
On Subnormal Floating Point and Abnormal Timing

Marc Andrysco,1 David Kohlbrenner,1 Keaton Mowery,1 Ranjit Jhala, Sorin Lerner, and Hovav Shacham

Department of Computer Science and Engineering

University of California, San Diego

La Jolla, California, USA

Abstract—We identify a timing channel in the floating point
instructions of modern x86 processors: the running time of
floating point addition and multiplication instructions can vary
by two orders of magnitude depending on their operands.
We develop a benchmark measuring the timing variability of
floating point operations and report on its results. We use
floating point data timing variability to demonstrate practi-
cal attacks on the security of the Firefox browser (versions
23 through 27) and the Fuzz differentially private database.
Finally, we initiate the study of mitigations to floating point
data timing channels with libfixedtimefixedpoint, a
new fixed-point, constant-time math library.

Modern floating point standards and implementations are
sophisticated, complex, and subtle, a fact that has not been
sufficiently recognized by the security community. More work
is needed to assess the implications of the use of floating point
instructions in security-relevant software.

I. INTRODUCTION

The running time of floating point addition and multi-

plication instructions can vary by two orders of magnitude

depending on their operands. This fact, known for decades

by numerical analysts, has not been sufficiently recognized

by the security community.

Floating point operations, if performed on secret data, ex-

pose software to data timing channels: timing side channels

that arise not because the trace of instructions executed or

the trace of memory locations accessed vary according to

secret inputs, but because the same instructions, acting on

the same memory locations, vary in their running time.

Data timing channels were hypothesized by Kocher in

his 1996 paper introducing timing side-channel analysis to

cryptography [33], but the intervening years have yielded

only one exploitable example: integer multiplication on

some small-die embedded processors [24].

In this paper, we show that data timing channels are not

a hypothetical threat but a real and pervasive danger to

software security. We use the timing variability of floating

point operations, specifically surrounding special-case “sub-

normal” numbers very close to zero, to break the security

of two real-world systems.

First, we demonstrate that subnormal floating point data

timing channels can be used to break the isolation guar-

antees of Web browsers. From release 23 (when the

1The three first authors contributed equally to the paper.

requestAnimationFrame API was added) and until

release 28 (when SVG filters were moved to the GPU), the

Firefox browser allowed JavaScript to measure the running

time of SVG filters applied to Web content through CSS.

Paul Stone showed that timing variations arising from a data-

dependent branch in one filter, feMorphology, could be

exploited to perform history sniffing or reveal the content

of cross-origin iframes [49]. We show that floating point

data timing channels in the computation of filters (without

any data-dependent branches) enable similar attacks. Our

attack also applies to the “Extended Support Release” of

Firefox 24, which formed the basis of the Tor Browser in

the 1.0 and 1.1 releases of the TAILS operating system.

Second, perhaps more startlingly, we show how subnor-

mals can be used to break the differential privacy guarantees

of an extremely carefully engineered data analytics system

that was specifically crafted to prevent such leaks. Haeberlen

et al. [26] identified a timing covert channel by which

malicious queries could break the differential privacy guar-

antees of the PINQ and Airavat databases. They designed

and implemented Fuzz, a differentially private database that

“effectively closes all known remotely exploitable channels,”

including timing channels. We show that carefully chosen

values returned by Fuzz microqueries can affect the running

time of floating point computation performed by the Fuzz

kernel, introducing an exploitable timing side channel. Fuzz

has had trouble with floating point before: As Mironov

showed [38], Fuzz and several other differentially private

databases sample from the Laplacian distribution using an

algorithm that interacts badly with fixed-precision floating

point arithmetic, allowing sensitive information to leak in

the least significant bits of computed results.

A key technical challenge our attacks overcome is how to

amplify a timing signal of just a few processor cycles. Ours

are the first attacks to exploit data timing channels through

timing alone; Großschädl et al.’s attack on integer multipliers

with early termination [24] relied on SPA power traces to

amplify the timing signal, hence requiring invasive access

to the system.

Having established floating point data timing channels

as a real and pervasive danger to software security, we

turn to defenses. We design and evaluate a new library,

libfixedtimefixedpoint, for non-integer math for

which all operations run in constant time. We have manually

2015 IEEE Symposium on Security and Privacy

© 2015, Marc Andrysco. Under license to IEEE.

DOI 10.1109/SP.2015.44

623

2015 IEEE Symposium on Security and Privacy

© 2015, Marc Andrysco. Under license to IEEE.

DOI 10.1109/SP.2015.44

623

verified that an AMD64 binary of our library uses only inte-

ger instructions that we believe are constant-time. Emulating

non-integer operations in constant time imposes overheads,

but the overheads may be acceptable for security-critical

applications: addition and multiplication in our library take

just 15 and 43 cycles, respectively, on a Core i7 2635QM.

Our library is available under an open source license.

To sum up, in this paper we demonstrate that data timing

channels are a real danger to software security and iden-

tify potential mitigation strategies by making the following

contributions:

• We show that operations over potentially subnormal

values are a data timing channel on modern x86 pro-

cessors, by measuring the timing variability of floating

point operations (Section II),

• We demonstrate how floating point timing variability

can be used to mount practical attacks on the secu-

rity of the Firefox browser (versions 23 through 27)

(Section III) and the Fuzz differentially private database

(Section IV).

• We initiate the study of mitigations to floating point

data timing channels by developing a new fixed-point,

constant-time math library (Section V).

II. IEEE-754 FLOATING POINT, AS IMPLEMENTED

Floating point computation is found throughout modern

software development, enabling applications to represent a

much larger range of values than integers alone. Although

floating point formats have been in use for many decades,

they have recently gained particular prominence as the exclu-

sive numerical format in JavaScript. There has historically

been a variety of competing floating point formats, each

defining unique, incompatible encodings with differing prop-

erties [30]. In 1985, the Institute of Electrical and Electronics

Engineers published a technical standard for floating point

formats: IEEE-754 [14]. This specification has seen wide

adoption and is implemented by nearly all computers in use

today.

Although successful, the IEEE-754 standard poses a dif-

ficult challenge for hardware implementors and software

developers alike. The complexity of the implementation has

led to real-world bugs, such as the Intel Pentium FDIV

bug [29], and led to efforts to verify hardware implemen-

tations [3, 40, 44, 45]. Software has equally struggled to

handle floating point numbers correctly; for example, PHP

has had an infinite loop bug when attempting to interpret a

specific number [42].

In this section, we will cover the intricacies of IEEE-754

floating point numbers, looking in particular at corner cases

defined by the standard, how they are handled by a processor,

and how timing information can be extracted.

Format

Name

Size

Bits

Subnormal

Min

Normal

Min

Normal

Max

Half 16 6.0e−8 6.10e−5 6.55e4

Single 32 1.4e−45 1.18e−38 3.40e38

Double 64 4.9e−324 2.23e−308 1.79e308

Quad 128 6.5e−4996 3.36e−4932 1.19e4932

Figure 1: IEEE-754 Formats

Value Exponent Significand

Zero All Zeros Zero

Infinity All Ones Zero

Not-a-Number All Ones Non-zero

Subnormal All Zeros Non-zero

Figure 2: IEEE-754 Special Value Encoding

A. IEEE-754 Floating Point Format

In contrast to the relatively simple two’s complement

format used for signed integers, IEEE-754 floating point

numbers have a more complicated, multi-part format with

numerous special cases. Each number is composed of a sign

bit, an exponent, and a significand, together representing

the real number (−1)sign× significand× 2exponent. The raw

exponent is stored as an unsigned integer, but its effective

value is calculated by adding a negative bias value, allowing

representation of negative exponents. In normal operation,

the significand is stored with an implicit “leading 1”: the

bits making up the significand actually represent the binary

number 1.b0b1 . . .bN . To support different precision require-

ments, the standard defines formats varying from 16 bits

to 64 bits. Figure 1 summarizes the formats defined by the

IEEE-754 standard.

To accommodate values that cannot be represented in the

above format, the standard reserves special encodings for

zero, infinity, and not-a-number. Additionally, the standard

specifies an encoding for an alternate class of numbers,

referred to as subnormal (also called denormal). Unlike

normal numbers, subnormals are restricted to using the

smallest possible exponent, and their significand uses a fixed

leading 0 bit, with the form 0.b0b1 . . .bN . By removing the

leading 1 bit, subnormals allow the representation of values

very close to zero. Figure 2 summarizes the special values

and their encoding.

B. Processor Implementations

PC processors have supported IEEE-754 floating point

values since the introduction of the Intel 8087 floating

point coprocessor in 1980. The x87 instruction set was

created to communicate with this coprocessor and was later

integrated directly into 80486 and later processors. In x87,

all computations are internally performed using the 80-

624624

bit “double-extended” format, only converting to the 32-

bit or 64-bit formats when performing a load or store. x87

instructions support typical arithmetic (addition, subtraction,

multiplication, division) as well as transcendental functions

(trigonometry, exponentiation, and logarithms).

Beginning with the Pentium III in 1999, Intel introduced

the Streaming SIMD Extensions (SSE) instructions for op-

erating on floating point values, with the ability to perform

multiple operations simultaneously. Unlike x87, SSE instruc-

tions operate directly on 32-bit and 64-bit operands without

using a high-precision internal format. SSE supports simple

operations, but does not implement transcendental functions.

Although nearly all current Intel-based hardware supports

SSE, compilers targeting 32-bit systems do not typically

assume SSE support. As result, most 32-bit software uses

the x87 instruction set.

IEEE-754 floating point is widely implemented, including

in graphics processing units and many mobile processors.

Hardware support for subnormal numbers is less common,

with some processors rounding subnormals to zero and

others falling back on software emulation.

C. Subnormal Performance Variability

Due to the complex nature of the floating point numbers,

processors struggle to handle certain inputs efficiently. In

particular, it is well understood that operating on subnormal

values can cause extreme performance issues, including

slowdowns of up to 100× [19]. As an example, on a Core i7

processor using SSE instructions, performing standard mul-

tiply between two normal numbers takes 4 clock cycles,

whereas the same multiply given a subnormal input takes

over 200 clock cycles. Although the timing signal from a

single subnormal computation can be difficult to measure, a

timing signal can be amplified when computation occurs in

a tight loop — a situation that is common with floating point

numbers.

The SSE instruction set includes the processor flags flush-

to-zero (FTZ) and denormals-are-zero (DAZ), to prevent

subnormal values from occurring as inputs to or outputs from

instructions. When flags are set, the performance problems

associated with subnormals disappears on all processors we

tested, although there are no guarantees that these flags will

always solve these performance issues. Unfortunately, the

x87 instruction set does not provide any method to disable

subnormal values.

Beginning with the Fermi microarchitecture, NVIDIA

graphics cards support subnormal floating point values [41].

NVIDIA has stated that, consequently, certain operations

can suffer from performance problems when operating on

subnormal values [27], generating a measurable effect. As

graphics card processors have not historically supported

subnormal numbers, this provides evidence that subnormals

and timing channels will likely become more prominent on

future graphics cards.

D. Floating Point Benchmarks

To better understand and characterize the slowdowns

of floating point instructions, we created a benchmark to

measure the execution speed of varying combinations of

operations and inputs. We tested x87 and SSE instruc-

tions for addition, multiplication, and division, including

both scalar and packed SIMD versions. For inputs, we

tested every combination of normal values, subnormals,

zero, infinity, and not-a-number. For SSE instructions, we

performed each test under every combination of the DAZ

and FTZ flags. Because x87 instructions slow down when

loading and storing into registers, whereas SSE instructions

have slowdown when the mathematical operation occurs,

we normalize all tests by measuring the number of clock

cycles to complete the sequence of loading two values from

memory into registers, performing an operation on the two

registers, and storing the result back into memory. This load-

operation-store cycle corresponds closely with code likely

to be found in the wild. We averaged 1000 runs for each

combination of instructions and operands, and all results are

consistent and reproducible.

Figure 3 summarizes the most interesting results from

the benchmark. In particular, multiplying or dividing with a

subnormal in either operand or as output produces slowdown

on all processors, whether SSE or x87 instructions were

used. On all architectures other than the Core i7 using SSE,

we found similar slowdowns on add instructions with a

subnormal input or output. Using SIMD instructions to op-

erate on multiple subnormals at once amplified the measured

performance hit. It is important to note that slowdowns occur

when the computation result is a subnormal, even if both

inputs were normal values.

The x87 instructions caused highly varying slowdowns

that were not limited to subnormal values. Performing a

division by zero produces the special value infinity, and

dividing by infinity produces the special value zero. In

both cases, these operations caused significant slowdown

with the x87 fdiv instruction and, more surprisingly, the

timing of the two operations were measurably different.

Additionally, operations involving not-a-number suffered

large performance degradation. These slowdowns effected

all tested Intel architectures, although the selection of AMD

machines we tested showed no performance penalty for

operating on special values beside subnormals.

All slowdowns discussed so far have centered around

exceptional inputs and outputs: infinity, subnormal, and not-

a-number. However, we have measured variable timing with

typical values: zero, and normal numbers. For example, the

division instructions produce a minor speedup on SSE when

dividing zero in comparison to dividing a normal number —

a case that uses the extremely innocuous values of zero

and two. In one very specific instance, we even measured a

speedup by a Core i7 when dividing one by one.

625625

0
1

2
3

4
5

(a) Intel Core i7-3667U using SSE

0
1

2
3

4
5

(b) Intel Core i7-3667U using x87

0
1

2
3

4
5

(c) Intel Core2 Duo U9600 using SSE

0
1

2
3

4
5

(d) Intel Core2 Duo U9600 using x87

0
1

2
3

4
5

(e) Intel Atom D2550 using SSE

0
1

2
3

4
5

(f) Intel Atom D25500 using x87

0
1

2
3

4
5

(g) Intel Xeon X5660 using SSE

0
1

2
3

4
5

(h) Intel Xeon X56600 using x87

0
1

2
3

4
5

(i) AMD Phenom II X6 1100T using SSE

0
1

2
3

4
5

(j) AMD Phenom II X6 1100T using x87

addsd normal,normal
addsd normal,subnormal
mulsd normal,normal
mulsd normal,subnormal
divsd normal,normal
divsd zero,normal
divsd normal,subnormal
divpd normal,normal
divpd normal,subnormal

fadd normal,normal
fadd normal,subnormal
fmul normal,normal
fmul normal,subnormal
fdiv normal,normal
fdiv zero,normal
fdiv normal,zero
fdiv normal,infinity

Figure 3: Timing variability of instructions based on input operands. Each test measures the time taken to complete a

sequence of loading two values from memory into registers, performing the specified operation using the registers as input,

and storing the result back in memory. The y-axis gives the ratio of time taken to perform the specified operation versus

the time taken to perform an addition between two normal numbers.

626626

These results show that the timings of floating point

operations vary wildly based on data input. The amount of

slowdown and on which values is highly dependent on the

processor, varying significantly between different architec-

tures by the same manufacturer. As a takeaway, developers

have absolutely no guarantees about the timing of floating

point operations unless they are able to know exactly which

processor is used, what instructions are executed, and what

inputs are fed into those instruction. Even accounting for

all these factors, we cannot say with confidence whether or

not these timing differences will persist in future processors,

or whether new data-dependent timing channels will be

discovered later.

E. Subnormal Rationale

Subnormal support incurs a significant overhead, so why

should processors support subnormals? And if they are

supported, why should they be enabled by default? The most

compelling reason for subnormal support involves reasoning

about code like this [23, Section 2.2.4]:

if(a != b)

y = 1 / (a - b);

Checking that the variables a and b are not equal would

appear to guarantee that the result a−b could never be zero

and the division would be safe. The result a−b could be a

subnormal value, causing a division by zero if subnormals

are rounded to zero. Subnormals make possible “gradual

underflow,” preserving the property that two unequal values

can be subtracted yielding a non-zero result.

III. FIREFOX PIXEL STEALING

In this section, we demonstrate the use of subnormal

floating point numbers to subvert Firefox’s single-origin

policy, and show how a malicious website can use modern

browser features to extract page content from unaffiliated

victim sites in an iframe, or to sniff user browsing history.

A. A History of Stolen Pixels

In 2013, Paul Stone [49] (and, independently, Kotcher

et al. [35]) demonstrated a new technique for cross-origin

pixel stealing in the browser: a timing side-channel present

in CSS Scalable Vector Graphics (SVG) transforms. These

transforms can be applied (via CSS) to any element of a

webpage, including iframes. Notably, when cross-origin

content is contained in an iframe, the containing page can

apply SVG transformation filters at will to that iframe

(whose content the page does not control). By choosing

specific SVG filters and measuring page render times, Stone

was able to repeatably extract any pixel value from a website

he did not control.

The SVG filters available in browsers include blurs, clip-

ping, color transforms, and generalized convolutions. When

applied to a DOM element via CSS, the SVG filter must

be computed over the rendered pixels of the filtered element

every time the content of that element changes. Stone discov-

ered that the feMorphology (erosion and dilation) SVG

filter was written with a particular optimization, allowing for

a fast path on nearly homogeneous input. For each output

pixel, this filter considers a sliding window of input pixels,

taking the darkest individual pixel in the window as the

output. As long as the previous darkest pixel remains in the

window, the filter is designed to consider only new pixels in

the window, rather than all pixels in the window. Obviously,

this minor optimization will trigger much more often on

an single-color image rather than a highly noisy one. This

presents a timing side-channel, where the amount of time

rendering the transformed image takes leaks information

about the content. By layering iframes, Stone’s attack is

able to isolate individual pixels of interest, multiply them

against a noisy image, and repeatedly time the rendering

of the feMorphology filter on the result to extract pixel

values. The exact methods used to isolate and extract the

value are very similar to the methods we used, as described

in Section III-B.

B. Pixel Extraction via SVG Filters & Floating Point

We have implemented a new SVG filter timing attack,

using floating point instruction timing rather than the source

code fast path described above. Our attack takes advantage

of longer wall-clock execution times of floating point in-

structions with subnormal arguments versus normal argu-

ments, as described in Section II-D. This attack can read

arbitrary pixels from any victim webpage, as long as the

victim page can be rendered in an iframe. A full descrip-

tion of our attack follows, and is illustrated in Figure 4.

1) Pixel Isolation and Expansion: To amplify the timing

side channel enough to be measurable, we first must isolate

and expand the targeted pixel. First, the victim iframe (1)

is set to a very large size (to avoid scrolling) and its source is

set to the page of interest. Next, to select the target pixel, we

place the iframe in a 1×1 pixel div (2). We scroll this

iframe relative to the div via JavaScript such that the 1×
1 pixel div displays only the currently selected target pixel.

We additionally apply a thresholding feColorMatrix

and feComponentTransfer to the 1× 1 pixel div, to

binarize the color to black or white. The targeted pixel is

now ready to be attacked. Next, we introduce a second div

with the background:-moz-element attribute set to

the isolating 1×1 div. With this, we generate an arbitrarily

sized pixel-inspection div (3) whose fill color matches the

thresholded target pixel.

2) SVG Filter and Timing: To read the pixel value,

we need to time a computation on the targeted pixel. We

attach a feConvolveMatrix SVG filter (4) to the pixel-

inspection div, which introduces the timing side channel.

feConvolveMatrix is a generalized filter that allows for

the definition of an arbitrary kernel matrix that is then run

627627

Target
pixel white

Target
pixel black

(1) iframe of target page

(3) Pixel-inspection div

(4) SVG Filter

(5)

(6)

 (2)
 Target pixel in red

(

Filtered rendering

Browser Window

Figure 4: Cross-Origin SVG Filter Pixel Stealing Attack in Firefox

over the input pixels. In our case, we use a 2×2 matrix, all of

whose entries are set to the subnormal value 1e−42. When

this filter computes an output pixel, if the source pixels are

non-zero (white), the floating point operation performed is

norm×subnormal = subnormal. When the source pixels are

zero (black), the operation is zero×subnormal= zero. These

multiplications are then summed, non-black images result in

several summations of subnormal+ subnormal = subnormal

while a black image results in several zero + zero = zero

floating point operations. Depending on the processor, this

will result in some amount of computation time difference

(see Section II-D) based on the source image’s color. Our

test page timed the following SVG filter to extract pixels.

<feConvolveMatrix in="SourceGraphic"

order="2 2" edgeMode="duplicate"

kernelMatrix=

"1e-42 1e-42 1e-42 1e-42"

preserveAlpha="false" />

We time the rendering of the filtered div (5) using

requestAnimationFrame, which allows registration of

a function to be called on completion of the next frame.

We time the render by adding the feConvolveMatrix

filter to the pixel-inspection div, taking a high resolution

time reading, and registering a function that will take

another time stamp after the frame is completed. We use

performance.now() as our high-resolution timer. For

each pixel, we repeat this process once, and make a guess

(6) as to its original color using the calibrated threshold

described below. Note that timing the filter over only the

original 1×1 div would not have worked, since the render

timings must be greater than the minimum frame render time

for there to be a difference between black and white pixels.

By applying this filter to the pixel-inspection div we obtain

a timing for an individual pixel that is perceptible by the

timer.

3) Calibration: Since every machine, browser install,

and even page render can be slightly different, we run a

calibration phase before attempting to steal pixels. The goal

of the calibration phase is to obtain average render times

for black and white pixels, and then calculate a threshold

for classifying target pixels. The calibration phase sets the

color of the isolating div to black and white alternating,

while timing the rendering of the filtered output each time

using the above timing scheme. By averaging several white

render times and black render times, and taking the midpoint

between the averages, we calculate a threshold T . During

the pixel steal attack, we time the filtered rendering of each

pixel, and compare to T . We categorize the pixel as black

or white based on if the time is above or below T .

We found proper calibration to be one of the trickiest parts

of making the attack reliable. Render times are generally

relatively stable, but will unexpectedly be very slow or

fast. We found that different systems needed a different

sized pixel-inspection div before render times showed a

difference between black and white. If the div is too small,

the rendering time always lies within a single frame (16ms)

and we can see no difference from JavaScript between black

and white. If the div is too large, Firefox will often give

obviously incorrect times for the render, far smaller than is

possible. This occurs, for example when the div is larger

than the browser window, and our registered function is

mistakenly called when the non-displayed portions of the

page finish rendering (that is, instantly). One version of

the attack attempted to automatically find an optimal size

for each target machine, but consistently ran into problems

with undependable render times, causing this calibration to

choose much larger pixel-inspection div sizes than needed.

We settled on expanding the target pixel to a 200× 200

region by default, as this was reliable on all tested vulnerable

configurations.

628628

Firefox
Duration

(min)

B&W

delta (ms)
Black

errors

White

errors

23 7.24 39.68 41.7 3.9

24 5.50 40.04 146.5 1.0

25 5.54 47.08 103.3 1.3

26 6.27 43.17 0.0 1.2

27 6.41 42.88 0.2 2.4

Figure 5: Firefox Checkerboard Recovery 32-bit

C. Building an Attack

The loss of a single pixel value may not seem important;

however, by reading multiple arbitrary pixel values, an

attacker can perform several attacks. These are the same

attacks proposed by Stone [49], since under our attack

model, an attacker has similar capabilities.

First, the attacker can sniff browser history by applying

a custom style to links on the sniffing page — black back-

ground for visited and white for unvisited, for example —

and reading a single pixel of the background of the link. Web

pages normally cannot determine what color the browser has

applied to links they include, precisely because this would

allow an attacker to learn what URLs a user has visited [7].

For robustness in the face of noisy rendering times, the attack

would likely need to read several background pixels. Given

3 pixel reads per link, an attacker can check 10 or more

links per second on a machine similar to our test setup.

The attacker can also read cross-origin pixels for pages

that allow themselves to be iframed. This would allow an

attacker to read any sensitive data on the target site, such as

usernames, account information, or login status. Many sites

disallow embedding in iframes for sensitive pages, and

these pages would be protected from this attack [46].

Firefox 30 and onwards2 disallowed the view-source:

scheme in iframes, but prior to that change the attacker

could steal CSRF tokens from even protected pages. Since

a victim page’s frame-busting JavaScript did not run under

the view-source: scheme, and CSRF tokens are exposed

in the source, the attacker could simply read these using

a primitive OCR as suggested by Stone [49]. Once in

possession of CSRF tokens, the attacking page can mount

standard CSRF attacks [8].

D. Attack Implementation and Measurement

We developed a test page version of the attack described

in Section III-B, that attempted to steal a 48×48 region of

pixels containing a black and white checkerboard pattern.

As the pattern was static, the page was able to calculate the

number of errors. We ran this page in official Firefox major

releases on a Debian Linux machine with an Intel Core

i7-2600 CPU. The machine was under a normal desktop

2https://bugzilla.mozilla.org/show_bug.cgi?id=624883

Firefox
Duration

(min)

B&W

delta (ms)
Black

errors

White

errors

23 2.33 27.76 0.0 4.4

24 2.19 26.06 0.0 3.7

25 2.24 26.06 0.2 10.0

26 2.15 24.66 0.1 3.0

27 2.21 25.86 0.0 2.0

Figure 6: Firefox Checkerboard Recovery 64-bit

load, with another browser running an email client. We

tested each affected major version of Firefox. We ran the

experiment ten times, with a forced page reload between

runs; only the attack page was open. Figures 5 and 6

show the averaged results for each vulnerable major Firefox

release. Duration measures the total time to steal the 48×48

region took in minutes. B&W delta is the difference found

during calibration for black pixel vs white pixel render time

with filter in milliseconds. Errors measure the respective

number of pixels that were not labeled with the correct

color. We included an option on the test page to change how

many copies of the target pixel were created, defaulting to

a 200×200 region; all data was collected with this default.

We found that at larger areas, the filter took predictably

longer. Since timing fluctuations were not amplified the

same amount, there were fewer timings near the threshold,

resulting in fewer pixel errors.

Note that Figure 5 has several entries with very high black

errors. These are entirely due to individual runs with poor

calibration. It is unclear what caused some renders of the

SVG filter to take two orders of magnitude longer than

average, but it occurred much more frequently on the 32-bit

version of Firefox than the 64-bit.

When we went to investigate the high rate of black

errors in Figure 5, we discovered that the test machine had

undergone an OS package update. This has caused the same

32-bit binary versions of Firefox as before to exhibit similar

error rates to the 64-bit versions. Average timings and deltas

of 32-bit Firefox versions have not been affected, but the

occasional large timing differences are no longer present.

The likely culprit is some aspect of the GTK and glibc

software stack that has changed in such a way that older

Firefox 32-bit releases are more stable. We were unable

to determine exactly what aspect of the update caused this

change.

Figure 7 shows a common run from 64-bit Firefox 27 on

a Debian Linux machine. This instance has a single white

pixel error, which was present in almost every test run. In

our testing, the first recorded animation frame render time

is unexpectedly fast, which causes a single error.

Figure 8 shows the stolen pixels from the front page

of http://www.bbc.com using different pixel-inspection div

sizes. These tests were run on Firefox 27 64-bit on the

629629

Figure 7: Stealing a 48×48 pixel checkerboard

Figure 8: Stealing a 48×48 pixel region from www.bbc.com,

at 100×100, 200×200, and 300×300 pixel-inspection div

size.

same Debian Linux machine as the other tests. As the size

of the filtered region (pixel-inspection div) increases, the

render time and the delta between black and white pixels

increases. Thus, the minor fluctuations in timing have less

impact on the total render time, and the output has less

errors. This effect is more pronounced on larger websites

running JavaScript and loading other resources than on our

test checkerboard image.

While stealing a 48×48 checkerboard takes several min-

utes, an attack does not have to steal all the pixels on a

page to be useful. As demonstrated in [49], with intelligent

selection of pixels, OCR can be run reading only log2(N)
pixels per character for a target font with N characters. Since

our attack reads around 16.4 pixels-per-second in the best

case, we can read alphanumeric text at ≈ 3.23 characters

per second. Alternatively, history sniffing requires one pixel

per URL, so we can scan 16.4 potential URLs per second

in the best case.

E. Vulnerable Browsers

While the attack described in Section III-B works on any

SVG filter that will accept subnormal floating point values,

it relies on the FPU to exhibit timing differences based on

arguments. We found that the only major browser (as of mid-

2014) that ran SVG filters on the CPU was Firefox. All other

major browsers ran filter computations on the GPU, regard-

less of configuration. While some GPUs [27] exhibit similar

timing differences, our test design was unable to detect them.

Firefox was vulnerable to this attack from version 23

(released August 6, 2013) through 27. From Firefox 28

(released March 18, 2014) onward, all SVG filters are

run on the GPU. Prior to Firefox 23, the browser did not

support requestAnimationFrame, and thus timing

the rendering of the filtered pixels was impossible. We

have demonstrated our test page extracting pixels from

Firefox 23–27 686 (32-bit) and AMD64 (64-bit) builds on

Debian Linux. We have also demonstrated the attack on

Windows 7, Mac OS X, and TAILS prior to 1.2. While

there are no substantive differences between versions within

an architecture, there were notable performance differences

between 32-bit and 64-bit builds.

These differences arose because the 32-bit builds use the

x87 FPU, while the 64-bit builds use SSE instructions for

floating point computations. As described in Section II-D

the timing of various floating point operations differs wildly

between x87 and SSE instructions. Interestingly, Windows

builds of Firefox were only available in 32-bit during this

period, so all floating point math was done on the x87 FPU.

F. Firefox Response

The original Mozilla SVG filter timing attack bug

thread [50] included a long discussion of how to avoid

exploitable timing side-channel vulnerabilities. Paul Stone

suggested (as the working draft of the spec did at the time)

that filters not be allowed to run over cross-origin pixels.

However, the general sentiment was that moving filters to

the GPU would eliminate these channels, and that, until then,

constant time implementations of the filters could be written

in C++. While it appears that, after significant engineering

effort, they were able to close the specific feMorphology

filter timing side-channel used by Stone, our attack demon-

strates that not all timing side-channels were removed.

Benoit Jacob expressed concern3 that there was no particular

reason to believe that GPUs would be constant time where

CPUs were not. Jacob has noted4 several likely timing

side-channels, arising from different floating point inputs to

various browser components. We have disclosed the pixel-

stealing attack and our concerns to Mozilla.

G. Recommendations

Engineering truly timing side-channel resistant SVG fil-

ters is a complex task with two competing goals. Browsers

are evaluated heavily on speed, and their developers often

focus on improving performance by fractions of a percent.

Thus, SVG filters must be fast, and serious performance

degradations as a result of hardening filters is unacceptable.

Simultaneously, for a filter to be resistant, it must be constant

time. Any predictable variability in render times will result

in a side channel. Building a very fast and yet completely

constant time SVG filter implementation is not only very

difficult, it is platform specific! As our data in Section II-D

shows, operations that are safe on one platform are unsafe on

another, requiring many more complex filters to have hand-

crafted assembly per-CPU model for genuinely constant

time operation. This amount of work is likely infeasible

for browser developers, and the performance impacts (as

seen in [50]) are likely to make such filters unusable even

if developed.

3https://bugzilla.mozilla.org/show_bug.cgi?id=711043#c52
4See https://www.khronos.org/webgl/public-mailing-list/archives/1310/

msg00030.html and http://permalink.gmane.org/gmane.comp.mozilla.devel
.platform/5293

630630

The current working draft of the CSS filters specification5

mandates that all filters must be made completely constant

time, but notes that there are often hardware or platform

specific timing side-channels in various computations. A

previous version (2012) of the working draft6 suggested

fetching the cross-origin resource with CORS, and stated,

“. . . a filter effect that is applying to a cross-origin ‘iframe’

element would receive a completely blank input image.” We

believe that due to the challenges in creating fast constant-

time SVG filters, the latter approach is advisable. Allowing

any attacker-observable and attacker-controlled computation

over sensitive cross-origin pixels is dangerous. It is impor-

tant to note that even if this recommendation is followed,

history sniffing will still be possible with non-constant time

filters. Since history sniffing does not require any cross-

origin pixels to be involved, an attacker can continue to

implement our attack using any timing variability found

in SVG filters. Current versions of Firefox (33 at the

time of writing) will still perform attacker-controlled SVG

filter transforms over cross-origin content, albeit using the

GPU rather than CPU. As Mark Harris, NVIDIA’s Chief

Technologist for GPU Computing [27] notes, some GPUs

do exhibit measurable performance impact with subnormal

values; see Section II-C for more. We believe that as page-

visible timing precision improves, even GPU floating point

calculations will become vulnerable.

IV. DIFFERENTIALLY PRIVATE DATABASES

While “big data” has the potential of offering valuable

insights from aggregating information about large popula-

tions (for example, genetic markers that are predictive of

serious diseases), it carries with it the danger of violating

the privacy of individuals in those populations (for example,

that a given person is afflicted by a particular condition).

Differential Privacy (DP) is a relatively recent ap-

proach [20, 21] which aims to reconcile the ability to make

precise statistical estimates about the properties of large data

sets without violating the privacy of any individual sample

in the data set.

At a high level DP works by adding noise — random

values from a carefully chosen distribution — to the results,

in a way that masks the exact value of the individual samples

while approximately preserving the overall aggregate result

over all the samples.

A. Mathematics of Differential Privacy

More concretely, imagine a data set D, and a query

program Q which the querier would like to run. For example,

D could be the admission data for a hospital, and Q might

compute the number of heart patients and the average length

of their stays. Person A, who visited the hospital after a

5https://dvcs.w3.org/hg/FXTF/raw-file/705f723192d2/filters/
Overview.html

6https://dvcs.w3.org/hg/FXTF/raw-file/4b53107dd95d/filters/index.html

heart attack, has a single entry in D: a. We can create a

new database D′ by removing a from D: D′ = D− {a}.
Differential privacy means that a querier cannot tell which

database Q runs on — Q(D) is indistinguishable from Q(D′).
In this way, a malicious attacker cannot learn whether A has

heart problems, but an honest querier can roughly learn the

average duration of the hospital’s heart patient visits.

A basic parameter of differential privacy schemes is ε ,

which scales the privacy of the scheme. Smaller ε gives a

more secure scheme, but introduces more uncertainty into

the query results.

There are several approaches to achieving differential

privacy, but the most common is the addition of noise from

a Laplacian distribution. Addition of properly scaled noise

(which can be positive or negative), will completely mask the

existence of any single entry a. For details on the Laplacian

distribution, see Dwork [20, 21].

B. Differential Privacy Databases

Several groups have used the theory of differential privacy

to construct differentially private databases, like PINQ [37]

and Airavat [43], which allow the user to ask queries of

datasets, and which transparently add noise to preserve

privacy.

At a high-level, these databases work by carefully restrict-

ing the queries into a map-reduce format. That is, the user

supplies a “microquery” that maps each row of the database

to some numeric result, and a “macroquery” that reduces the

(mapped) results from each row into the overall aggregate

result.

By structuring queries in this manner, the DP database

can add noise at the appropriate points after the aggregation

(reducing), in order to provide rigorous differential privacy

guarantees.

C. Timing Channels Break Privacy

Unfortunately, the DP guarantees crucially rely on the fact

that the user is privy only to the primary numerical results

of the query, and not other unintended results or attributes,

such as query running times.

Indeed, Haeberlen et al. [26] demonstrate that if the user

can also determine the running time of queries she posed to

the system, then the resulting covert channel can be used to

compromise the DP guarantees.

In particular, Haeberlen et al. show how to mount classical

timing attacks on PINQ and Airavat by carefully crafting

queries that follow the same basic pattern: if a highly sensi-

tive record is seen, the microquery performs an unexpected

action (such as spinning in a loop for several seconds, or

using extra memory). By then observing the running time

(or memory consumption), the querier can infer that the

sensitive record is present in the database.

631631

D. Restoring Privacy by Eliminating Timing Channels

Haeberlen et al. [26] also present a new database called

Fuzz, which aims to restore privacy by carefully designing

the query language and run-time to ensure that all queries

execute in exactly the same amount of time, independent of

the database contents. This property is achieved by a series

of measures. A rough sketch of Fuzz is presented next in

this work; for a full treatment, please refer to the original

paper [26].

1) Fuzz Queries: In the differential database model,

queries are written and supplied by an attacker, while the

database is operated by a trusted party. With this in mind,

Fuzz’s designers spent most of their effort protecting and

sanitizing queries. Each query is submitted to Fuzz as source

code, written in a subset of Caml, and is heavily restricted

in the actions it can take.

Queries are written using the map-reduce programming

model: a microquery maps over each individual row to pro-

duce a result, and the macroquery combines the row results

into aggregate statistics. To produce a differentially private

result, Fuzz modifies the macroquery’s results slightly, by

adding a random value drawn from a Laplacian distribution.

The differential privacy guarantee concerns a single row—

a malicious attacker should be unable to determine the

existence of, or indeed anything about, a single row. Fuzz

therefore requires each query program to declare the possible

output range of its microqueries, and this parameter is used

to generate the distribution of Laplacian noise. Once the

noise is added, the contribution of each individual row to

the final result is masked.

Further, to achieve a global constant execution time, Fuzz

requires each microquery to execute in a constant amount of

time. Therefore, query authors must also specify a “timeout”

and a “default value” for each microquery. To enforce these

limits, Fuzz requires a somewhat involved operating system

and hardware configuration, including running on its own

dedicated machine. While each microquery is executing, a

tight loop, calling rdtsc to read the clock cycle counter,

waits for the microquery deadline to arrive. When it does,

the watcher issues a longjmp call, resetting the Caml

interpreter to a previously-established setjmp location,

ready to record the microquery result. If the microquery

has finished and produced a value, that value will be used;

otherwise, the default value will be substituted for this

row.

This interpreter reset also guarantees another essential

property of Fuzz: microquery non-communication. If mi-

croqueries could communicate, and base their result on the

result of a previous microquery, they could, in aggregate,

overwhelm the Laplacian noise addition step and break

the differential privacy guarantee. The Fuzz query language

has no communication primitives, and the interpreter reset

eliminates any side-channels.

Once the query is written and ready to run, Fuzz uses

a modified version of the Caml Light7 runtime to compile

it into a 32-bit x86 executable, suitable for executing on a

database.
2) Query Aggregation and Environment: Macroqueries

aggregate the results of microqueries, which are computa-

tions performed in isolation on each row of the database.

Fuzz-provided library functions bridge the gap between

macro- and micro-queries.

Fuzz provides queries with four Caml functions for this

purpose: bagmap, bagsplit, bagsize, and bagsum (in

Fuzz parlance, collections of data are known as “bags”).

These correspond roughly to map (bagmap), filter

(bagsplit), and reduce (bagsize and bagsum) in

functional programming, but have been specifically designed

and implemented to support constant-time operation.

Internally, these functions are implemented in two parts: a

small Caml shim and a backend function written in C. They

are written to ensure constant-time execution; for example,

bagsplit creates a new copy of the database, identical

in size to the original, with non-existent rows marked via

metadata.

Fortunately, bagsum and bagsize are fairly simple to

write in a constant-time way: they need to perform a very

simple operation once for each active row in a bag. Since the

database size is considered public information, they simply

run a for loop over the bag. Fuzz’s C implementation of

bagsum can be seen in Figure 9. Note that, as aggregating

functions, they will only run once per macroquery, and are

assumed to be constant-time in the size of the database,

which is public information. Fuzz, therefore, does not try to

restrict them via technical means (like longjmp) to run

in constant time. Also, Fuzz’s strategy for timeout-based

limitation will not work on these aggregating functions —

there is no default value that will not immediately indicate

to the querier that a timeout has occurred, and that fact alone

could be enough to break differential privacy.

In contrast, bagmap and bagsplit allow a query to

run arbitrary code on each item in a bag. To execute such

queries in constant-time, Fuzz makes various modifications

to the Caml runtime and operating system configuration, as

described in the preceding section and in the original Fuzz

paper [26].

E. Subnormal-based Timing Attack on Fuzz

As part of its software distribution, Fuzz includes several

sample queries — including several example “evil” queries,

which demonstrate the constant-time nature of Fuzz. These

queries are modified versions of Haeberlen et al.’s timing

attacks against PINQ and Airavat, mentioned earlier. Fuzz’s

protections close these timing attack vectors, and the ma-

licious queries that ship with Fuzz are unable to expose

sensitive records.

7http://caml.inria.fr/caml-light/

632632

value cbagsum(value dbhandleV) {

dbHandle db =

database[Int_val(dbhandleV)];

double d = 0;

int i;

for (i=0; i<__numRows; i++) {

char *theRow = db +

(__numBytesPerRow*i);

assert((theRow[0] == ’N’) ||

(theRow[0] == ’X’));

/* don’t forget the 0x01 */

if (theRow[0] == ’N’)

d += atof(&theRow[2]);

}

return copy_double(d);

}

Figure 9: C implementation of bagsum, Fuzz’s function

to aggregate the results of per-row query computation.

Attacker-controlled values are highlighted.

When we look closely at the implementation of cbagsum

(Figure 9), other potential issues reveal themselves. First,

untrusted metadata (theRow[0]) is used to decide control

flow. While the time spent on a single atof and an add is

quite small, a meticulous attacker could learn details about

approximately how many rows were summed.

However, if the attacker is interested in the existence or

non-existence of a single row, this is a very weak signal —

to reliably extract information, the attacker needs a way to

amplify the transmission, letting the result somehow impact

the processing of other rows. To do this, we leverage the

data type Fuzz uses for the accumulator: double.

1) Amplification by Accumulation: Simply, the attacker

writes three nearly-identical queries, and submits each for

execution. The first query uses bagmap to process each

row, and produces 0 for each element. The second query is

much the same, but produces a subnormal for each row —

this represents the worst case scenario, where every row is

of interest. The third query almost always produces 0 as

well, but includes a probe: if a row of interest is seen, it

produces a subnormal floating point number (in our case,

10−310); otherwise, zero.

If the sensitive row is the first row of a 1,000,000 row

database, the first query will add 0 to itself 1,000,000

times. The probe query, if it finds an interesting row, will

add a subnormal to zero 1,000,000 times. As described in

Section II-D, due to timing differences in floating point

hardware, the probe query will take very slightly longer

than the baseline, and from this, the attacker can deduce

the presence of the sensitive row.

Probing? Mean (s) Min (s) Max (s)

No (all zero) 50.300 50.295 50.304

Yes (row not present) 50.309 50.299 50.336

Yes (row present) 50.489 50.488 50.493

No (all subnorm) 51.515 51.493 51.552

Figure 10: Fuzz query wall-clock duration. Each query was

run 4 times on a database of 1M rows. The probing query

was run twice: on one database which contained the row

of interest and one database that did not. The non-probing

queries simply produce a constant value for each row.

2) Experimental Setup: Our dedicated Fuzz test machine

was an Intel Core 2 Duo E8400 at 3.00 GHz, equipped

with 4 GiB of memory. We installed Ubuntu 12.04.4 with

a 64-bit 3.11.0 Linux kernel. Following Fuzz’s suggestions,

we disabled all non-kernel daemons, restricted all processes

and threads to run on a single CPU core, disabled CPU

frequency scaling, disabled disk flushing, ran Fuzz from a

ramdisk, mounted all disk-based filesystems as read-only,

and ran Fuzz as root so that it could assign its timing loop

exclusively to the free processor core.

We ran our malicious probing query and the non-probing

baseline benchmarks on this test machine over a sample

census database of 1 million rows. The 31st row indicated

a 59-year-old woman of indeterminate race making over

$200,000, exactly what our malicious query is trying to find.

We also ran the malicious query against a “clean” version

of the database, which lacked that particular row.

The running time of these queries is presented in Fig-

ure 10. Note the large difference (1.2 s) between the two

baseline queries: this is due to both the subnormal addition

delay and variable time atof execution (“0” is easier to

parse than “1e-308”).

By running the all-zeroes baseline query along with the

all-subnormal baseline query, the attacker generates a range

of possible timings, and can then place the probe query

somewhere on this range. In our case, we see a clear sep-

aration of about 0.18 s between the successful probe query,

which finds the row of interest, and the all-zeroes baseline.

When the database does not have the row of interest, the

probe query fails, and the timings are indistinguishable from

the baseline. After all the work Fuzz puts in to achieve

constant-time query execution, it achieves a total variance

of 0.009 s on the all-zeros baseline query. An increase in

running time of even 0.18 s is clearly distinguishable, even

over a network connection.

By comparing the total execution times of the three

queries, the attacker can deduce the presence or absence of

any row she is interested in, breaking the differential privacy

guarantee that Fuzz is built to provide.

633633

Integer Portion Fractional Portion Flags

32 bits 30 bits

3 bits 59 bits

61 bits 1 bit

2 bits

2 bits

2 bits

Figure 11: 3 possible internal layouts of a LibFTFP fixed.

LibFTFP supports anywhere between 1 and 61 fractional

bits, chosen at library compilation time.

V. DESIGNING CONSTANT-TIME OPERATIONS

Floating point numbers have long been a source of frus-

tration for programmers and nondeterminism in programs.

Further, their use (even for basic arithmetic) can lead to

security and timing issues in the host program, as we have

seen in this paper. However, it is entirely infeasible to

limit programmers to using only constant-time integer data

types — applications involving trigonometry or logarithms

require representing numbers between integers.

To bridge the gap between the input-dependent,

hardware-contingent, variable-time world of the floating

point and the world of constant-time arithmetic opera-

tion on pure integer types, we built and are releasing

libfixedtimefixedpoint (LibFTFP). a C library

supplying a fixed-point data type, with all library operations

running in constant time. LibFTFP is available online at

https://github.com/kmowery/libfixedtimefixedpoint.

LibFTFP provides the fixed data type. As with IEEE-

754 floating point, a particular fixed variable can hold the

value of a real number, of positive Infinity, of negative Infin-

ity, or of not-a-number (NaN). These extra numeric states

supply a means of signaling and propagating exceptional

behavior through LibFTFP computations — for example, di-

viding 1 by 0 produces NaN, while raising 10 to the 100th

power will produce positive Infinity.

A. Representation

As much as programmers would like to use pure, perfectly

precise real numbers in our programs, actually representing

a number in a binary-based computer involves making

choices about compromises. A N-bit data type can only ever

represent 2N different things.

LibFTFP fixeds are 64-bit values, the same size as

a IEEE-754 double. Two of these bits are allocated for

the state flags (see Figure 11), which allow us to store the

status of the number: normal, +Infinity, -Infinity, or NaN.

This leaves 62 bits for the storage of the number. Any

particular choice of allocation here will be suboptimal for

some application: one programmer might only care about

numbers between 0 and 10, but want very good precision,

while another is willing to trade precision to handle numbers

up to 250. Therefore, LibFTFP allows the programmer to

choose, at library compilation time, the use of the remaining

62 bits: anywhere between 1 integer bit (in practice, a single

sign bit) and 61 fractional bits, to 61 integer bits and 1

fractional bit, in single-bit increments. The number ranges

representable by LibFTFP, then, are limited by this choice,

but all LibFTFP numbers have 62 bits of precision. With I

integer bits and F fractional bits (I +F = 62), the smallest

possible positive value is ε = 2−F . The largest possible pos-

itive value is 2I−1−ε , while the largest-magnitude negative

number is −2I−1 (the representable difference is due to two’s

complement sign storage).

B. Operations on Numbers

A single string of bits, by itself, is useless. It only has

meaning when associated with a set of operations, transform-

ing it from a binary sequence into a number. Thus, LibFTFP

implements nearly every x87 floating point operation, each

with its own input-agnostic constant running time, tested on

each possible configuration of representable bits:

• Arithmetic: Add, Subtract, Multiply, Divide

• Comparison: Equality, Value Comparison

• Sign adjustment: Absolute Value, Negation

• Rounding: Floor and Ceiling

• Exponentials: ex, log2(x), loge(x), log10(x)
• Powers: xy, Square root

• Trigonometry: Sine, Cosine, Tangent

• Conversion: Printing (Base 10), to/from double,

to/from int64_t

Composing these operations should be sufficient to pro-

duce almost any needed mathematical function, in a secure

and input-agnostic manner.

Several operations are implemented as approximations,

and have associated error; see the LibFTFP documentation

for details.

C. Performance in Constant Time

Writing performant constant-time software is a unique

challenge: the fastest and slowest paths through the code

must take exactly the same amount of time, and that amount

should be as small as possible.

LibFTFP uses a few simple strategies to supports its

claim of constant-time operation: First, compute all possible

needed values. That is, each time through each function,

every code path is exercised and results are produced, even

if nonsensical. For example, when dividing by zero, instead

of failing immediately and returning NaN, a full division is

carried out (albeit with made-up numbers). Second, use no

data-directed branches. Whenever possible, we use straight-

line code, devoid of any flow control, and rely on bit shifting

and masking to choose between values (such as the NaN and

634634

nonsense division result mentioned above). The few loops

in LibFTFP all have a constant iteration count. Third, use

basic integer operations at all times, with the expectation

that integer operations will be constant-time independent of

input. This is widely regarded as true on modern hardware;

however, this assumption does not always hold. Notably,

Großschädl et al. [24] showed that, on particular embedded

processors, the time to perform integer multiplication varies

with the input operands. Note that if the hardware platform

cannot guarantee constant-time performance on some subset

of integer operations, it is nearly impossible (if not actually

impossible) to do constant-time math on that CPU, regard-

less of programmer effort.

While building LibFTFP, we discovered that the Intel x86

instructions for integer division (div and idiv) have an

input-dependent running time. Both of these instructions

divide a 128-bit number by a 64-bit number to produce a

64-bit number. In the case of overflow, a hardware Divide

Error exception is raised, which is certainly not constant

time, but this can be avoided with careful inspection and

modification of division inputs. Unfortunately, even normal,

non-overflowing operation is variable time. Notably, on a

Core 2 Duo E8400, we have seen idiv take anywhere

from 31 to 71 cycles, with multiple possible timings along

the way, depending on the input. With these characteris-

tics, LibFTFP must avoid div or idiv, leaving us with

no constant-time hardware-accelerated division instructions.

LibFTFP contains an alternative software implementation of

integer division, using only addition, subtraction, and bit

shifts, but taking this path reduces performance consider-

ably, causing a 400% slowdown in our fixed division

operation as compared to a version using non-constant-time

idiv.

Writing LibFTFP required the creation of a significant

amount of infrastructure to support translating even simple

operations into constant time variants. Basic C language

control structures like if, logical and (&&), and the ternary

operator are unavailable in constant time programming. To

emulate common operations, we built a library of C macros

that would perform repeated operations. For example, the

MASK_UNLESS macro will zero a given value if and only if

the expression evaluates to false, otherwise it passes through

unchanged. This is used extensively, as a replacement for

control-flow-mediated assignment, to combine different pos-

sible result values for a mathematical operation into a final

value. Evaluating the expression cannot result in a branch.

The result of the expression is forced to 1 or 0 via !!,

and MASK_UNLESS then uses the SIGN_EXTEND macro to

generate a mask that is all 1 or all 0 bits to control the final

value. Finally, the mask is combined with the initial value via

binary and (&). This is only a single, rather simple example

of the style of coding necessary to generate code that can

even be argued to run in constant time. See Figure 12 for

an example of our C code with macros fully expanded.

int64_t fix_to_int64(fixed op1) {

return ({ uint8_t isinfpos = (((op1

)&((fixed) 0x3)) == ((fixed) 0

x2)); uint8_t isinfneg = (((op1

)&((fixed) 0x3)) == ((fixed) 0

x3)); uint8_t isnan = (((op1)

&((fixed) 0x3)) == ((fixed) 0x1

)); uint8_t ex = isinfpos |

isinfneg | isnan; fixed

result_nosign = (({uint64_t

SE_m__ = (1ull << ((64 - ((60 +

2)))-1)); (((uint64_t) ((op1)

>> ((60 + 2)))) ^ SE_m__) -

SE_m__;}) + !!((!!((op1) & (1

LL << (((60 + 2))-1))) & !!((

op1) & ((1LL << (((60 + 2))-1))

-1))) | ((((op1) >> (((60 + 2))

-2)) & 0x6) == 0x6))); ((({

uint64_t SE_m__ = (1ull << ((1)

-1)); (((uint64_t) (!!(isinfpos

))) ^ SE_m__) - SE_m__;}) &

(9223372036854775807LL)) | (({

uint64_t SE_m__ = (1ull << ((1)

-1)); (((uint64_t) (!!(isinfneg

))) ^ SE_m__) - SE_m__;}) &

((-9223372036854775807LL -1)))

| (({uint64_t SE_m__ = (1ull <<

((1)-1)); (((uint64_t) (!!(!ex

))) ^ SE_m__) - SE_m__;}) & (

result_nosign))); });

}

Figure 12: Conversion of a LibFTFP value to an int64,

after the C pre-processor has been run.

This style of coding for LibFTFP causes most compilers

to output assembly conforming to our above specifications.

Unfortunately, we cannot guarantee that any compiler will

output such assembly. Users should be careful to use only

the build files we have provided, and run the provided cor-

rectness tests. As a best possible effort, we are distributing a

binary copy of the LibFTFP shared library, built for AMD64

Linux. This binary copy has been exhaustively manually

verified via disassembly to not use any known variable

time instructions or control flow structures. This, of course,

assumes that the target platform has a constant time integer

unit, and that basic x86 instructions are constant time. Unless

users are willing to verify their local builds to this degree, we

suggest using only the distributed binary version of LibFTFP.

Due to our conservative coding style, LibFTFP uses only

39 distinct x86 instructions. The full list can be found in

Figure 13.

635635

Opcodes

add mov pop setg

and movabs push setl

call movsd rep setle

cdqe movsx ret setne

cmp movsxd sar shl

imul movzx sbb shr

je mul seta sub

jmp neg setae test

jne not setbe xor

lea or sete

Figure 13: Every x86 instruction used by LibFTFP.

With regards to performance, running times (in cycles) for

each of LibFTFP’s operations (and their SSE counterparts,

where available) can be found in Figure 14. We also include

the running times for the same operations using native SSE

assembly, as well as example operations from the multiple

precision floating point library MPFR. While constant-time

software operation does, in fact, take longer than optimized

hardware, LibFTFP offers enough performance to be usable

outside of the academic setting. By allowing the use of some

approximations, it usually runs faster than the very precise,

but extremely variable time MPFR.

To generate these numbers, we timed performance care-

fully, making sure to warm up both the cache and CPU

frequency scaling. Each function is tested by taking a cycle

count using rdtsc before and after running the function

2,000,000 times. Each test runs twice in succession, discard-

ing the first set of results to warm the cache. The overhead of

running the loop without the function call is then subtracted,

and the remaining time is divided by the number of runs to

obtain an average cycles-per-call.

D. Real-World Implementation

To determine LibFTFP’s suitability for use in real-

world programs, we modified the Fuzz differentially-private

database and its Caml Light compiler to use fixeds

rather than doubles as its non-integer data type. The small,

streamlined nature of Caml Light made this modification

fairly easy, adding or modifying around 120 lines of code

in Caml Light itself.

We also had to modify Fuzz’s custom additions and library

functions. This mostly consisted of writing a more constant-

time cbagsum and approach to number handling: originally,

for each row, Fuzz serialized the microquery’s double

output as a string, and called atof on each number. atof is

a variable-time function (intuitively, “0” is easier and faster

to parse than “3.145e-60”), and so we replaced this human-

readable information passing with a binary encoding of each

fixeds bits.

Function FTFP SSE MPFR

neg 6 5 12-20

abs 9 4 10-17

cmp 21 5 10-15

add 15 4 15-58

sub 15 5 14-61

mul 43 5 16-76

div 381 7-15 15-170

floor 8 5 12-48

ceil 11 5 12-56

exp 1,460 7-16 37-13,330

ln 681 11-20 18-6,900

log2 679 9-20 19-24,000

log10 674 9-21 19-18,000

sqrt 7,870 7-16 9-154

pow 2,330 11-78 40-72,000

sin 1,998 – 11-33,000

cos 1,990 – 34-29,000

tan 2,380 – 13-37,000

print 443 350-600 210-230

Figure 14: LibFTFP performance tests, as compared against

the same operations via SSE and the multiprecision floating

point library MPFR. Measured in cycles per function call

on an Intel Core i7 2635QM at 2.00GHz. MPFR was

configured with 62 bits of precision, and a few sample inputs

were chosen; ranges may not be completely accurate. Note

that MPFR’s results are exactly correct, where LibFTFP

approximates some values.

Our custom version of Fuzz computes all of our database

queries from Section IV-E2, malicious or not, in 50.717 s–

50.771 s. We attempted to customize our timing attack query

for LibFTFP (as opposed to subnormals), but were unable

to cause any appreciable timing difference. The original

Fuzz, using doubles, completes the queries in 50.300 s–

51.552 s. While Fuzz’s overall running times are not the

most enlightening comparison (since so much work was

spent making each microquery take exactly the same amount

of time), we think that this shows LibFTFP is capable

of handling important mathematical calculations without

sacrificing too much raw performance.

VI. RELATED WORK

In our survey of related work, we focus on side-channel

attacks, in which an unwilling victim’s secret information

is revealed, rather than covert-channel attacks where two

cooperating processes communicate despite the presence of

a monitor; on timing attacks, in which secret information is

revealed by how long a process takes to run, rather than

through, e.g., power draw or electromagnetic emissions;

and on attacks on software and general purpose computing

platforms, rather than pure hardware implementations.

636636

Code Paths: Timing side-channel attacks on crypto-

graphic software were introduced by Kocher in a seminal

1996 paper [33]. The most straightforward mechanism for

timing side-channel attacks is when software takes different

code paths depending on secret values; Kocher’s concrete

example was the choice (based on secret key bits) of

whether to multiply in a round of RSAREF’s square-and-

multiply exponentiation routine. In some cases such attacks

are feasible even over the network [11, 13].

Memory Accesses: A second mechanism for timing

side-channel attacks is when the memory access pattern of

software or its use of microarchitectural functional units

varies depending on secret values. Kocher’s suggestion that

this class of attacks might be feasible has been more than

borne out; see Acıiçmez and Koç’s extensive survey [1],

which describes attacks that take advantage of the data

cache, the instruction cache, the branch prediction unit, and

functional unit contention. Unlike simple timing attacks,

microarchitectural timing attacks usually require an observer

process to run on the same machine as the victim; virtual-

machine co-tenancy in a cloud environment can suffice [53].

Data Timing Channels: A third mechanism for timing

side-channel attacks is for individual instructions to take a

variable amount of time depending on secret inputs. Kocher

hypothesized that, on some platforms, integer multiplication

and rotation instructions might have variable running time,

putting implementations of ciphers like IDEA and RC5 at

risk. In 2000, Hachez and Quisquater noted in passing that

the ARM7M core implements 32-bit multiplication using

four applications of a 32× 8 functional unit, terminating

early if the most significant bits of one operand are zero [25];

Großschädl et al. [24] showed that such partial multiplier

designs are common in small embedded cores, and that early

termination gives rise to a side channel. Großschädl et al. ex-

ploited the early termination together with SPA power traces

to break implementations of AES, RC6, RSA, and ECIES

on the ARM7TDMI core. Note that while early termination

induces a timing side channel, Großschädl et al.’s attack

model was more invasive, requiring power traces. We are

not aware of any prior work that exploits instructions with

data-dependent timing through timing alone.

For programs expressed in a high-level language, timing

channels may arise from interactions between layers in

the software stack. For example, as shown by Barbosa

et al. [6], JIT compilation may cause two branches that

perform the same high-level operations to have different

runtime performance.

Timing attacks are also relevant beyond crypto software.

For example, timing attacks have been shown to reveal

sensitive information such as a user’s browsing history [22],

the number of private photos in a Web gallery [12], what

signature database a user’s antivirus program runs [4], and

how many items are in a user’s shopping cart [54].

Mitigations: Due to the serious ramifications of timing

channel attacks, there is a wide literature on ways to

defend against them. Roughly speaking, they fall under the

categories of static and dynamic mitigations.

One approach is to use a typing discipline to ensure that

all control flow paths have the same number of instructions,

by ensuring that conditionals have equal sized branches, and

prohibiting the use of secret information in loop guards, i.e.,

all loop guards are constant or only depend on public, non-

secret values [47, 48, 51]. If the type system rejects a pro-

gram because it has “uneven” branches, the program can still

be transformed, for example by adding suitable “padding”

instructions along shorter branches [2, 9, 10, 28], by using

“conditional execution” implemented via bit-masking and

ternary choice [39] or by using if-conversion [15]. All of

the above approaches are limited to situations where the

instruction count is a proxy for actual performance, and do

not protect against lower level, e.g., instruction cache attacks

[1] or the data timing variation attacks we demonstrated.

Purely static or compilation methods are unlikely to

be effective against attacks that exploit the timing be-

havior of microarchitectural entities like branch predictors

or caches [1]. One approach to thwarting such attacks is

to modify the hardware [34], OS, or use a virtualization

layer [32] to ensure that certain cache lines containing secret

data are never evicted. Another alternative, called secure

multi-execution, uses multiple threads to simultaneously ex-

ecute all the different branches of code that depend on secret

data, but using different values that represent projections (or

facets) of the values at different security levels [18]. By then

controlling the scheduler, one can ensure that a deterministic

number of steps are taken at each security level [31].

An orthogonal approach is to ensure the absence

of hardware based timing channels by synthesizing the

hardware from description languages equipped with a notion

of non-interference [36]. While this approach is invasive, it

could eliminate timing variations at the hardware source.

Black-box Mitigation: Another, more general,

approach, which could in principle account for any timing

channel, is to treat the machine as a black box emitting

observable events and to interpose a mitigation layer that

pauses the output of events to make the output timing

deterministic [5]. The main drawback with this approach

is the large overhead imposed by the pauses. To get around

this, one can use a gray-box language based approach

where the mitigator is exposed as a language primitive

mitigate(e) {c} where the command c is executed

and a pause is inserted until e time units have elapsed. The

resulting system can guarantee the absence of timing leaks,

as long as the duration e is independent of secret data, and

regardless of the computations performed in c, overcoming

the loop-restrictions in the original static approaches.

Furthermore, the pauses are only inserted at specific places

where the static methods are insufficient [52].

637637

VII. CONCLUSION

In this paper, we have shown how an arcane detail about

timing variations in floating point operations opens up a

data timing side channel that can be used to break the

security of real world systems, including a Web browser and

a differentially private database carefully designed to block

such attacks. While numerical analysts have known about

these timing variations for decades, our results indicate that

that data timing channels are a viable vector for exfiltrat-

ing sensitive information, for which, currently, there is no

form of detection, let alone prevention, and which therefore

warrant attention from the security community. In particular,

we hope that future work will: (1) reexamine how security-

relevant software relies on floating point operations, not just

for timing variation but also determinism (see, e.g., [16, 17]);

(2) perform a systematic and comprehensive evaluation of

the variation in the way other kinds of instructions run on

different inputs and on different architectures such as GPG-

PUs, with the goal of understanding how these variations can

be used for data timing channel-based exfiltration attacks and

other security concerns like fingerprinting; and (3) identify

patterns for data timing vectors that can be the basis of

static or dynamic mitigation tools, using language based

techniques for compiling or transforming away potential

channels, or run-time techniques for rewriting binaries or

virtualizing problematic operations to block data timing

channels.

ACKNOWLEDGEMENTS

We thank Eric Rescorla and Stefan Savage for helpful

discussions about this work.

This material is based upon work supported by the Na-

tional Science Foundation under Grant No. CNS-1228967,

and by a gift from the Mozilla Corporation.

REFERENCES

[1] O. Acıiçmez and Ç. K. Koç, “Microarchitectural attacks and
countermeasures,” in Cryptographic Engineering, Ç. K. Koç,
Ed. Springer-Verlag, 2009, ch. 18, pp. 475–504.

[2] J. Agat, “Transforming out timing leaks,” in Proceedings of
POPL 2000, T. Reps, Ed. ACM Press, Jan. 2000, pp. 40–53.

[3] B. Akbarpour, A. T. Abdel-Hamid, S. Tahar, and J. Harri-
son, “Verifying a synthesized implementation of IEEE-754
floating-point exponential function using HOL,” The Com-
puter Journal, vol. 53, no. 4, pp. 465–488, May 2010.

[4] M. I. Al-Saleh and J. R. Crandall, “Application-level recon-
naissance: Timing channel attacks against antivirus software,”
in Proceedings of LEET 2011, C. Kruegel, Ed. USENIX,
Mar. 2011.

[5] A. Askarov, D. Zhang, and A. C. Myers, “Predictive black-
box mitigation of timing channels,” in Proceedings of CCS
2010, A. Keromytis and V. Shmatikov, Eds. ACM Press,
Oct. 2010, pp. 297–307.

[6] M. Barbosa, A. Moss, and D. Page, “Constructive and de-
structive use of compilers in elliptic curve cryptography,” J.
Cryptology, vol. 22, no. 2, pp. 259–81, Apr. 2009.

[7] L. D. Baron, “Preventing attacks on a user’s history through
CSS :visited selectors,” Apr. 2010, online: http://dbaron.org/
mozilla/visited-privacy.

[8] A. Barth, C. Jackson, and J. Mitchell, “Robust defenses
for cross-site request forgery,” in Proceedings of CCS 2008,
P. Syverson and S. Jha, Eds. ACM Press, Oct. 2008, pp.
75–88.

[9] G. Barthe, T. Rezk, and M. Warnier, “Preventing timing leaks
through transactional branching instructions,” Electron. Notes
Theor. Comput. Sci., vol. 153, no. 2, pp. 33–55, May 2006.

[10] G. Barthe, G. Betarte, J. Diego, C. Luna, and D. Pichardie,
“System-level non-interference for constant-time cryptogra-
phy,” in Proceedings of CCS 2014, M. Yung and N. Li, Eds.
ACM Press, Nov. 2014.

[11] N. T. Billy Bob Brumley, “Remote timing attacks are still
practical,” in Proceedings of ESORICS 2011, ser. LNCS,
V. Atluri and C. Diaz, Eds., vol. 6879. Springer-Verlag,
Sep. 2011, pp. 355–71.

[12] A. Bortz, D. Boneh, and P. Nandy, “Exposing private infor-
mation by timing Web applications,” in Proceedings of WWW
2007, P. Patel-Schneider and P. Shenoy, Eds. ACM Press,
May 2007, pp. 621–28.

[13] D. Brumley and D. Boneh, “Remote timing attacks are
practical,” Computer Networks, vol. 48, no. 5, pp. 701–16,
aug 2005.

[14] J. Coonen, W. Kahan, J. Palmer, T. Pittman, and D. Stevenson,
“A proposed standard for binary floating point arthmetic,”
SIGNUM Newsl., vol. 14, no. si-2, pp. 4–12, Oct. 1979.

[15] B. Coppens, I. Verbauwhede, K. De Bosschere, and
B. De Sutter, “Practical mitigations for timing-based side-
channel attacks on modern x86 processors,” in Proceedings
of IEEE Security and Privacy (“Oakland”) 2009, A. Myers
and D. Evans, Eds. IEEE Computer Society, May 2009, pp.
45–60.

[16] B. Dawson, “Floating-point determinism,” Online:
http://randomascii.wordpress.com/2013/07/16/floating-p
oint-determinism/, Jul. 2013, fetched: Nov 14, 2014.

[17] ——, “Intel underestimates error bounds by 1.3 quintillion,”
Online: http://randomascii.wordpress.com/2014/10/09/intel-u
nderestimates-error-bounds-by-1-3-quintillion/, Oct. 2014,
fetched: Nov 14, 2014.

[18] D. Devriese and F. Piessens, “Noninterference through secure
multi-execution,” in Proceedings of IEEE Security and Pri-
vacy (“Oakland”) 2010, D. Evans and G. Vigna, Eds. IEEE
Computer Society, May 2010, pp. 109–24.

[19] I. Dooley and L. Kale, “Quantifying the interference caused
by subnormal floating-point values,” in Proceedings of OS-
IHPA 2006, M. Sottile, F. Petrini, and R. Mraz, Eds.,
Sep. 2006, online: http://osihpa.cs.utep.edu/2006/DooleySubn
ormal06.pdf.

[20] C. Dwork, “A firm foundation for private data analysis,”
Commun. ACM, vol. 54, no. 1, pp. 86–95, Jan. 2011.

[21] C. Dwork and A. Roth, “The algorithmic foundations of
differential privacy,” Foundations and Trends in Theoretical
Computer Science, vol. 9, no. 3–4, pp. 211–407, Aug. 2014.

[22] E. W. Felten and M. A. Schneider, “Timing attacks on Web
privacy,” in Proceedings of CCS 2000, S. Jajodia, Ed. ACM
Press, Nov. 2000, pp. 25–32.

[23] D. Goldberg, “What every computer scientist should know
about floating-point arithmetic,” ACM Computing Surveys,
vol. 23, no. 1, pp. 5–48, Mar. 1991.

[24] J. Großschädl, E. Oswald, D. Page, and M. Tunstall,
“Side-channel analysis of cryptographic software via early-
terminating multiplications,” in Proceedings if ICISC 2009,

638638

ser. LNCS, D. Lee and S. Hong, Eds., vol. 5984. Springer-
Verlag, 2010, pp. 176–92.

[25] G. Hachez and J.-J. Quisquater, “Montgomery exponentiation
with no final subtractions: Improved results,” in Proceedings
of CHES 2000, ser. LNCS, Ç. K. Koç and C. Paar, Eds., vol.
1965. Springer-Verlag, Aug. 2000, pp. 293–301.

[26] A. Haeberlen, B. C. Pierce, and A. Narayan, “Differential
privacy under fire,” in Proceedings of USENIX Security 2011,
D. Wagner, Ed. USENIX, Aug. 2011, pp. 507–21.

[27] M. Harris, “CUDA pro tip: Flush denormals with confidence,”
Online: http://devblogs.nvidia.com/parallelforall/cuda-pro-tip
-flush-denormals-confidence/, Jan. 2013, fetched: Nov 13,
2014.

[28] D. Hedin and D. Sands, “Timing aware information flow
security for a JavaCard-like bytecode,” Electron. Notes Theor.
Comput. Sci., vol. 141, no. 1, pp. 163–82, Dec. 2005.

[29] “FDIV replacement program: Description of the flaw,”
Whitepaper: Onnline: http://www.intel.com/support/processo
rs/pentium/sb/CS-013007.htm, Intel, Jul. 2004, fetched: Nov
12, 2014.

[30] W. Kahan, “Why do we need a floating-point arithmetic
standard?” Whitepaper: Online: http://www.eecs.berkeley.e
du/~wkahan/ieee754status/why-ieee.pdf, Feb. 1981, fetched:
Nov 12, 2014.

[31] V. Kashyap, B. Wiedermann, and B. Hardekopf, “Timing-
and termination-sensitive secure information flow: Exploring
a new approach,” in Proceedings of IEEE Security and
Privacy (“Oakland”) 2011, G. Vigna and S. Jha, Eds. IEEE
Computer Society, May 2011, pp. 413–28.

[32] T. Kim, M. Peinado, and G. Mainar-Ruiz, “STEALTHMEM:
System-level protection against cache-based side channel at-
tacks in the cloud,” in Proceedings of USENIX Security 2012,
T. Kohno, Ed. USENIX, Aug. 2012, pp. 189–204.

[33] P. Kocher, “Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems,” in Proceedings
of Crypto 1996, ser. LNCS, N. Koblitz, Ed., vol. 1109.
Springer-Verlag, Aug. 1996, pp. 104–13.

[34] J. Kong, O. Aciicmez, J.-P. Seifert, and H. Zhou, “Architect-
ing against software cache-based side-channel attacks,” IEEE
Trans. Comput., vol. 62, no. 7, pp. 1276–88, Jul. 2013.

[35] R. Kotcher, Y. Pei, P. Jumde, and C. Jackson, “Cross-origin
pixel stealing: Timing attacks using CSS filters,” in Proceed-
ings of CCS 2013, V. Gligor and M. Yung, Eds. ACM Press,
Nov. 2013, pp. 1055–62.

[36] X. Li, M. Tiwari, J. K. Oberg, V. Kashyap, F. T. Chong,
T. Sherwood, and B. Hardekopf, “Caisson: A hardware de-
scription language for secure information flow,” in Proceed-
ings of PLDI 2011, S. Blackburn, Ed. ACM Press, Jun.
2011, pp. 109–20.

[37] F. McSherry, “Privacy integrated queries,” in Proceedings of
ACM SIGMOD 2009, A. Labrinidis, Ed. ACM Press, Jun.
2009.

[38] I. Mironov, “On significance of the least significant bits for
differential privacy,” in Proceedings of CCS 2012, G. Danezis
and V. Gligor, Eds. ACM Press, Oct. 2012, pp. 650–61.

[39] D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner, “The
program counter security model: Automatic detection and

removal of control-flow side channel attacks,” in Proceedings
of ICISC 2005, ser. LNCS, D. Won and S. Kim, Eds., vol.
3935. Springer-Verlag, Feb. 2006, pp. 156–68.

[40] J. S. Moore, T. W. Lynch, and M. Kaufmann, “A mechani-
cally checked proof of the AMD5K86 floating-point division
program,” IEEE Trans. Computers, vol. 47, no. 9, pp. 913–26,
Sep. 1998.

[41] “NVIDIA’s next generation CUDA compute architecture:
Fermi,” Whitepaper: Online: http://www.nvidia.com/content/
pdf/fermi_white_papers/nvidia_fermi_compute_architectur
e_whitepaper.pdf, NVIDIA Corporation, 2009.

[42] R. Regan, “Bug #53632: PHP hangs on numeric value
2.2250738585072011e-308,” Online: https://bugs.php.net/bu
g.php?id=53632, Dec. 2010, fetched: Nov 12, 2014.

[43] I. Roy, S. T. Setty, A. Kilzer, V. Shmatikov, and E. Witchel,
“Airavat: Security and privacy for mapreduce,” in Proceedings
of NSDI 2010, M. Castro and A. C. Snoeren, Eds. USENIX,
Mar. 2010.

[44] D. M. Russinoff, “A mechanically checked proof of IEEE
compliance of the floating point multiplication, division and
square root algorithms of the AMD-K7 processor,” LMS J.
Comput. Math., vol. 1, pp. 148–200, 1998.

[45] ——, “A mechanically checked proof of correctness of the
AMD K5 floating point square root microcode,” Formal
Methods in System Design, vol. 14, no. 1, pp. 75–125, Jan.
1999.

[46] G. Rydstedt, E. Bursztein, D. Boneh, and C. Jackson,
“Busting frame busting: a study of clickjacking vulnerabilities
at popular sites,” in Proceedings of W2SP 2010, C. Jackson,
Ed., May 2010. [Online]. Available: http://seclab.stanford.e
du/websec/framebusting/framebust.pdf

[47] A. Sabelfeld and D. Sands, “Probabilistic noninterference for
multi-threaded programs,” in Proceedings of CSFW 2000, ser.
CSFW ’00, P. F. Syverson, Ed. IEEE Computer Society, Jul.
2000, pp. 200–14.

[48] G. Smith, “A new type system for secure information flow,”
in Proceedings of CSFW 2001, S. Schneider, Ed. IEEE
Computer Society, Jun. 2001, pp. 115–25.

[49] P. Stone, “Pixel perfect timing attacks with HTML5,” Pre-
sented at Black Hat 2013, Jul. 2013, online: http://contextis.c
o.uk/documents/2/Browser_Timing_Attacks.pdf.

[50] ——, “Bug 711043 – (CVE-2013-1693) SVG filter timing at-
tack,” Online: https://bugzilla.mozilla.org/show_bug.cgi?id=
711043, Jun. 2011, fetched: Nov 13, 2014.

[51] D. Volpano and G. Smith, “Eliminating covert flows with
minimum typings,” in Proceedings of CSFW 1997, S. Foley,
Ed. IEEE Computer Society, Jun. 1997, pp. 156–69.

[52] D. Zhang, A. Askarov, and A. C. Myers, “Language-based
control and mitigation of timing channels,” in Proceedings of
PLDI 2012, F. Tip, Ed. ACM Press, Jun. 2012, pp. 99–110.

[53] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-
vm side channels and their use to extract private keys,” in
Proceedings of CCS 2012, G. Danezis and V. Gligor, Eds.
ACM Press, Oct. 2012, pp. 305–16.

[54] ——, “Cross-tenant side-channel attacks in PaaS clouds,” in
Proceedings of CCS 2014, M. Yung and N. Li, Eds. ACM
Press, Nov. 2014.

639639

