
Poster: Limitations and Improvement of Dynimic
Analysis Environment for Malware Analysis

HoMook Cho
Cyber Security Research

Center
KAIST

Daejeon, Korea
chmook79@kaist.ac.kr

SangYong Choi
Cyber Security Research

Center
KAIST

Daejeon, Korea
csyong95@kaist.ac.kr

KiMoon Han
Cyber Security Research

Center
KAIST

Daejeon, Korea
linuzen@kaist.ac.kr

KwanSik Yoon
Cyber Security Research

Center
KAIST

Daejeon, Korea
ksyoon@kaist.ac.kr

I. MOTIVATION
Threats using malware are categorized as the most severe threat

in the cyber space. Recent malwares are becoming more complex
and elaborate to make the analysis difficult and over 50% are
maintained undetected in anti-virus programs [1]. In this study, a
new approach to increase the degree of completion for the dynamic
analysis environment is to be presented based on the result of the
verification on actually collected recent malwares, in regards to the
theoretical techniques that make the analysis difficult.

II. LIMITATIONS OF MALWARE ANALYSIS EVNERIONMENT
Traditionally, there are two ways to analyze malware. First is

the static analysis, which doesn’t actually run the malware but uses
reverse engineering technique. While static analysis can analyze
the structure and performance characteristics of malware with no
limitations on running condition, it is hard to automate the analysis
functions, and requires significant time and effort because of
concealing techniques such as encryption or packing [2]. Second is
the dynamic analysis, which actually runs the malware and analyze
whether it performs any malicious behaviors on the system or not.
The monitored subjects in dynamic analysis are process, registry,
file system, and network changes. While dynamic analysis can
increase the detection rate than static analysis and can automatically
perform the analysis, which reduced the analysis time, specific
environment or conditions are required for the malware to run, and
the malware may recognize the analysis environment and evade [3].
However, in order to efficiently analyze new malwares that are
increasing explosively, studies on dynamic analysis are becoming
an important issue recently [4].

There are 4 approaches to the dynamic analysis of malware [5].

• Function call monitoring: this approach uses API hooking
method to detect the API that the malware calls and analyzes
malicious behaviors.

• Parameter analysis: this approach traces the parameter and
function return value of each function in the same object and
performs relation analysis.

• Information flow analysis: this approach analyzes how the
program processes data.

• Command tracing: this approach analyzes the order of
processed commands while the program is running.

In order to increase the effectiveness of dynamic analysis of
malware, the malware needs to run more completely to draw

accurate behaviors. For dynamic analysis-based technique for
behavior information collection, methods using emulator and
virtual machine were proposed. Emulator-based method is divided
into two types depending on the emulating resource. First, memory
& CPU emulator consists of core elements to run commands, and is
used by many anti-virus program engines because it can analyze
malicious behaviors of specific file quickly with no influence on the
actual system. The second approach, system emulator, emulates not
only the memory & CPU, but also devices like network card and
storage, and can analyze malicious behaviors more precisely.
Virtual machine-based analysis method is more advanced than the
two previous methods. This method uses the virtual environment
that is close to the actual computer, and has been used most
frequently in recent dynamic analysis because it can analyze
malware more precisely [6].

However, recent malwares are applied with analysis
environment avoidance technology, so limitations started to appear.
There are 4 fundamentals that recognize the analysis environment
applied to the malware [4].

• Hardware detection: Virtual machine’s device is easily
identified, mainly the VMWare’s network interface recognizing
the defined pcnet32.

• Running environment detection: It checks to see if the
environment can monitor processes like debugger state.

• External application: It checks to see if monitoring applications
like process monitor are running in the environment where
malware is running.

• Operation behavior: It uses the system timer to recognize the
difference in the running time of commands with specific
authority, to alter the initial operation time.

It was confirmed through the experiment that, besides above 4
analysis environment detection techniques, there were recent
malwares that required interactions with users to run, as see in
Table 1.

Approximately 824 recent malwares collected in the second
half of 2014 were checked for automatic start on actual computer.
This is because using a virtual machine would fall under the
“hardware detection” among the analysis environment detection
techniques mentioned above, and new detection techniques can’t
be verified. For the same reason, the experiment was run in a clean
environment with no detection application installed.

Table 1. The Execution Result of Malware Analysis Environment

Execution Count Reason of Failure

Success 702 (85.2%)

Failure
66 Need Interactive Action such as Install,

Mouse Click, etc.(8.0%)

56 Need Execution Environment such as .net
framework, DLL files, etc.(6.8%)

Total 824

As a result, 14.8% of malwares did not start automatically.
Main reasons included waiting for user’s input for installation, such
as mouse clicks, or the operation environment was needed to run the
malware. Of course the operation environment to run the malware
can be solved by presetting it in the analysis environment, but
besides that, about 8% of malwares were applied with new detection
techniques.

III. SUGGESTION FOR THE ENVIRONMENT FOR MALICIOUS
BEHAVIOR COLLECTION

As previously mentioned, complete collection of malicious
behaviors should be prioritized for more accurate identification of
malwares. The recent collection in virtual environment is showing
its limitations, and the experiment result showed that the malware
operation environment should be adjusted dynamically, and the user
behavior information that the malware requires should be entered
dynamically for complete automatic collection. For this, this study
limits the technique of dynamic handling of malware requirements
by detecting the system screen in actual computer environment. In
other words, this method runs the malware and analyzes the system
screen to dynamically apply the environment that the malware
requires and user input. The system architecture for this is seen in
Figure 1.

The suggested approach can counteract do the malware’s first
virtual environment detection technique, “hardware detection”,
through the use of Real-Machine. In addition, the operation
environment that the malware requires is dynamically handled, not
only it can counteract to the fourth virtual environment detection
technique, “operation behavior’, it can also counteract to new
detection techniques that appear in the experiment. Therefore, it
can provide more complete malware dynamic analysis-based
environment that becomes the basis of malware collection.

Fig. 1. Suggested Architecture based on Real-Machine

IV. OPEN QUESTIONS
The method suggested in this study can resolve 2 of the malware

analysis environment detection techniques, but a new idea is needed
to counteract to malware collection method. In other words, the
debugging state, API hooking, and monitoring program that are
generally used for behavior collection are problems that still need
to be solved. To raise the effectiveness of suggested approach, a
collection technique that avoids malware’s detection technique is
required.

V. CONCLUSTION
In order to improve the accuracy of malware analysis, an

accurate behavior information collection based on complete
operation of malicious binary should be prioritized. However, it
was proven through the experiment using actual malwares that the
known dynamic analysis technique has limitations in providing
such basis. This study suggested a dynamic analysis-based
environment that becomes that basis for more accurate analysis of
malware behaviors. Suggested method can be utilized as a tool of
the best analysis that can effectively counteract to continuously
increasing new malwares. In order to raise the degree of completion
of dynamic analysis-based technique, future study would include
the development of mechanism that counteract to human interaction
engine and virtual analysis environment avoidance , and the
algorithm that can classify malicious behaviors in the collected
binary behavior information.

REFERENCES

[1] European Union Agency for Network and Information Security (ENISA):
ENISA threat landscape 2014, http://www.enisa.europa.eu-
/activities/risk-management/evolving-threat-environment/enisa-threat-
landscape/enisa-threat-landscape-2014, Dec 2014

[2] A. Moser, C. Krügel, and E. Kirda, "Exploring multiple execution paths
for malware analysis", IEEE Security and Privacy, pp. 231-245, May
2007.

[3] V. Thomas and P Ramagopal, "The rise of autorun-based malware",
McAfee, 2009.

[4] M. Egele, T Scholte, E. Kirda, and C. Kruegel, "A Survey on Automated
Dynamic Malware-Analysis Techniques and Tools," ACM Computing
Surveys (CSUR), Vol. 44, No. 2, pp. 1-42, Feb. 2012.

[5] Zovi, D. D. 2006. Hardware Virtualization Based Rootkits. in Black Hat
Briefings and Training USA 2006

	I. Motivation
	II. Limitations of Malware Analysis Evnerionment
	III. Suggestion for the Environment for Malicious Behavior Collection
	IV. Open Questions
	V. Conclustion
	References

