomizes the
watermark positions according to the following formula:

{mn, 7} = hash(PTS||{h, j}|Vy || Ki)mod {Lu, Ls} (1)

where {h, j} are indices of {H, S**}, V* denotes the number
of bits 1 in {H,S%*}, and K; is a secret key reserved in
watermarker and decoder entity. One thing to note here is that
decoding of H must be done before S’s when tracking the
watermark because Lg need to be computed from H. At last,
the actual watermark position will not keep sequential order
of the bit stream but be permuted depending on the watermark
itself.

C. watermark generation

When the watermark content and position are determined,
we need to decide how to represent binary bit as inter-packet
delays. FlowSitter partitions each time period I; into several
slots with the similar length and allocates a 0 or 1" marker
to each slot according to a bit map M that records all the
markers of slots. Then FlowSitter generates the packets pattern
by shifting C'S; packets into slots with right marker. If there
is no simulated packet during time intervals /;, then I; will be
considered no bit watermarked inside at decoder entities. Fig.1

o+iT|

o+(i+1) o+(i+1)T

(a) time sequence in I; for P; = 0O(b) time sequence in I; for P; = 1

Fig. 1. packets pattern representation for bit 0 and 1

shows the corresponding relation between packets pattern and
0-1 bit. The black filled slots have the marker 1" and the white
ones have the marker ”0”. Packets pattern shown in Fig.1(a)
with all packets falling within the 0 slots then indicates bit
0’ and the case illustrated in Fig.1(b) indicates bit 1’ in the
same way. Therefore, parameters involving M and slot number
R should be shared in watermarker and decoder entities. Fig.2

depicts an overview of our approach from the perspective of
labeling and decoding process.

1" Tgystem
| L parameters 1 |

watermark position ‘ relative time position ‘
assembling permuting ‘ sequence retrieving ‘
‘ ’ pattern H watermark ‘ ‘ ‘ pattern H watermark ‘ |
‘ generating labelling ‘ perturbation ‘ transfroming tracking
‘ | channel ‘ ~
watermarker decoderL
- - -

Fig. 2. Stages of labeling and decoding process

ITII. PRELIMINARY RESULTS

We have implemented a FlowSitter prototype and evaluated
a set of combinations of two parameters {CS;,a} by gen-
erating 101 labeled flows for each of them in both reliable
and packet-drop experimental environment. « is a parameter
to scale the real inter-packet delays. Fig.3(a) illustrates the
positive tracking rates of 101 flows in reliable environment.
As can be seen, these rates are nearly 100% as long as C'S; is
greater than 4. Fig.3(b) shows FlowSitter could maintain high
positive rate by increasing C'S; for more redundancy under
the packet-drop condition.

We believe FlowSitter will show its capability of correlating
and tracking flows in cloud-based network testbed. By the
symposium, we expect to illustrate a more comprehensive
analysis of FlowSitter as more emperiments are performed.

N

—+— time scale a =0.01
=0.03
=0.05
=0.07
—<— time scale a =0.09

15 15

packets number CS packets number CS

(a) tracking rates in reliable environment(b) tracking rates in 25% packet-drop
environment

Fig. 3. positive tracking rates of 101 flows under different settings

ACKNOWLEDGMENT

The research work is supported by Strategic Priority
Research Program of the Chinese Academy of Sciences
under Grant (No.XDA06030602)and National Natural Sci-
ence Foundation under Grant (No0.61402464, No0.61402474,
No.61370025).

REFERENCES

[1] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental environ-
ment for distributed systems and networks,” Operating Systems Review,
vol. 36, no. SI, pp. 255-270, 2002.

X. Wang and D. S. Reeves, “Robust correlation of encrypted attack traffic
through stepping stones by manipulation of interpacket delays,” in Pro-
ceedings of the 10th ACM conference on Computer and communications
security. ACM, 2003, pp. 20-29.

(2]

