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Abstract—The lack of memory safety in C/C++ results in an
unending stream of security vulnerabilities. Unfortunately, only
weak protection mechanisms are widely deployed in practice,
because strong mechanisms cause severe overhead. Further, re-
searchers have focused on preventing control-flow hijack attacks,
leaving the door wide open for non-control data attacks – which
only leak or alter non-control data. The recent HeartBleed Bug
found in OpenSSL emphasizes the gravity of non-control data
attacks. In this work, we propose a data protection mechanism
we call Data Confidentiality and Integrity (DCI). As a compiler
based approach, DCI provides a set of light-weight annotations
to indicate which variables are sensitive and should be protected.
The DCI framework rewrites the program to prohibit unanno-
tated code from accessing protected variables. We evaluate our
prototype implementation using a case study on PolarSSL. Our
DCI prototype shows lower overhead than SoftBound+CETS, a
complete protection mechanism, on the PolarSSL test suite.

I. INTRODUCTION

In systems software, which is predominantly written in
unsafe languages such as C/C++, the main attack vector is
through memory safety errors. An attacker designs malicious
inputs to trigger memory errors during program execution,
allowing the attacker to read or write the program’s memory.
Examples of memory errors include buffer overflows, use-
after-free, and use of uninitialized memory.

Research into mitigating these attacks has focused on pre-
venting control-flow hijack attacks. In a control-flow hijack at-
tack, the attacker exploits a memory error to divert the control-
flow of the executing program from the programmer’s intended
control-flow. The attacker might make the program execute
injected shell code, return to a specific libc function with a
malicious argument [12], or setup gadgets for return orient
programming [9]. ASLR [10] and Stack Cookies are widely
used, but can be defeated. More robust protection mechanisms
such as Control-Flow Integrity [2], SoftBound+CETS [6], [7],
or modifications to the C language (i.e. CCured [8], and
Cyclone [3]) have been proposed, but none have seen wide
adoption due to prohibitive performance overhead.

Data Confidentiality and Integrity (DCI) takes a different
approach and offers strong guarantees for a small subset
of data. Programmers mark sensitive variables through type
annotations and a generalization of Code-Pointer Integrity [4]
protects both the integrity and confidentiality of all sensitive
data by ensuring that unprotected data cannot access protected
data and protected data is integrity protected at all times. We
enforce this policy at runtime by creating a separate memory
region for protected data and enforcing bounds for all object
accesses in that area. At compile time, our compiler rewrites

unannotated code to forbid it from accessing the protected
region. Allocations of protected data are rewritten to allocate
to the protected region as well as create bounds information
for protected memory objects.

II. THREAT MODEL

Our threat model gives the attacker capabilities to read and
write any location in the program’s data memory. We assume
the code segment is protected by a mechanism such as write-
or-execute. This model represents the case where the attacker
exploits memory errors in the program. Since control-flow
hijack attacks are well-researched, they are out of scope for
this work and we assume that DCI is combined with another
protection mechanism that provides control-flow protection.

III. DATA CONFIDENTIALITY AND INTEGRITY

Our work is an extension of Code Pointer Integrity (CPI)
[4]. Retrofitting complete memory safety on existing low level
languages results in prohibitively high overhead, but protect-
ing an important subset allows for a configurable security
to overhead trade off. For CPI, only code pointers (return
addresses, function pointers, etc.) are protected. In our work
we extend this protection to a programmer selected subset
of all data types. We hypothesize that there is only a small
amount of data in a program that is truly sensitive. Examples
of sensitive data include encryption keys, password lists, and
authentication tokens. However, there is a large amount of data
that is not sensitive. Our work provides a framework where
the programmer can control the overhead to protection trade
off. Our DCI framework has three main components:

1) A set of light-weight annotations the programmer uses
to specify the sensitive data.

2) A compiler plug-in that reads the protection specifica-
tion and rewrites the program to ensure protection of
sensitive data.

3) A runtime for enforcing the policy and maintaining the
necessary metadata.

IV. IMPLEMENTATION

At a high level, our prototype implementation is inspired
by Software Fault Isolation. The idea is that the unannotated
(unprotected) variables and code should be isolated from
the protected data. This is accomplished by moving all the
protected data into a separate memory region and enforcing its
bounds. Additionally, protected variables are bounds checked,
preventing overflows within the protected region.
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Fig. 1: Memory layout of the DCI mechanism.

DCI’s annotations apply to types, not variables. We made
this design decision to make annotating large code bases as
painless as possible. Annotating types allows one annotation
to apply to many variables throughout the program whereas
annotating individual variables would result in a lot more
typing. Annotation burden is a major issue for any tool that
requires programmer annotations [11].

Our prototype DCI implementation is built on top of the
LLVM compiler infrastructure [5]. The analysis and rewriting
step is implemented as a module pass.

The analysis step identifies annotated variables and ver-
ifies the isolation of protected and unprotected variables.
Identifying protected variables is accomplished by searching
the LLVM IR for the annotation metadata. After identifying
protected variables, DCI then performs conservative data-flow
analysis to ensure there is no data flow between protected
and unprotected variables. An interesting design point is what
DCI should do if it discovers illegal data-flow (either from
protected to unprotected or vice versa). A simple approach
aborts the compilation and prints an error message. However,
we also implemented the option to automatically promote the
unprotected variable to protected. This approach increases the
runtime overhead (more protected variables result in more
runtime checks and more metadata) but further reduces an-
notation burden. With automatic promotion the programmer
can just make a few seed annotations to a large program, then
DCI will automatically annotate any variable that interacts
with them. From a security perspective it is always safe to
protect a variable since protected variables are always bounds
checked. Our analysis is conservative and errs on the side
of protecting too many variables (possibly leading to higher
overhead). In future work, we will investigate other approaches
for identifying protected variables and providing feedback to
the programmer on the size of the set of protected variables.

The rewriting step ensures that only annotated variables
can access the protected region. Loads and stores to protected
variables are rewritten to use our DCI intrinsic functions and
allocations of protected memory objects are written to use our
intrinsic allocation functions. Values from unprotected pointers
are masked before they are dereferenced to prevent them from

accessing protected data. Figure 1 shows the memory layout.
The runtime component is integrated into LLVM’s libclang.

It maintains the data structure necessary for protected variable
bounds checks. The current implementation uses a lookup
table to hold bounds information for a pointer’s address.

V. CASE STUDY

To investigate the practicality of DCI we applied it to
PolarSSL [1], a SSL/TLS library implemented with 30,000
lines of C code. We protect the very frequently used type
ssl_context. Using our instrumented PolarSSL we ran the
provided client and server to verify correct functionality.

Besides the client and server examples, PolarSSL has a
large test suite of 6,212 tests. Our protected PolarSSL li-
brary passes all tests. PolarSSL includes a benchmark with
84 separate measurements. For benchmarking, we annotated
the arc4_context type to make it a protected type. We
measured an average overhead of 7.28x on the benchmarks.
For comparison, we also ran the benchmark with Soft-
Bound+CETS and measured an overhead of 11.44x. As DCI
protects less data the overall overhead is reduced compared
to SoftBound+CETS. These results are very preliminary, we
plan to thoroughly evaluate our prototype in future work.

VI. CONCLUSION

Data Confidentiality addresses the emerging problem of
non-control data attacks. Since these attacks do not alter the
intended control-flow they will slip by existing protection
mechanisms. Even though our implementation is still under
development our preliminary results show the approach is
practical for large realistic programs and has lower overhead
than mechanisms that enforce complete memory safety.
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