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Abstract—Stealing of sensitive information from apps is al-
ways considered to be one of the most critical threats to Android
security. Recent studies show that this can happen even to the
apps without explicit implementation flaws, through exploiting
some design weaknesses of the operating system, e.g., shared
communication channels such as Bluetooth, and side channels
such as memory and network-data usages. In all these attacks,
a malicious app needs to run side-by-side with the target app
(the victim) to collect its runtime information. Examples include
recording phone conversations from the phone app, gathering
WebMD’s data usages to infer the disease condition the user
looks at, etc. This runtime-information-gathering (RIG) threat is
realistic and serious, as demonstrated by prior research and our
new findings, which reveal that the malware monitoring popular
Android-based home security systems can figure out when the
house is empty and the user is not looking at surveillance cameras,
and even turn off the alarm delivered to her phone.

To defend against this new category of attacks, we propose
a novel technique that changes neither the operating system nor
the target apps, and provides immediate protection as soon as
an ordinary app (with only normal and dangerous permissions)
is installed. This new approach, called App Guardian, thwarts
a malicious app’s runtime monitoring attempt by pausing all
suspicious background processes when the target app (called
principal) is running in the foreground, and resuming them after
the app stops and its runtime environment is cleaned up. Our
technique leverages a unique feature of Android, on which third-
party apps running in the background are often considered to
be disposable and can be stopped anytime with only a minor
performance and utility implication. We further limit such an
impact by only focusing on a small set of suspicious background
apps, which are identified by their behaviors inferred from their
side channels (e.g., thread names, CPU scheduling and kernel
time). App Guardian is also carefully designed to choose the
right moments to start and end the protection procedure, and
effectively protect itself against malicious apps. Our experimental
studies show that this new technique defeated all known RIG
attacks, with small impacts on the utility of legitimate apps and
the performance of the OS. Most importantly, the idea underlying
our approach, including app-level protection, side-channel based
defense and lightweight response, not only significantly raises the
bar for the RIG attacks and the research on this subject but
can also inspire the follow-up effort on new detection systems
practically deployable in the fragmented Android ecosystem.

I. INTRODUCTION

The popularity of Android devices comes with a vibrant
application (app in short) market. New apps continue to
emerge, providing services ranging from news, weather, and
entertainment to such serious businesses as banking, medical,
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finance, and even home security. Apps for these businesses
carry sensitive personal information (e.g., bank account details,
diseases and medicines, investment secret, etc.) that needs to
be protected from unauthorized programs running on the same
device. Serving this purpose is the Android security model that
confines each app within its application sandbox using a unique
Linux user ID to prevent it from accessing other apps’ data. In
spite of the protection in place, through shared communication
channels (e.g., audio, Bluetooth) or public resources (e.g.,
memory, CPU usage), sensitive user data could still be disclosed
to the malicious app that continuously monitors the victim
app’s activities and collects its runtime information from those
sources. Such runtime information gathering is known to be
one of the most serious threats to Android users’ privacy, as
extensively reported by prior studies [1]-[7].

Runtime information gathering. More specifically, “runtime
information gathering” (RIG) here refers to any malicious
activities that involve collecting the data produced or received
by an app during its execution, in an attempt to directly
steal or indirectly infer sensitive user information. Such an
attack can happen by abusing the permission the malicious
app acquired from the user, e.g., unauthorized recording of the
user’s phone conversation, or through analyzing a set of side-
channel information disclosed by the app, e.g., its CPU, memory
and mobile-data usages [1], [5]. For example, prior research
shows that apps with the RECORD_AUDIO permission are
capable of selectively extracting confidential data (e.g., credit
card number) and stealthily delivering it to the adversary [3].
Also, the official app of an external medical device, such as a
blood glucose meter, can be monitored for collecting patient
data from the device through the Bluetooth channel, before
the official app is able to establish its connection with the
device [6]. Particularly concerning here is that even the app
not asking for any permission can still obtain highly-sensitive
user information from a variety of side channels, demonstrating
the fundamental weakness of mobile devices in separating an
app’s operations from its data. Examples include web content
detected through analyzing the browser’s memory footprints [5],
key strokes logged using the phone’s accelerometer [4] and
the mobile user’s identity, disease and financial information
inferred from different apps’ mobile-data usages [1].

In addition to those known instances of the RIG threat, we
further looked into its implication to Android controlled Internet
of Things (I0T), which are emerging systems increasingly used
for smart home [8], [9], automobile control [10], [11], home
security [12], etc. The first step we took includes an analysis of
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two highly popular home-security IoT systems, Belkin NetCam
Wi-Fi Camera with Night Vision [13] and Nest Protect [9],
both of which have been extensively used [14]. Our preliminary
study shows that they are all vulnerable to the RIG threat. For
example, we found that through the official app of NetCam, a
malicious app without permission can find out when no one is
at home and the phone user is not looking at the surveillance
video (through the official app on her phone); also it knows
when the camera’s motion sensor captures the presence of
a stranger at home and is sending an alarm message to the
user’s phone, which enables the malware to turn off the phone’s
speaker, making the alarm go unnoticed. This actually helps a
robber break into one’s home without being discovered, even
when the home is protected by such a security system. A demo
of the attack is posted online [15]. These findings, together
with what are reported in the prior research, point to the urgent
need to mitigate the RIG threat to mobile devices.

Challenges. Conventional solutions to the problem rely on
modifying either the Android OS or the apps under the
threat. Specifically, one can enhance Android’s access control
mechanism to prevent information leaks during security-critical
operations such as phone calls, and remove the public resources
that could be used for a side-channel analysis. This, however,
inevitably makes the system less usable and causes compatibility
issues for the apps that already utilize the public resources
for legitimate purposes (mobile-data monitor [16]). Most
importantly, due to the fragmentation of the Android ecosystem,
deployment of any OS-level solution is often complicated and
painful: whenever Google comes up with a patch, individual
device manufacturers need to customize it for all their devices
before passing its variations to the carriers, who will ultimately
decide whether to release them and when to do that. Even
in the case that the manufacturers are willing to build the
protection into their new products, given the slow pace with
which Android devices are upgraded, it is almost certain that
the new protection will take a long time before it can reach any
significant portion of the 1 billion Android devices worldwide.
On the other hand, new RIG attacks continue to be brought to
the spotlight [2], [4], [5], [7], [17]-[19], effective mitigation
is therefore in an urgent need for safeguarding Android users’
private information. Furthermore, pushing the problem to the
app developers is by no means a good idea, as it is less clear
what an app can do by itself to control its information exposed
by the OS: for example, it cannot disable the recording activity
of another app; also adding noise to an app’s CPU, memory
and data statistics may not eliminate the side-channel leaks and
certainly increases its performance overhead.

App Guardian. In our research, we found that the RIG attacks
can be defeated on the application level, without touching the
OS or the apps under protection at all. What we come up with is
just an ordinary app, called App Guardian or simply Guardian,
that can be posted on the Google Play store and installed by
any Android user on her device to acquire immediate protection
of her security-critical apps. This is achieved, in a nutshell, by
pausing all background apps capable of causing damage to the
information assets of the protected app (called principal in our
research) when it is running in the foreground, and resuming
those apps (as they might not be actually malicious) after the
principal finishes its tasks and its data (e.g., process files and
caches) has been sanitized. Without access to the principal’s
runtime information, a RIG attempt (no matter what channel it
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is aimed at) can no longer be successful.

More specifically, on an unrooted phone, the pause/resume
operations are performed through closing suspicious apps
and later restarting them, using the relevant dangerous level
permission. Due to the unique feature of the Android OS, which
allows most third-party apps running in the background to be
terminated when the memory runs low and also provides the
mechanism to preserve their states, this approach has only
a limited impact on those apps’ legitimate operations. The
impact becomes even less significant with a strategic selection
of only a small set of suspicious apps to stop, based upon
their observable features. Our Guardian app has been carefully
designed to determine when to put the protection in place and
when to lift it, after properly cleansing the principal’s public
resources of sensitive data. Most importantly, it has been built
to protect itself against the attacks from malicious apps and
defeat different tricks (such as collusion) they play.

A unique feature of Guardian is its strategy to identify
suspicious apps. This is done by inspecting individual apps’
permissions and behaviors. Note that finding such behaviors is
nontrivial for a non-system app like Guardian, since it cannot
see the system-call level activities of other apps. In our research,
we developed a new technique that leverages an app’s side-
channel information to infer its activities. Such information
includes a set of public data, such as the name of a service
thread, a thread’s scheduling status and the amount of kernel
time it consumes. For example, an untrusted app can get caught
when it is trying to record a phone conversation, once Guardian
observes that the Audio service process spawns a new thread
called AudioIn_X (indicating a recording activity) and the
suspicious app (with the RECORD_AUDIO permission) utilizes
CPU. Also, a third-party background process, unrelated to the
principal, could look risky to the principal if it is frequently
scheduled to use CPU, as the CPU cycles here could be
spent on RIG. Using such side-channel information, Guardian
carefully chooses the targets to close, to minimize the utility
and performance impacts of the operation without undermining
the security protection.

We implemented App Guardian and evaluated its utility
over 475 most popular apps in 27 categories on Google Play.
We found that under the strategy for selecting suspicious
processes, only 1.68% of the popular apps with perceptible
impacts on user experience needed to be closed when they
were running in the background and all of them could be
swiftly restored without losing their runtime states. Our study
further shows that the new technique defeated all known RIG
attacks, including audio recording, Bluetooth misbonding [6],
a series of side-channel attacks on high-profile apps [1], [4],
[5]1, [20], the recently proposed user-interface inference [2] and
voice eavesdropping [7], together with the new IoT attacks we
discovered, at a performance cost as low as 5% of CPU time
and 40 MB memory.

Contributions. The scientific contributions of the paper are
outlined as follows:

o New understanding of the RIG threat. We investigated the RIG
threat to Android-controlled IoT systems, which reveals serious
side-channel leaks from popular IoT systems (e.g., disclosing
when one’s home is empty).

e New protection and new bar for the RIG research. We



developed a novel application-level defense against the RIG
threat, which has been built into an ordinary app and can
therefore be easily distributed to a large number of Android
devices to provide immediate protection. More importantly,
given its promise of a real-world deployment and the tech-
nique’s effectiveness against the known attacks, not only does
our approach make real-world RIG exploits more difficult to
succeed, but it has also noticeably raised the bar for the scientific
research in this active area [2], [4], [5], [7], [17]-[19]: now
new attacks discovered will be put to the test of our defense, to
make the case that they indeed pose a realistic threat. This will
certainly move the security research in this domain forward.

e Novel side-channel based detection and lightweight response.
Up to our knowledge, we are the first party that leverages side
channels to detect side-channel attacks and other malicious
activities on mobile devices. Our unique observation is that on
these devices, a malicious app needs to aggressively utilize CPU
and other computing resources to gather useful information
from a target app during its runtime. Such behavior can actually
be observed from the attacker’s own side channels, allowing
a third-party detection system to discover the attack without
access to system-level information (e.g., the attacker’s API
calls). This effort is further supported by a lightweight response
to the suspicious activities identified, which just temporarily
suspends a suspicious app’s operation when important things
are happening, and resumes it later. The cost for a false alarm
is therefore minimized. Such an idea could find its way to
apply to other security domains, inspiring follow-up research
on app-level intrusion detection on mobile systems.

o Implementation and evaluation. We implemented our design
and tested it on 475 popular apps. Our evaluation demonstrates
the efficacy of our new technique.

Roadmap. The rest of the paper is organized as follows:
Section II introduces the RIG threat to mobile devices and
elaborates our new study on its implications to Android 1oT;
Section III describes our design and implementation of App
Guardian; Section IV reports our evaluation study on the new
technique; Section V discusses the limitations of our current
approach and potential future research; Section VI reviews
related prior work and Section VII concludes the paper.

II. MENACE OF RUNTIME INFORMATION GATHERING

As discussed before, runtime information gathering poses
a serious threat to Android user’s privacy. In this section, we
introduce background information about Android security and
prior studies on this problem. Then, we report our preliminary
investigation on two popular Android home security systems,
whose sensitive information (e.g., whether a house is empty)
can be recovered by RIG attacks.

A. Background and Prior Findings

Following we describe how Android protects its apps, and
why such protection is insufficient to stop RIG attacks.

Android security and RIG. Android security model is char-
acterized by its unique application sandbox, which has been
built on top of Linux’s kernel-level protection (e.g., process
separation, file system access control). Specifically, each app
is assigned a unique Linux user ID (UID), which separates
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it from other apps. As a result, except for a set of shared
resources the app utilizes and its runtime statistics made public
by the OS, e.g., virtual files under the process file system (proc),
its operations and data are beyond other apps’ reach. To use
protected global resources, such as audio, video, GPS, etc.,
each app needs to request permissions from the user or the
OS before its installation. Such permissions are categorized
into different protection levels [21], among which normal ones
are automatically granted to the apps when asked, dangerous
permissions are given based upon the user’s consent, and system
or signature permissions are saved for system apps. With a
proper permission, an app can call relevant APIs to operate on
those global resources, e.g., recording audio, taking pictures,
connecting to Bluetooth accessories, etc.

This security model is known to have a few issues, which
are becoming prominent in the presence of increasingly diverse
Android applications. First, the permission-based access control
turns out to be too coarse-grained: any app granted a permission
is allowed to use it to access any resources, under any
circumstances. For example, a voice recorder can tape any
phone conversation without restriction; a game app with the
Bluetooth permission for connecting to its playpad can also
download patient data from a Bluetooth glucose meter. Further,
the model does not protect an app’s runtime statistics and
other resources the OS considers to be public. An example
is its network-data usage. Under some circumstances, such
information could actually be linked to the app’s program states,
allowing the adversary to figure out the content of its data [1].
As a consequence of these design limitations, even a carefully-
implemented app often unwittingly discloses its confidential
data through the way it uses resources (CPU, memory, network
data, etc.) during its execution or through shared communication
channels (audio, Bluetooth, etc.) when it is sending or receiving
the data. This subjects the app to all kinds of RIG attacks in
which the adversary is continuously monitoring its operations
and collecting its runtime information.

Data stealing. Specifically, unauthorized voice recording has
long been known to be a serious security issue. Prior study
shows that malware recording phone conversations can masquer-
ade as an app with a legitimate need for the related permission,
such as a voice dialer or a voice memo application [3]. Once
installed, it can be made to intelligently choose the data of
a high value (e.g., credit card number, password) to steal,
leveraging context information such as a bank’s interactive
voice response system. In such an attack, the malware operates
when the system phone app runs in the foreground to command
Android’s MediaRecorder service to collect the voice data
exchanged during a phone call.

More recently, research has found that Android Bluetooth
accessories are also vulnerable to such runtime data stealing [6].
The official app of a Bluetooth medical device, such as
blood-glucose meter and pulse oximeter, can be monitored
by a malicious app with the Bluetooth permission. Once the
legitimate app starts running in the foreground, the malware
tries to connect to its accessory before the app does or right after
it finishes its communication but before the device is turned
off. This RIG attempt was found to be often successful, letting
the unauthorized app download a patient’s clinic data. Another
example is the attack on programmatic screenshot apps [20],
which typically run a local socket connection to command a



process invoked through Android Debug Bridge (ADB), so
as to get ADB’s signature permission for screenshot taking.
The problem is that this local socket channel has not been
properly regulated and as a result, any app with the Network
permission can ask the process to snap an picture of the screen.
The research shows that using this technique, a RIG attack can
continuously take screenshots when the user types into an app,
extracting the sensitive information (e.g., password) she enters.

In all those attacks, a malicious app abuses permissions it
gets to directly collect sensitive user data from the target app
running in the foreground. Following we show that even in
the absence of such permissions, RIG attacks can still happen
through a variety of side channels on Android.

Side-channel inference. Android is designed for thin devices,
on which the level of concurrency is limited: typically, the
foreground process controls most resources while those running
in the background are often inactive and considered to be
disposable. Also, most apps are just the user interfaces of web
applications, and characterized by simple designs and intensive
interactions with their web services during their operations.
These features make an Android app’s behavior conspicuous to
the party continuously monitoring its CPU, memory, network-
data usages and other side channels and vulnerable to the
inference attacks that link the information collected to the
content of its data such as the user’s inputs.

Specifically, prior research studied the RIG attacks through
the side channels on both the Linux layer and Android’s
application framework layer. Linux-level channels are mostly
related to the public process filesystem, which includes public
statistics about a process’s use of memory, CPU, network data
and others. For example, the dynamics of the browser’s memory
usages (observed from /proc/<pid>/statm) during its
rendering of web content are found to be useful for identifying
the web page the user visits [5]. In this attack, a malicious app
continuously samples the browser’s data resident sizes (called
memory footprint) when it is loading a page and compares
the set of the footprints with the profiles of web sites. A
more recent study looked into Android’s network data usages
(/proc/uid_stat/tcp_snd and tcp_rcv), and shows
that the increments observed from these two indicators are
in line with the payload sizes of the TCP packets sent or
received by the app under the surveillance. Such increments
were used to fingerprint the app’s activities, such as sending
a tweet. This allows the adversary to query the Twitter server
using the timestamps of such operations, for determining the
individual who tweets at all these times. Also such usage
increments were found to be sufficient for identifying the
content the user clicks on when using the most popular
healthcare app WebMD [22] and high-profile investment app
Yahoo! Finance [23]. As a result, by simply examining the
increment sequences gathered from these apps’ runtime, a
malicious app without any permission can figure out the disease
and stock a user is interested in.

On the framework layer, what have been extensively
investigated include keystroke identification using motion
sensors such as accelerometer. The idea is to monitor the
movement and gesture changes when the user types through
the touch screen to infer the content she enters into a running
app. Such an inference was found to be completely feasible [4].
Another side channel exploited on the framework layer is the
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public API function. Particularly, prior research shows that an
Android user’s driving route could be determined by looking
at sequences of the duration for the voice guidance produced
by Google Navigator. Such a duration is identified from the
speaker’s status (“on” or “oft”), which can be found out through
a public API isMusicActive. A collection of the duration
sequences turns out to be sufficiently informative for tracking
the path the user drives down [1].

B. Preliminary Study on Android loT

Given the unique features of Android (i.e., simple user-
interface programs, little noise in their running environments),
we strongly believe that what have been discovered is just a tip
of the iceberg. As a baby step towards a better understanding
of the RIG threat to Android, we looked into two popular
IoT systems, the Belkin NetCam Wi-Fi camera with Night
Vision [13] and Nest Protect [9]. Both systems are among
the front runners of the current trend of Android-based home
security and safety IoTs [24]. The NetCam camera is designed
for home surveillance and motion detection, which can identify
the stranger who gets into the house and allows the house owner
to check what has happened remotely, through her smartphone.
Nest Protect is an intelligent fire alarm system. It monitors the
fire situation in the user’s home and alerts her through phone.
Both systems are considered to be high-end IoTs, with at least
hundreds of thousands of users [14]. Here we describe how
they work and our analysis that reveals their RIG weaknesses.

The IoT systems. The way the NetCam system works is illus-
trated in Figure 1, which is also typical for other smartphone-
based IoT systems, including Nest Protect. Specifically, such
a system deploys a single or multiple sensors in the user’s
house. Each sensor is connected to a home Wi-Fi router for
communicating with other sensors and a server operated by
the party providing the service (home security or fire alarm).
Whenever a situation is found, the sensor reports to the server,
which takes measures to respond to the event, including pushing
a message through Google-Cloud Messaging (GCM) to the
user’s phone. This message is picked up by the GCM process
on the phone, which forwards it to the IoT’s official app through
an Intent. The app further posts a notification, producing an
alert sound to arouse the user’s attention. The official app also
enables the user to remotely control the sensors and check the
data (e.g., looking at a live video) they collect.

NetCam Server

¢ ‘E'é‘i’
A

{C)

Only when phone
is in range.

NetCam App ,.’

Fig. 1: NetCam system

For the NetCam system, whenever the user is leaving home,
she can turn on the camera’s motion detector by clicking on the
official app’s “save clips” switch. Once the status of this switch
changes, the app communicates with the server to configure
the camera to automatically identify the motion likely related



to human activities (which is not supposed to happen, given
that the house is empty), and reports to the user through the
GCM channel. Similarly, Nest Protect sensors capture a fire
situation and sends an alarm to the user’s phone.

Analysis and findings. In our research, we ran both systems
while monitoring their operations through an unprivileged
attack app on the user’s Android phone. The app utilizes
getRunningTasks to find out whether its target starts
running, and continuously collects the target’s side-channel
information, particularly its network data usage (tcp_snd
and tcp_rcv) and CPU usage (/proc/<pid>/stat), for
inferring the events related to the target. With such information,
the app can also actively interfere with the system’s operation,
to prevent the user from being properly notified.

We found that for NetCam, the status of the “save clips”
switch is actually observable from the official app’s network
data usage. This is important because when the switch is on
(means that the camera reports any human-related motions
detected), we know exactly that no one is at home. Specifically,
whenever the status changes, the official app always sends out a
single packet with a payload of 368 + 2k bytes, where k is the
length of one’s username, which is typically around 10 bytes.
This packet causes the app’s tcp_snd to rise by its payload
size while a response package may add to tcp_rcv, and
then remains unchanged, together with tcp_snd in at least
1 seconds. These features make the switch-setting operations
(turning it on or off) stand out, as no other activities involve a
single packet with that length (above 300 bytes). Also, when
we take a close look at the packets that change the switch status
(from “off” to “on” or vice versa), the former is always one byte
below the latter, even when usernames vary in length. To detect
the former, our attack app first identifies a few switch operations
based on their unique features (changes of tcp_snd and
tcp_rcv), and then compares the exact t cp_snd increments
they cause to find out the one that sets the switch on (one byte
less than those deactivating the detector). Such information
was accurately collected in our experiment when our app read
from the proc file at 10 times per second. In this way, the app
was able to determine exactly when the user’s house is empty.

Further, our research shows that the message the GCM
process delivers to the official NetCam app can also be
fingerprinted. This is important because now the attack app
can find out whether the camera indeed gets something and
respond to such an event, for example, by muting the speaker
temporarily to make the event less likely to come to the user’s
immediate attention. Specifically, we found that the GCM
message for such an alarm (sent by the NetCam server) ranges
from 266 bytes to more than 300, depending on the length
of the username and other variables. Again, this can be seen
from the increment of tcp_rcv (for the GCM process). This
length is rare for messages processed by GCM but might not be
unique, given that any app can use this channel to get messages.
Therefore, our attack app further verifies the recipient of the
message by looking at whether the official app of NetCam is
invoked or its background process starts using CPU resources
(/proc/<pid>/schedstat) right after the arrival of the
message (in 150 milliseconds). If so, it is evident that the alarm
has come. In response to it, the attack app immediately turns
off sound and vibration, and restores the original settings after
10 seconds. To make the attack succeed, the app needs to check
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the GCM’s proc files at 20 times per second.

Another trick we can play is to find out whether the user is
looking at the live video streamed from the camera. A unique
feature for this operation was found to be the arrival of 6
consecutive packets, each with at least 2,500 bytes. This can be
observed from the increments of the NetCam app’s tcp_rcv
when the attack app collects the data 5 times per second. Putting
things together, we conclude that even though the IoT system
is for home security, its side-channel weaknesses can actually
be taken advantage of for committing a robbery. Specifically,
the robber running an app on the victim’s phone knows when
the house is empty by inferring the switch status, whether the
camera detects his break-in and the user is looking at the video.
He can be further protected by muting the alarm sent to the
user. A video demo of the attack is posted online [15].

It turns out that Nest Protect is equally vulnerable to the RIG
attacks, though the system was carefully built to avoid common
security flaws'. Specifically, the fire alarm sent through GCM
always increases its tcp_rcv by 305 to 318 bytes, which can
be reliably identified by the attack app when it is sampling
the indicator 20 times per second. The event can be confirmed
by checking the CPU usage of the Nest app. In our research,
we performed the same muting attack to disable sound once
an alarm is arrived, which worked as effectively as that on
NetCam. As a result, the attack app could make the alarm
temporarily go unnoticeable.

III. ApPP GUARDIAN

As demonstrated by the prior research and our preliminary
study, Android is not designed to withstand the RIG threat. Its
fundamental limitations, such as shared channels and public
resources, subject it to various forms of runtime information
collection, which often causes the exposure of sensitive user
information. This problem is realistic, pervasive and serious,
and can only be addressed by new techniques that are effective
and also easy to deploy across nearly one billion Android
systems customized by various parties. In this section, we
elaborate the design and implementation of such a technique,
which protects the app carrying private user information at the
application level.

A. Overview

Before delving into details, here we first present the idea
behind our technique, a 1000-foot view of its design and the
assumptions made in our research.

Idea and high-level design. Critical to the success of any RIG
attack is a malicious app’s capability to run side-by-side with
the target app, collecting the information exposed during its
operation. To defeat such an attack, therefore, it is important
to stop such information-gathering activities. For this purpose,
our approach suspends suspicious apps’ executions throughout
the target app’s runtime and resumes them after the target
completes its task. During this period (called the Ward mode
or simply Ward in our research), we further ensure that no
suspicious app is invoked, and the Guardian app can protect

'For example, compared with other IoT systems, Nest includes carefully-
designed protocols to ensure security during the communication among different
sensors and between sensors and the server.
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itself from other apps. Also such protection should not rely on
any change to the Android OS or the app being protected (i.e.,
the principal). This is important for practical adoption of the
new technique. Finally, the overhead of the protection, in terms
of its impact on system performance and other apps’ utility,
should be minimized, which can be achieved through analyzing
the behaviors of apps to close only those indeed suspicious.

This idea has been applied to build our App Guardian, an
app with only normal and dangerous permissions. Its design
is illustrated in Figure 2. Specifically, the app includes three
key components, an app monitor, a suspicious app detector
and an app controller. The monitor collects the features (e.g.,
permissions) of all third-party apps installed on the devices
and during their runtime, keeps a close eye on their behaviors
through periodically sampling those apps’ CPU consumption
and other observable behavior patterns from their side channels.
Such behavior information, together with individual apps’
features, is passed to the detector for identifying those that
act dangerously according to the security requirements of the
protected app (the principal) and a set of security policies. The
suspicious apps reported are then suspended by the controller
before and throughout the Ward mode, and resumed afterwards.
The controller is also responsible for the safety of Guardian
itself. These components can stand on their own, providing
protection to the mobile user, and in the meantime, they can
also be supported by a server that maintains security policies
for protecting different principals against various threats, and
also analyzes the apps with strong evidence to be illicit under
the device user’s consent.

For example, consider a hypothetical medical app that
connects to a health device through Bluetooth to collect health
data from a user, and also provides her information about
disease conditions according to the data. Here the principal
(the medical app) needs to be protected on two fronts: the
Bluetooth channel it uses to download data from the device
and its network-data usage that can be exploited to infer the
conditions the user checks. To this end, the Guardian app
monitors all other third-party apps running in the background.
Once the principal is activated, Guardian closes the third-party
processes that look dangerous to the principal (Section III-B),
particularly, those being scheduled in the background with a
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high frequency. This is because if such a process was actually
sampling the principal’s network-data usage at this rate, it
would be able to infer the condition the user is looking
at (Section III-C). Particularly, the apps that change their
scheduling rates, apparently based upon whether the principal
is running are considered to be highly suspicious.

Further, whenever a background app with the Bluetooth
permission is found to consume CPU resources, Guardian
checks whether the Bluetooth service is also active (using
CPU): in this case, the app needs to be stopped too, to protect
the principal’s data on its Bluetooth device (Section III-C).
Once the principal is switched to the background or other exit
(from the Ward mode) conditions are met, the Guardian app
terminates the principal’s process and cleans up the cache. After
that, it restores closed third-party apps that need to be resumed
(Section III-B).

In this way, our approach ensures that a RIG app does not
get a chance to collect information from the principal when it
is running in the Ward mode.

Adversary model. The Guardian app can be downloaded
from an app store to provide the device user immedi-
ate protection of her security-critical apps. To make this
happen, the user needs to grant Guardian a set of per-
missions, including KILL_BACKGROUND_PROCESSES for
closing other third-party apps, SYSTEM_ALERT_WINDOW
for popping up an alert to the user, INTERNET for In-
ternet access, GET_TASK for getting top activity and
BIND_NOTIFICATION_LISTENER_SERVICE for control-
ling notifications. Also, we only consider the malicious apps
running in the user mode, without any system privileges, as
most real-world Android malware does. Such apps have to
utilize Android shared resources to steal or infer sensitive
information within the protected app. For those with system
privileges, however, they could break Android’s application
sandbox and circumvent an app-level protection.

B. Safeguarding App at Runtime

At the center of our App Guardian system is suspension and
resumption of suspicious apps, which protects the principal in
the Ward mode. Simple as it appears to be, the approach actually
needs to be carefully designed to address a few technical
challenges, e.g., when to enter the Ward (i.e, to start protection)
and when to leave, how to protect the Guardian app itself, etc.
Here we elaborate how our technique works, and its impact on
the utility of legitimate third-party apps.

1147 wvoveenss

-

ardian

Fig. 3: Non-clearable notification of App Guardian

Self protection. Running as an ordinary third-party app, App
Guardian works against the malicious apps that operate on the
same OS level. Most important here is how to protect itself
against the malware’s attempt to terminate it. For this purpose,



we built Guardian in a way that it cannot be killed by any
third-party app. Specifically, the service of our app is invoked
through startForeground, the API that puts the service
in the perceptible state, though all the user can see is just a
notification posted on the Notification Center of her device
(Figure 3). In this state, the app cannot be stopped by another
app using the KILL_BACKGROUND_PROCESSES permission.
Also, it will not be killed when the system is low on memory,
unless under the extreme condition where the system Kkills
all apps except system processes and those running in the
foreground to free off memory [25]. Note that in practice, it
is very difficult for a single app to deplete the memory on
an Android device even in the foreground. Specifically, each
device has a limit on how much memory a foreground app
can use. The baseline specified by Android is just 16 MB [26].
In our research, we analyzed Nexus 5 (with 2 GB memory)
and found that this limit has been raised to 192 MB. In a very
rare case, an app could specify largeHeap "true" in
its manifest file to ask for maximal 512 MB, still well below
what the OS can offer. Also, this unusual requirement from
an untrusted third party app could raise suspicion. Even in the
case when the Guardian app is indeed about to be killed, its
controller will automatically generate a restart intent, so it is
immediately revived after being stopped.

A malicious app may try to play the same trick to prevent
itself from being stopped. The problem is that this attempt is
highly prominent and extremely rare among legitimate apps
except those with special needs (like Guardian). In our research,
we inspected 475 most popular apps collected from Google
Play and found that only 7, about 1.5%, have this capability.
Among them are 3 launchers (home apps), 2 weather apps
and 2 social-networking apps. If these “untouchable” apps are
not trusted and also found to behave suspiciously, Guardian
will report it to the user, asking her to stop the service before
running her protected apps.

Monitoring. Once installed, Guardian’s monitor module first
scans all existing third-party apps, collecting their information
(e.g., package names, permissions, etc.), to find out who those
apps are and what they are capable of. This also happens
whenever a new app is installed, which Guardian is notified
(by registering a broadcast receiver and using the Intent
filter action.PACKAGE_ADDED) and acts on to check the
new app’s features. Using such information, together with
the security requirements from the principal (Section III-C),

Guardian determines the way each app should be treated.

For example, those on a whitelist are trusted and will not
be tracked while the others, particularly the ones with the
privileges that potentially can do harm to user privacy (e.g.,
the RECORD_AUDIO permission), will be monitored closely
during their execution. The whitelist here includes a set of
popular apps that pass a vetting process the server performs to
detect malicious content or behaviors. In our implementation,
we built the list using the top apps from Google Play, in all
27 categories.

During its operation, Guardian keeps a close eye on
other running apps and continuously assesses their potential

threats to the principal before and during the app’s execution.

Specifically, we implemented Guardian as a hybrid app, with its
monitor component built with C++ to achieve a high runtime
performance. The monitor continuously inspects untrusted apps’
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proc files (once per second in our experiment). For this purpose,
the processes of these apps need to be identified, which is
achieved as follows. We convert the process identifiers (PID)
of all running processes into their user identifiers (UID) using
stat (), and then remove all system processes (with UIDs
below 10000). Those system apps are only examined by our
app when they operate together with a third-party app under
surveillance: for example, running an audio recording thread
on behalf of the app (Section III-C). Further, the app name of
each process is found from /proc/<pid>/cmdline and
for the non-system apps, their names are used to check against
the whitelist to find out those untrusted. After that, Guardian
works concurrently on all untrusted processes, generating a
thread for each of them.

Entering the Ward. Besides untrusted apps, Guardian also
continuously monitors other system activities related to the app
it protects (the principal) and initiates the whole protection
procedure once an “entry” condition is met for the Ward mode,
where the principal is isolated from untrusted processes. A
typical entry condition is when the principal starts running
in the foreground. This event is detected by the monitor
that keeps track of all newly created processes through
periodically running getRunningTasks. As soon as this
happens, Guardian immediately utilizes its controller to pause
all suspicious background apps. Those apps are identified by
the detector according to their behaviors observed from their
side channels and other conditions, which are elaborated in
Section III-C. The idea here is to temporarily stop them to
create a safe environment for the principal to run, and restore
them afterwards. The life cycle of this protection procedure is
illustrated in Figure 4.

Principal starts
running in the
foreground.

Restore all
apps paused

App Monitor
detects that

by the App
Controller.

principal is
running.

THE LIFE CYLE OF:

Guardian Protection

App Controller
immediately
pauses all

Principal
finishes
executing and
is no more in

suspicious
background apps.
the foreground.

Fig. 4: The lifecycle of Guardian protection

Suspension and restoration can be easily done on a rooted
phone, when Guardian has a root privilege. In this case, simple
commands kill —-STOP <pid> for pausing a process, and
kill -CONT <pid> for resuming the process, will do the
trick. However, most devices are not rooted and the Guardian
app will have nothing but ordinary app’s privilege to support its
mission. In this case, all we can do is just to close the whole app
package (which may include multiple processes). This is done
through killBackgroundProcesses (PackageName),
when the caller of the function has the KILL_BACKGROUND
_PROCESSES permission (at the dangerous level). This op-
eration is unique since on Linux, a user can only close
her own process, not other users’. On Android, however,
once an app is switched to the background, oftentimes, it



is considered disposable, and can be terminated anytime when
the system’s memory runs low. Also, Android provides a
mechanism to let the app to be stopped save its runtime state
(onSaveInstanceState) and restore the state once it is
launched again (onRestoreInstanceState). Therefore,
the impact of this approach on legitimate apps is small, as
demonstrated by a study elaborated later in this section.

Specifically, Android assigns each background process an
oom_adj score, which is used to determine which background
process to kill when the memory runs low. The score ranges
from -17 to 15. The higher the score, more likely the process
having the score is to be terminated. An app, once switched
to the background, its processes typically get 9, which is
given by Android to the programs that “can be killed without
disruption” [27]. For the third-party app that provides a
persistent background service, its ocom_adj score should be 5
or less. We found that almost all such background processes can
be terminated, and all of them keep their states. An exception
is those given a score 2, the privilege level Guardian itself gets.
The apps running at this level are considered perceptible to the
user?, and therefore, can only be terminated by the user. Only a
few legitimate apps acquire this score, 4.42% as we found in our
research (Section IV-B), and many of them need to be trusted
by the user, e.g., keyboards (otherwise, the app can log all the
user’s inputs). The rest are the 7 apps using foreground services,
as discussed before, and media players that only operate with
this score when music is on. For such an app, Guardian first
pauses the music and waits for the player’s score to go up
(and its privilege to go down). Then, if the app still looks
suspicious (Section III-C), it can be suspended just like other
background processes. Specifically, our approach simulates a
user click on the media button: it first broadcasts an Intent
ACTION_MEDIA_BUTTON with action ACTION_DOWN and
key code KEYCODE_MEDIA_PLAY_PAUSE, and then sends
another one in 50 ms with action ACTION_UP. At this point,
music stops, the player loses its privilege and can be terminated
at anytime.

As discussed before, a typical condition for entering this
Ward is just the launch of the principal. Actually, the user
of Guardian can also specify other conditions to trigger the
whole protection procedure before or after the principal runs
in the foreground. For example, our app can also monitor
the GCM process. Whenever a message comes, apparently
related to the principal according to its feature (i.e., the sizes
of the increments for tcp_snd and tcp_rcv), Guardian can
immediately stop untrusted processes to prevent them from
observing the invocation of the principal. This could make the
adversary difficult to determine the arrival of an event (a fire
alarm), simply because it cannot confirm that this happens from
the principal’s operation (Section II-B). Alternatively, Guardian
can register with the principal’s notification event, using the
BIND_NOTIFICATION_LISTENER_SERVICE permission,
to find out when the protected app posts a notification. Once this
happens, our app pauses untrusted processes, checks whether
speaker is mute and if so, re-posts the notification after turning
it on to inform the user of the event (Section IV-A).

Within the Ward, our Guardian app continues to monitor
any new process invoked in the background and any behavior

2An app with a lower score is either system or foreground app.
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changes that happen to existing processes. Whenever a process
is found to become suspicious by the monitor and the detector
(Section III-C), the controller immediately closes its app to
protect the principal.

Exiting the Ward. When the operation of the principal is
coming to an end, Guardian needs to wrap up the protection
procedure, clean up the principal’s computing environment
whenever possible and resume the apps temporarily stopped.
Most importantly here is to determine the timing for moving
out of the Ward mode. A straightforward one seems to be the
moment when the principal is switched to the background. This,
however, could be caused by an event that is temporary but
needs an immediate attention, such as an incoming phone call.
To avoid mistakenly exiting the Ward mode, our implementation
takes the following approach. In the case that the principal
is replaced by a system or trusted third party apps in the
foreground, and such an app is in communication category such
as phone or Skype, the Guardian app does not rush to launch
the exit procedure. It does this when the device is switched
back to the home app and a pre-determined waiting period
has expired. The period is set to avoid the user’s accidental
triggering of the exit procedure. On the other hand, whenever
a third-party app starts to run in the foreground and the app
is not in the communication category, our approach pops up a
window asking the user’s permission to exit the Ward mode
and automatically does so after a short waiting period.

Once the exit procedure starts, Guardian first closes the
principal, which removes the entire process directory of the
app, making sure that its runtime statistics (such as its CPU,
memory usages) there will not be exposed to unauthorized
parties. Also based upon the user’s setting, our app can clean
all the caches using the permission CLEAR_APP_CACHE?.
With such protection, however, still some app information
cannot be easily cleaned up. Particularly, network-data usages
sit under the /proc/uid_stat/<uid>/ directory, which
can only be reset when the device reboots. With proper
protection during the protected app’s runtime, what is left
after its execution is just aggregated usage data after several
rounds of communication, which are typically hard to use in an
inference attack (Section IV). Guardian can further suggest to
the user to deliberately take a few random actions (e.g., clicking
on some random disease conditions in WebMD [22]) before
exiting the Ward mode, making the chance of a successful
inference even more remote.

After sanitization of the principal’s runtime envi-
ronment, Guardian runs its controller to launch the
apps that have been closed. Specifically, Guardian uses
queryIntentActivities to find out the main activ-
ity of the suspended apps, and then revives them through
startActivity. Although this can be done to all apps,
one can simply choose to only resume those that need to be
recovered. As discussed before, the design of Android makes
most background apps, those with 9 or above, disposable.
Therefore, our approach only recovers the app with at least
one process running at 5 or lower, while ignoring those with
a high score. This treatment expedites the recovery process

3This is done using reflection to call the function freeStorage. Our
current implementation needs to free all the caches, which affects other apps’
performance. Therefore, the user is supposed to use it only when running the
app with highly-sensitive information.



without affecting the utility of those apps (as those apps are
supposed to run to their completion and can be terminated at
any time), though it may come with some performance impacts,
particularly when the user wants to run the recent program she
used. In this case, the program needs to be restarted.

Utility Impacts. To understand the utility impacts of stopping
third-party background processes, we analyzed 475 top apps
from the Google Play store, in all 27 categories. Our analysis
shows that a vast majority of the apps actually operate with high
oom_adj scores, at level of 9 or above. This implies that once
switched to the background, they can be terminated by Android
anytime to make room for the foreground or system processes.
Only 27 (5.68%) of those apps run at level 5 or below. Closing
them may have some utility impacts, for example, stopping the
background music. On the other hand, their runtime states are
always well preserved when they are terminated. Specifically,
for each of those apps, whenever we restart them, always they
are restored to the states when they were killed, running at
wherever they were stopped. Table IV (Section IV-B) presents
a few examples for the analyzed apps. The findings indicate
that the utility impacts of our approach are limited.

C. Finding Suspects

Even though most background processes are disposable and
almost all of them can recover their states once restarted, this
pause-resume approach still comes with some cost: invocation
of an app takes a longer time than simply bringing a background
process to the foreground, as illustrated in Table I; background
apps could stop playing music or responding to Intents in the
Ward mode. Limiting such performance and utility impacts
relies on selection of right apps, those indeed suspicious, to
close, avoiding blind killing of all apps. As discussed before,
such selection is nontrivial, given that we cannot see detailed
app behaviors such as system calls. In this section, we elaborate
how we address this problem, using side channel information
of individual apps to infer their activities.

[ App [ Restart (s) [ Switch (s) |

Subway Surf 9.76 2.89
Mx Player 1.15 0.55
Flashlight 1.27 0.68
Shazam 2.18 0.77
RunKeeper 4.02 1.35
Bible.is 2.47 0.58
Chase 1.94 0.75
Duolingo 2.92 0.95
PicsArt 2.08 0.91
Wikipedia 1.91 0.65

TABLE I: Time of restarting an app vs. time of switching it to
the foreground

Control strategy. As discussed before, our Guardian app is
supported by a server that hosts information regarding how
different apps should be protected. As examples, the phone
app needs to be guarded against unauthorized audio recording;
for WebMD, the concern is side-channel leaks. On the server
side, such information is kept in a database, which includes
types of threats a particular app is facing and policies for
determining whether another app is suspicious of committing
related attacks. In the above example, the policy for detecting
an audio recording attack on the phone app can be the presence
of an untrusted background app with audio record permissions,
together with an AudioIn_X thread (for recording) created
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by mediaserver, as elaborated later in the section. This
treatment leverages the features of a specific type of RIG
attacks, which pose the major threat to the principal, to come up
with a specialized defense strategy, and therefore avoids blindly
killing all untrusted processes. On the other hand, when the
user is looking for more generic protection or the information
about the principal is not in the database, we can always roll
back to the blind strategy that stops all untrusted apps. Here
we describe how to defend against different RIG attacks (data
stealing and side-channel leaks) in this way, based upon the
apps’ features, particularly their behaviors as inferred from
their side channels.

Data stealing attacks. For some principals, the malicious
app needs permissions to steal their sensitive data. Partic-
ularly, to record a phone conversation, the app must have
the RECORD_AUDIO permission, and may also ask for
READ_PHONE_STATE to get the incoming-call event (us-
ing the filter android.intent.action.PHONE_STATE).
With these permissions, the app can tape the user’s conversation
by using the MediaRecorder object, which causes Medi-
aserver to create a service thread with the name AudioIn_X,
where X is a number. Note that this name is generated by
the OS and cannot be forged by the adversary. It discloses
what the system is now doing (that is, recording audio on
behalf of an app with proper permissions). The existence of
such a thread can be directly observed from the public file
/proc/<pid>/task/<tid>/status. Putting the pieces
together, Guardian identifies a suspect for stealing phone conver-
sations if the app has at least the RECORD_AUDIO permission
and behaves in a suspicious way, that is, using CPU resources
right before the emergence of an AudioIn_X thread. Here
the CPU usage can be observed from /proc/<pid>/stat,
which we discuss later. Our experimental study shows that
this approach can timely stop the malicious app, preventing
it from recording anything useful. Also, the strategy is very
effective: when there is only one app with such a permission,
we are almost certain that the app is malicious once the above
condition is satisfied.

When it comes to official apps for critical Bluetooth devices,
what we can do, again, is to closely monitor the background
apps capable of stealing data. Here the apps are those with
the Bluetooth permission. Specifically, once the principal (the
official app) is invoked, Guardian periodically inspects all
background processes to identify the ones with the permissions.
In the meantime, our app also keeps track of the Bluetooth
service process com.android.bluetooth by looking at
its /proc/<pid>/stat. Whenever the process starts using
CPU resources aggressively, Guardian immediately suspends
all those untrusted, Bluetooth-capable apps (in the background)
to protect the data of the principal running in the foreground.
Note that even though the Bluetooth operations here could
actually be caused by the official app itself, the observation
nevertheless shows that its Bluetooth device is in the vicinity
and some party has already started communicating with it. In
this case, we have to stop untrusted Bluetooth apps in the
background to protect the official app’s data. Also interestingly,
if the termination of the untrusted apps actually causes the
Bluetooth service to stop, even temporarily, we have strong
evidence that indeed at least one of these apps is malicious,
trying to read from the device before the official app does, just
like what is described in the prior research [6].



Side-channel attacks. The approach for detecting data-stealing
attempts, however, does not work on side-channel attacks, which
are more subtle and do not require any permission. A malicious
app performing the attacks just collects public information
from the principal’s runtime. Finding such apps solely relies on
analyzing their behaviors, which can only be inferred from the
exactly same public resources (e.g., CPU usages) a malicious
app utilizes to launch the attack.

A key observation of those side-channel attacks is that the
malicious app has to continuously sample from its target’s
runtime environment (e.g., its CPU, memory, network data
usages [1], its use of speaker [3] and the slight movements
caused by touch-screen inputs to the target app [4]). Such
sampling needs to be done fast enough to capture fleeting
events, such as changes of memory footprints when a web
page is being loaded, increments of t cp_snd when multiple
packets are sent out [1]. Once the sampling rate goes down, the
adversary starts to miss events that happen within the target and
as a result, loses the granularity of observation necessary for
inferring sensitive information. Therefore, a simple yet generic
way to identify suspicious activities is just looking at how
frequently a background app uses the CPU resources.

Apparently, we can get this information from the app’s
CPU usage (within /proc/<pid>/stat), which includes
utime (the time spent on the user land in terms of clock ticks)
and stime (the time spent on the kernel land). Here a clock
tick is typically set to 10 milliseconds. The problem here is
that the metric fails to describe how often an app is scheduled
to use CPU. All we can do is to estimate whether the total
usage here is sufficient for a RIG attack to succeed. This is
hard because we have no idea how efficient the attack code
could be. Further all CPU usages below one tick do not show
up immediately. Therefore, we conclude that this information
alone is not enough for identifying suspicious app behaviors.

What was used in our research is a new side channel, called
schedule status (/proc/<pid>/task/<tid>/sched
stat), which records the number of times an app has been
scheduled to use CPU so far. This number provides precise
information for determining the frequency the app uses CPU,
which we call Scheduling Rate or SR. Specifically, an app’s
SR is the number of times it is scheduled to access CPU every
second. As discussed above, to continuously monitor a target
program, a malicious app must run at a certain SR level to
achieve the necessary sampling rate*. Note that this does not
mean that any app operating at this SR is necessarily monitoring
the target. However, suspension of the background apps indeed
scheduled too frequently helps protect the target (the principal)
without blindly killing other processes, particularly when the
information can only be collected at a high sampling rate.
Further, as discussed before (Section III-B), closing an app
typically does not affect its utility. Therefore, the cost for doing
so, even to an actually legitimate app, is limited.

To further shorten the list of the processes that need to
suspend, we just focus on the apps always active. For this
purpose, our implementation of Guardian collects multiple
(> 10) samples from each app’s schedstat, one minute
each, to calculate its average SR within that minute. When

4In Android, a background process has a low priority, with little flexibility
in adjusting its timeslice.
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the principal is invoked, the app only closes the processes
that have a significant number of samples (e.g., > 30%) with
SR above a certain threshold (once per three seconds in our
experiment). In this way, we avoid suspending those only
occasionally active in the background: for example, when the
app receives a GCM message. Of course, these processes
will continue to be monitored within the Ward mode, and
be stopped whenever they increase their SR to a dangerous
level. Also, for the apps with perceptible background activities
like media players, Guardian first pauses such activities (e.g.,
music playing) and then stops the apps only if they are still
active in one minute. Another piece of information leveraged
by Guardian is kernel time st ime. Most side-channel attacks
need to continuously make system calls such as read from proc
files, which raises the usage of the attack app’s kernel time.
Therefore, for the app that makes few calls, even when its SR
is above the threshold, Guardian refrains from closing it as
long as its st ime goes below what is needed for a successful
attack. A prominent example is the Amazon Shop app: one
of its threads is scheduled at least twice per second; however,
during its operation in the background (observed in one minute),
we did not see any use of its kernel time.

Behavior change. Guardian is designed to identify the sus-
picious apps (e.g., based upon their SRs) and close them
proactively, before entering the Ward mode. In response to
this strategy, a malicious app may deliberately keep a low
profile before the principal shows up in the foreground, and
then act aggressively afterwards. The same approach was shown
to be effective in keeping attack apps stealthy, according to the
prior research [1], [20]. A distinct feature of this strategy is
an observable correlation between the attack app’s operation
and that of the principal, which can be used to detect such a
suspicious activity. Specifically, the Guardian app continues to
monitor untrusted apps within the Ward mode, closing those
that use CPU resources intensively and also comparing their
behaviors with what have been seen outside the mode. An app is
considered to be stalking the principal if its operations are found
to be correlated to the principal’s activities. This correlation is
established through a statistical test on the activities of both
the principal and the suspect, as elaborated below.

Specifically, we use Pearson correlation coefficient (7) to
measure the correlation between two random variables X (the
scheduling rate of the principal) and Y (the SR of the suspicious
process). Several samples of X and Y are required to compute
their correlation coefficient, which means that we need several
instances of the suspicious app running side-by-side with the
principal, with an elevated scheduling rate, while standing down
once the principal stops. For realistic protection the number of
samples should be very low (< 10). Actually, the number of
samples for computing the coefficient depends on the value of
the correlation coefficient r, power of the test 1 — 8 (3 is the
probability of type II error) and the significance level o (« is
the probability of type I error). In the case that the correlation
is strong (e.g., 0.9 or even close to 1), which is needed for
the adversary to closely monitor the principal, the number of
samples required for detecting such a correlation (at a given
power and significant pair) can be very small (e.g., 4 times for
the coefficient > 0.98), as shown in Table II.

Once enough samples are observed and as a result, the
correlation has been established, Guardian kills the suspicious



[ o [1-8T r [n]
005 | 08 090 | 7
005 | 08 095 | 5
005 | 038 098 | 4
005 | 08 | 09993 | 3
005 | 038 i 3

TABLE II: Required number of samples for different values
of correlation coefficient assuming 5% significance level (two
sided) and 80% power of the test

app each time right before the system gets into the Ward mode,
even when the app does not run aggressively (over the SR
threshold). Also, our app alerts the presence of the suspect to
the phone user. With her consent, the suspicious app can be
uploaded to the server, which runs static and dynamic analyses
on the program to find out whether it indeed aggressively
accesses the principal’s side channel information, for example,
read from its proc files.

Collusion. If the adversary manages to get more than one
malicious apps onto the victim’s device, he might try to play
a collusion game to make these apps look less suspicious.
For example, in the phone tapping attack, a pair of apps, one
with the RECORD_AUDIO permission and the other having
READ_PHONE_STATE, can collude to make each of them less
conspicuous. Of course, this trick does not work on Guardian,
since it always terminates the app with RECORD_AUDIO
whenever the AudioIn_X thread is observed. The situation
becomes more complicated in the case of side-channel attacks,
where two colluding apps could sample at a lower rate each but
still collect sufficient information from the principal. The most
effective way to mitigate this threat is to identify the relation
between different apps. Such a relation can be captured by the
referrals made between the apps, an approach the adversary
needs to use to install more than one of his programs on the
victim’s device.

Specifically, Guardian automatically groups the apps signed
with the same certificate and those whose installations are
triggered by other apps: whenever an untrusted app invokes a
marketplace app (e.g., Google Play, Amazon Appstore, SlideMe,
etc.), which can be discovered by checking the app’s activity
stack, it is automatically linked to the new app installed from
the marketplace. This approach was found to be very effective,
never causing any false positive in our research. To circumvent
the detection, the adversary could make a referral less obvious,
for example, requiring the user to download the second app
from a website. What we can do in this case is asking the
user: as soon as an untrusted app is being installed, Guardian
is notified through action.PACKAGE_ADDED and responds
by popping up a view for the user to indicate whether the new
app is recommended by an existing one; if so, an app list is
provided for a convenient identification of the referrer. In this
way, our approach can keep track of related apps installed after
it starts running on the target device.

Also, Guardian operates a mechanism to detect colluding
apps during their runtime. Actually, unrelated apps rarely use the
CPU resources in an aggressive way together for an extended
period of time. In our research, we selected 114 most popular
free apps from Google Play and installed them on our Nexus 5.
Among them, 68 were automatically invoked after the system
rebooted. We further ran our monitoring app on the device to
check these 68 apps’ SRs every 5 minutes, for 40 hours. Only
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15 app pairs, out of the total 1431 combinations, were observed
to have combined SRs above 1 per 3 seconds (a threshold we
set) over at least 10% of our monitoring period, while their
individual SRs were below the threshold. A close look at these
15 pairs showed that the problem was actually caused by two
apps jp.naver.line.android and com.groupon with
a low privilege (7 to 9). Once they were suspended, none of
the app pairs were found to have a collective SR above the
threshold over 10% of the period. This indicates that we can
temporarily suspend a selected app of an app pair once they
are found to use the CPU resources together in an aggressive
way for a while, without causing much utility trouble.

IV. EVALUATION AND ANALYSIS

In this section, we report our analysis of App Guardian, in
terms of its effectiveness in fending off known attacks, impacts
on the utility of legitimate apps and the overheads it introduces
during the operation.

A. Effectiveness

To understand the effectiveness of our App Guardian system,
we evaluated our prototype against 12 RIG attacks, including
those reported by prior research [1]-[5], [7], [20] and the new
threats to Android-controlled IoT, as described in Section II-B.
The study shows that our technique is capable of defeating all
these attacks, at low cost most of time. Particularly, for the
side-channel attacks, we show that using the scheduling rate
to identify suspicious apps, Guardian effectively reduces the
amount of information a RIG app can get from the principal.
This result is illustrated in Figure 5. Also, the protection level
can be balanced with the number of apps that need to be killed,
which was also studied in our research (Section IV-B). Table 111
presents all the attacks evaluated or analyzed in our study. All
the experiments were performed on a Google Nexus 5 (2.3G
CPU, 2G memory). Following we report our findings.

’ No. ‘ RIG Attacks ‘ Defeat Attack Success Rate

(SR)

1 Audio Recording Yes N/A

2 Bluetooth Data Stealing Yes N/A

3 Alarm Blocking Yes Fail (2/s)

4 Motion Detection On Yes Fail (1/3s)

5 WebMD: inferring disease condi- Yes RG (125)

tions

6 Twitter: inferring identities Yes RG (end-to-end)

7 Web Page Inference Yes RG (10/s)

8 Driving Route Inference Yes Fail (1/s)

9 Keylogger 1: TouchLogger Yes < 1/3s (1/3s)

10 Keylogger 2: Screenmilker Yes < 1/3s (1/3s)

11 Voice eavesdropping Yes® Fail (1/3s)

12 UI inference Yes® Fail (1/3s)

TABLE III: Effectiveness in defending against RIG attacks.
Here RG represents random guess. Keyloggers’ success rate
cannot go above 1 key per 3 seconds, given an SR of once per
3 seconds.

Audio recording and Bluetooth data stealing. We first put
our system to the test against the data-stealing attacks. In
the case of audio recording, we ran an attack app with
both RECORD_AUDIO and READ_PHONE_STATE permis-
sions. Whenever a phone call came in, the app started recording

SOur approach can defeat the attacks based upon the parameters given by
their papers [2], [7].



in the background. In the presence of App Guardian, however,
this attempt was completely thwarted: as soon as the recording
thread was spawned, the suspicious activity was immediately
detected and the attack app was killed instantly. As a result,
nothing was found to be recorded.

The Bluetooth attack was performed on iThermometer [28],
a Bluetooth medical device also used in prior research [6]. Our
attack app was successful in getting data from the device, right
before its official app connected to it. However, this attempt
no longer went through when the official app was protected
by Guardian: as soon as the principal (the official app) was
launched, Guardian detected the use of the Bluetooth service
and the presence of a Bluetooth-capable app, and immediately
terminated the app. This left the adversary no chance to collect
any data from the the body thermometer.

IoT attacks. We further used our Guardian app to protect the
official apps of NetCam and Nest Protect (Section II-B) against
the RIG attacks on them. For NetCam, we found that the chance
for identifying the click on the “save clips” switch, which turns
on or off its motion detector, decreases substantially with the
attack app’s SR: as shown in Table III, when its SR reduced
to once every 1.5 seconds, the probability of correct detection
goes down to 10%. This is because many packets (for unrelated
purposes) actually all have similar sizes as the one for turning
on the switch. The attack was successful because the packet is
the only one that comes alone: no other packets show up in
about one second since it arrives. When the attack process can
only sample very slowly (1 per 3 seconds), this approach no
longer works (which failed every time in our experiment) and
actually the increment (tcp_snd) the adversary sees is very
likely to involve multiple packets.

The “alarm blocking” attack (muting the sound for the alarm
notification) is even more dependent on the attack app’s SR: as
soon as the GCM notification is discovered from its increments,
the attacker is supposed to turn off the sound immediately, to
prevent the recipient of the message from arousing the user’s
attention through an alert sound. We found that this can only

be done when the app samples at least 20 times per second.

What App Guardian does is to simply register with notification
listener service, so that it is always informed whenever the
official app posts a notification. When this happens, our app
stops all untrusted apps that ran at SR of 20 times per second
before the notification came and further checks the speaker
status. If it is muted, Guardian unmutes it and further reposts
the message, which produces the sound the adversary wants to
avoid. Finally, the video watching part is hard to cover, due to
the presence of a large volume of inbound traffic. To hide the
information completely from the adversary, we can take the
blind termination strategy, stopping all untrusted apps.

WebMD and Twitter. Similar to those IoT devices, WebMD
and Twitter apps are also vulnerable to the RIG attacks that

exploit their network-data usages [1] (also see Section II-A).

Prior research shows that by monitoring detailed increments in
their tcp_snd and tcp_rcv elements (at the packet level),
the adversary can figure out the disease conditions the user
checks through WebMD and the moment when the user tweets,
which can be further used to recover her identity. In our research,
we implemented the attacks described in the prior work [1] and
then protected the targets of these attacks (WebMD, Twitter)
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Fig. 5: Effectiveness of RIG attacks under different scheduling
rates. Here dash lines represent the success rate of a random
guess.

with our App Guardian to understand the effectiveness of our
technique. Here we report what we found.

Compared with the versions described in the prior re-
search [1], both the WebMD and Twitter apps used in our
study have been significantly modified. For WebMD, clicking
a disease condition will generate a sequence of packets. Most
of them change slightly (in 20 bytes) when the same condition
is checked multiple times, while a few vary significantly in
size, due to their inclusion of different advertising content. In
our study, we randomly selected 10 disease conditions, and
measured the range of the payload length for each packet
associated with each condition. In this way, every selected
condition here is fingerprinted with a sequence of payload-
length ranges, as did in the prior work [1]. Using these
fingerprints, we found that without protection, these conditions
can still be uniquely identified from their payload-length
sequences. However, once Guardian is in place, the side-channel
attack becomes much more difficult to succeed. Specifically,
when the SR of the attack app goes down to once every
two seconds, all it observes is just an accumulated length
of all packets related to one condition. In the presence of the
randomness in packet sizes, the ranges of different conditions’
accumulated lengths significantly overlap with each other. As
a result, in all 25 random trials (each involving a click on one
condition) we performed, only 2 led to correct identification of
the conditions. Note that this identification rate is even lower
than a random guess (1 out of 10 disease conditions). Also,
when looking at the accumulated increments of tcp_snd and
tcp_rcv “end-to-end”, that is, from the invocation of the app
until the moment that the user finishes checking one condition,
we concluded that there is no chance to identify even a single
condition (Figure 5a), as all the ranges of these accumulated
increments (for different conditions) completely overlap with
others.

The situation for Twitter is similar. The new version brings
in randomness in packet lengths during sending and receiving
tweets. Again, in our research, we fingerprinted those operations



using their individual sequences of payload-length ranges, and
ran the side-channel attack [1] on the app. Even though the
payload lengths associated with the same operation (send or
receive) vary from time to time, we were able to correctly
identify the tweeting activity most of time (45 out of 50) when
the attack app runs at the SR of 20 times per second. However,
with Guardian put in place, the SR was forced down to once
every two seconds, which reduces the effectiveness of the
attack to 62%, which is close to the random guess (determining
whether it is sending or receiving tweets). We further studied
the end-to-end situation, in which Guardian closes the attack
app and restores it after the user sends or receives a tweet.
From the accumulated increments, we found that these two
operations cannot be separated, as the range of the increment
in one case completely overlaps that of the other.

Web pages and driving routes. Prior research describes a
technique to infer the web pages the user visits from the
temporal changes in memory footprints when those pages are
being rendered by the Chrome browser [5]. This attack requires
the malicious app to sample the browser’s memory dynamics
(from the data resident size in /proc/<pid>/statm) at
a high frequency. In our research, we followed what the
researchers did: building up signatures for different web pages
and then comparing the observed memory uses with the
signatures to identify the pages visited. More specifically,
such a signature is a sequence of tuples, each including a
memory footprint size observed and its number of occurrences.
The adversary’s observation of memory uses is described
as memprint, which is also a sequence of the tuples as the
adversary sees. The attack happens by calculating a Jaccard
index between a memprint (collected when the browser is
loading a web page) and known signatures to identify the page.

In our experiment, we chose Alexa top 15 sites®. On our
Nexus 5 phone, we first ran an attack program with the root
privilege to collect signatures for these individual pages at a
sampling rate of 10 per millisecond, which cannot be achieved
by any ordinary background app. Then we reduced the sampling
rate to find out whether the adversary can still differentiate
these pages. For a rate of 100 per second, this was done easily.
However, when the attack app ran at a realistic speed, 10 times
per second in scheduling, which is what an ordinary app can
possibly do, it only successfully identified the web pages at a
probability of 10%, very close to a random guess (about 7%).
This clearly indicates that our Guardian app can easily stop
this attack without causing much collateral damage, since most
background apps do not run that fast (Section IV-B).

Another side-channel attack reported by the prior re-
search [1] is inference of driving routes from Android Navigator
through the speaker’s status (on or off). The idea is to
continuously check the public API isMusicActive during
navigation to identify the duration of individual voice elements
for turn-by-turn voice guidance: e.g., “turn left onto the 8th
street”. The duration can be found because the speaker status
turns from “off” to “on” at the beginning of the guidance and
goes the other way around at the end. A sequence of these
duration is a high-dimensional vector, which is used to search
Google Maps for the path the user drove through.

Note that the small set of pages we selected actually gives the adversary
advantage: telling these pages apart does not mean that she is able to identify
one website from millions of popular sites.
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Most important to this attack is accurate measurement of
such duration during the navigation app’s runtime, which are
compared with a set of reference sequences already mapped
to certain routes. In our research, we collected 108 unique
voice elements from 23 driving routes in a town and used their
lengths measured at 200 per second as a reference. Then, we
tried to match to them duration measured by an attack app
implemented according to the prior work [1]. Accurate matches
here are a necessary condition for a successful inference of
these routes. In our study, we found that such an attack can
be easily defeated by Guardian. Specifically, we measured the
same set of the voice elements at different scheduling rates,
which introduced errors to the measurement: i.e., the actual
element length [ now ranges from [ — € to [ + ¢, when the
sampling rate is 1/¢ caused by a given SR. With this error, we
had to map such an element to any reference element within
the [ £ € range. As a result, the accuracy of the match decreases
when the margin of the error grows, which happens when the
attack app’s SR goes down. In the experiment, we found that
the attack went well at an SR of 100 per second: about 78%
of the reference elements randomly measured were matched
correctly. However, when the scheduling rate was dropped
to once per second, only 6.3% elements were successfully
matched. Note that under this accuracy level, it is impossible
to match a sequence of elements to a right path on the map.

Keyloggers. We also analyzed the effectiveness of our Guardian
app against keyloggers. Prior work shows that Android users’
touch inputs can be revealed through a few attack techniques.
Particularly, the smartphone’s accelerometer discloses both shift
and rotation data when the user types through touch screen,
which is found to be informative enough for malware (e.g.,
Touchlogger [4]) to infer the key the user enters. Also, in the
presence of a vulnerable screenshot app, Screenmilker can
continuously capture the screen to determine the key being
pressed [20]. Despite the diversity of the techniques used in such
attacks, the chance for these keyloggers to successfully identify
the user’s inputs depends on their sampling rate. Consider an
Android user’s average typing speed of 3 keys per second.
When the sampling rate goes down to once per second, the best
the adversary can do is just to pick up 1 of these 3 keys. Note
that this success rate is all but unattainable for the adversary, as
the malware typically needs more than one sample to correctly
figure out one key. For example, Touchlogger uses multiple
device orientation data to extract features of one keystroke;
Screenmilker, on the other hand, needs to continuously take
shots in order to catch the moment when a key is entered. In
those attacks, the malicious app has to be scheduled at least
once whenever it takes a sample (shift and rotation data or
screenshot). Therefore, with the SR decreases (e.g., to 1 per
3 seconds), the amount of information those Keylogger can
obtain is very limited (no more than one key every 3 seconds).
Obviously, they get nothing in the case of end-to-end protection.

Voice eavesdropping and Ul state inference. Recently, a
technique has been proposed to utilize the smartphone’s onboard
gyroscope to eavesdrop on the user’s phone conversation [7].
The gyroscope is sensitive to audible signals that range from
20Hz to 200Hz. To catch such signals, the attack app needs to
collect gyroscope readings at a very high speed: specifically,
we ran the attack code made public by the authors of the
paper [29], and found that its SR is 20 times per second, much
higher than the threshold utilized by Guardian (1 per 3 seconds).



In the presence of the phone app, the attack app running at
such speed will be suspended by our app. On the other hand,
once we force the malware to get only one reading every three
seconds, clearly little can be inferred about the ongoing phone
conversation.

Another recent RIG attack is to infer the state of the target
app’s user interface (UI) for a phishing attack, using the app’s
shared memory information collected from its proc file [2].
In the paper, the authors indicate that the SR of their attack
app was between 10 to 33 times per second for identifying the
target app’s activity transition. More importantly, the malware
needs to accurately determine when an activity is about to
launch and then inject into the foreground a phishing activity
to steal the user’s sensitive information, e.g., the password she
is supposed to enter into a login activity. Under the protection
of Guardian, the malware has to reduce its SR below 1 per
3 seconds to avoid being terminated. At this sampling rate, it
is conceivable that the malware cannot observe the transition
between two activities, which completes in sub-seconds, not to
mention identifying the right moment for hijacking the target’s
login activity.

B. Utility Impacts and Performance

We further studied the utility impacts of App Guardian
on legitimate apps and its performance. For this purpose, we
used 475 apps from 27 categories on the Google Play store.
Examples of these apps are described in Table IV. As discussed
before (Section III-B), all these apps are top-ranking ones
in their individual categories, including Facebook in Social,
Pandora in Music & Audio and Amazon in Shopping. Among
all these apps, 27 apps get oom_adj values of 5 or lower once
switched to the background. Most of them are media players
and keyboard apps, and the rest are launchers and weather
apps (Section III-B). All other apps are assigned a higher value
(usually 9 or above), which indicates that they can be killed at
anytime without affecting the system’s normal operation and
user experience [27]. Further, all these apps are capable of
restoring their states after being terminated. Therefore, killing
their processes just temporarily stops their services, which can
be resumed later on.

[ App I Category [ SR ] oom_adj | Recoverable |
Facebook Social <1/3 9 Yes
Fox News News & Magazines <1/3 9 Yes
Yelp Travel & Local <1/3 9 Yes
Viber Communication 1/1 5 Yes
Amazon Shopping 2/1 9 Yes
The Weather Channel Weather <1/3 9 Yes
FIFA Sports <1/3 9 Yes
Temple Run 2 Games 10/1 9 Yes
Photo Grid Photography <1/3 9 Yes
Adobe Reader Productivity <1/3 9 Yes

TABLE IV: Analysis of top ranking apps (examples): here SR
is described as number of schedules per seconds.

Impacts on popular apps. In our experiment, we measured the
scheduling rates of such popular background apps. Two minutes
after they were switched to the background, we monitored their
SRs for 5 times. We found that totally 183 (38.5%) out of 475
apps were scheduled at a rate over once every three seconds for
at least once and 135 (28.4%) apps for all five times. However,
this high SR (1 per 3 seconds) did not last for every app: 43
out of the 135 apps no longer utilized CPU at this rate after
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30 minutes. Among the rest 92 persistent fast-running apps
(19.3%), 77 were assigned an oom_adj of 9 or above, essentially
being marked as disposable by Android; 7 were assigned a
score between 6 and 8, and therefore can be terminated without
causing serious utility impacts; the rest 8 were executed with
a value of 5 or below, including 6 media players, 1 video chat
app and 1 launcher app. For the media players, Guardian had
to pause their music (Section III-B) while running the principal
in the foreground. As a result, we found that 4 of them no
longer used CPU aggressively and therefore did not need to
be killed. The rest 4 were terminated but later restored after
the principal completed its operation. Also, all apps also ran
smoothly after the recovery.

Overall, among all the popular apps, Guardian only needs
to suspend 19.3% of the apps. The vast majority of such
suspensions have little observable impact on the utility of these
legitimate apps at all, as they are considered to be disposable,
even though re-invoking these apps will take a longer time.
Only a very small portion, about 1.68% (8 out of 475), once
stopped, may slightly affect the phone users’ experience (music
temporarily stopped, status of online chat app temporarily goes
offline, etc.) but they can all be recovered once the system
moves out of the Ward mode.

Overhead. We further measured the performance of our
Guardian app on 2 Nexus 5 phones, each installed with more
than 250 apps. Using OS Monitor [30], our prototype was
found to work efficiently. It took only 5% of the CPU resources
and 40 MB of memory under the Ward mode, and the CPU
usage dropped to as low as 1% after leaving the Ward mode,
as observed in our experiments. The battery consumption of
Guardian is also low, which was measured in our study on 2
Nexus 5 phones with 50 top apps running on each of them.
From the battery statistics provided by Android, we found that
Guardian consumed 0.12%, 0.18% of the total battery capacity
per hour within the Ward mode and 0.75%, 1.05% per 24 hours
otherwise. For example, consider that Guardian enters into the
Ward mode 12 times a day and 5 minutes each, it will use
about 0.84% and 1.18% of the battery on these two devices.
This is lower than running the Facebook app for 30 minutes a
day (about 1.2% of the total battery consumption).

V. DiscussioN

Detection and separation. App Guardian is not a malware
detection system. All it finds is just suspicious programs that
meet a set of necessary yet often insufficient conditions for
a RIG attack. The idea is to suspend a small group of apps
to minimize performance and utility impacts on the system’s
normal operation and user experience. Even if we get it wrong,
terminating legitimate apps, they can still be restored to the
original states after the principal’s execution. Saying that, this
approach does bring in a certain level of inconvenience to the
user, who could experience a delay when switching to the app
she just runs or the stop of background services when using
her protected app. Therefore, a more accurate identification of
malicious activities, which helps further narrow down the list
of apps that need to kill, certainly helps. To move forward, we
expect a further investigation on the real-world impacts of the
whitelist and the behavior-based app selection strategy on real
users’ devices, to understand indeed how much inconvenience
the user will perceive when using our new technique. Also, we



will look into other side channels (e.g., process states) to gain
as much insight as possible into an app’s operation.

Another concern is the potential for the adversary to
evade our protection, for example, through adding perceptible
activities into the attack app to prevent it from being killed.
Our preliminary study shows that for the common apps with
such features, like media players and keyboards, Guardian
can first stop their perceptible activities and then terminate
them. Further studies are expected to better understand what
tricks a malicious app can still play to bypass our protection
mechanism.

Background process protection. The current design of App
Guardian is for protecting security-critical foreground apps.
Such apps only run within a short period of time and can
therefore be secured by pausing suspicious background apps.
Although most apps that need protected indeed run in the
foreground, there are situations where a background process
is also under a RIG threat: an example is when the GCM
process delivers a notification to apps and the observation of
the notification itself already leaks out information. Background
services may run indefinitely, so they cannot be protected in
the same way as the foreground process. Further effort needs
to be made to understand whether protection of such a process
can be done at the app level and if so, how to do it at the
minimal utility and performance cost.

Sanitization. Another issue that needs a further investigation
is whether it is possible to thoroughly clean up the principal’s
execution environment after the program stops running. As
discussed in Section III-B, information such as accumulated
network-data usages of an app cannot be removed without
rebooting the whole device. Adding noise to the data also
needs the user’s intervention. A question is how to better
protect such data and whether this is feasible without touching
the OS and the app under protection. This should be studied
in the follow-up research.

VI. RELATED WORK

Data stealing attacks and defense. With more and more
private user data moving onto mobile devices, they increasingly
become the main target for data-stealing attacks. These attacks
often exploit the design limitations of Android, which does
not provide fine-grained access control. For example, an app
given the RECORD_AUDIO permission can make a record at
anytime, even when a sensitive phone call is ongoing. As
another example, any app with the BLUETOOTH permission
is free to access any Android Bluetooth accessories, including
medical devices [6]. Other attacks also in this category include
information leaks due to the weakened memory randomization
protection on Android [31] or insufficient protection of content
providers [32]. Mitigating such a threat usually relies on
modification of the operating system. For example, prior
research [6] shows that the Android Bluetooth service can
be hooked to prevent the attempt to gain unauthorized access
to medical devices.

Side channel attacks and defense. Side channel attacks has
been studied for decades and new channels are continuously
discovered [33]-[36]. Most of the time, those attacks are also
RIG, as the attack process needs to continuously collect infor-
mation from the target program during its runtime. Particularly,
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prior research [37] shows that sensitive user information can be
collected from the Linux proc file systems: through sampling
the target program’s ESP /EIP changes, inter-keystroke timings
can be identified to infer the user’s inputs. Memory usage is
also found to leak sensitive information: Momento [5] utilizes
/proc/ [pid]/statm to find out the websites visited by the
victim. The paper briefly mentions an approach that infers the
user’s inter-keystroke timings using schedule status. However,
the attack was only performed on a desktop, since the authors
seem to believe that this piece of information was not available
on Android [5]. Actually, it has been there since 2.3 (or even
earlier). Most importantly, we are the first to leverage this side
channel to infer mobile apps’ behaviors for the purpose of
defending against side-channel attacks. Also related to our
work are the study on shared_vm and shared_pm (for
inferring the UI state of an Android app [2]) and the research
on network-data usage, audio usages, etc. (for identifying one’s
identity, disease, locations and finance) [1]. In addition, sensors
on smartphones have been exploited to collect sensitive user
information [17], [19]. Examples include Soundcomber [3] that
uses audio to find credit-card information, Accomplice [18]
that leverages accelerometer for location identification and
Touchlogger [4] that also utilizes accelerometer for key logging.

So far, almost all existing defense techniques against side-
channel attacks require change of either operating systems or
vulnerable applications [1], [5]. Up to our knowledge, App
Guardian is the first third-party app level protection that has
ever been proposed. Notably, HomeAlone [38] is the only
work we are aware of that uses side-channels for defensive
purposes. It verifies a virtual-machine instance’s exclusive
use of a physical machine through the cache channel. By
comparison, our approach is designed to protect mobile systems
against side channel attacks. For this purpose, it leverages a set
of unique side channels that have never served this purpose.

VII. CONCLUSION

In this paper, we report our study on an emerging security
threat to Android, the runtime-information-gathering attacks,
which cover a wide spectrum of new attacks that aim at
exploiting apps for sensitive user data, ranging from phone
conversations to health information. Our research provides
further evidence for the seriousness of such a RIG threat,
showing that popular Android-based IoT systems are equally
vulnerable to this type of attacks. Mitigating this emerging
threat needs to thwart a malicious app’s attempt to run side-
by-side with the principal, in an attempt to collect its runtime
information. This is achieved in our research without changing
the operating system and the principal. Instead, we use an
ordinary app, Guardian, which pauses suspicious background
processes when the principal is running and resumes them
after the security-critical operation is done and the environment
is cleaned. We show that this approach does not damage the
utility of legitimate apps due to the observation that most
background apps on Android can be stopped without disrupting
their functionality. To further reduce the inconvenience of
doing so, Guardian utilizes a set of novel side channels to
infer background apps’ behaviors and identify a small set of
them that meet necessary conditions for the RIG attacks. In
this way, most third-party apps can still run without being
interrupted. Our evaluation shows that our approach works
effectively against all known attacks, at a minimal performance
and utility cost.



We believe that our technique significantly raises the bar

for the RIG attacks, a realistic threat to mobile security, and
the research on this subject. The idea of side-channel based
detection and the lightweight response for mitigating negative
impacts of a false alarm can further inspire the follow-up effort
on developing app-level protection against other security threats
on mobile devices.
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