
ADSNARK: Nearly Practical and
Privacy-Preserving Proofs on Authenticated Data

Michael Backes
CISPA, Saarland University

Germany

Manuel Barbosa
HASLab – INESC TEC

Minho University, Portugal

Dario Fiore
IMDEA Software Institute

Madrid, Spain

Raphael M. Reischuk∗
ETH Zurich

Switzerland

Abstract—We study the problem of privacy-preserving proofs
on authenticated data, where a party receives data from a trusted
source and is requested to prove computations over the data to
third parties in a correct and private way, i.e., the third party
learns no information on the data but is still assured that the
claimed proof is valid. Our work particularly focuses on the
challenging requirement that the third party should be able to
verify the validity with respect to the specific data authenticated
by the source — even without having access to that source. This
problem is motivated by various scenarios emerging from several
application areas such as wearable computing, smart metering,
or general business-to-business interactions. Furthermore, these
applications also demand any meaningful solution to satisfy
additional properties related to usability and scalability.

In this paper, we formalize the above three-party model,
discuss concrete application scenarios, and then we design,
build, and evaluate ADSNARK, a nearly practical system for
proving arbitrary computations over authenticated data in a
privacy-preserving manner. ADSNARK improves significantly
over state-of-the-art solutions for this model. For instance,
compared to corresponding solutions based on Pinocchio (Oak-
land’13), ADSNARK achieves up to 25× improvement in proof-
computation time and a 20× reduction in prover storage space.

I. INTRODUCTION

With the emergence of modern IT services, many aspects of

the operation of our society have come to critically depend

on the ability to share information between multiple parties,

subject to complex information flow restrictions. The advance

of information and communication technology has often led to

the deployment of systems that offer the desired functionality,

but do not offer a technical solution to enforcing the secure

information flow restrictions. Instead, parties must simply trust

each other, often without reasonable grounds.

The last few years have seen exciting developments in

cryptography, where (quasi-)practical solutions to some of

these problems were proposed, prototyped, and sometimes

deployed (as we will see later in this section). In this paper,

we make further progress in this direction by proposing and

efficiently instantiating a new cryptographic primitive called

AD-SNARK, which targets an important class of applications

that is out of reach of current technology. Such applications

involve a potentially large set of secret data and three parties

with the following trust relationships:

* Some of the results of this paper also appear in [1].

• The data owner wishes to keep her data secret, but

is forced by circumstances to reveal partial information

on this data to a service provider. Typically, this is an

aggregated result computed by some public function f
on the secret data.

• The service provider does not trust the data owner to

correctly compute the partial information on the data, but

wants to be convinced of its validity.

• The data owner has access to a trusted source, who can be

given local access to the data, and who is trusted by the

service provider to vouch for the quality and legitimacy

of the data.

For concreteness, let us look at a few applications that fall

into this model, and where the public function that must be

applied to the data has varying degrees of complexity.

Health Risk Assessment. A wearable biosensor [2, 3]

collects fine-grained health information of an individual; the

individual should give this information to a health insurance

company that wants to assess her health risk in order to

evaluate a corresponding premium. Privacy determines that the

fine-grained health data collected by the sensor remains secret

as it may reveal more about the individual’s lifestyle and habits

than she wishes to reveal. The computation of the premium

due to the insurance company (or an aggregate, less privacy-

invasive, information of the collected data) should therefore be

carried out by the client. However, the client must convince

the insurance company that this computation is correct and
performed on legitimate data produced by the biosensor (we

call this property integrity). In this setting, the biosensor can

play the role of the trusted source, provided that it is equipped

to cryptographically authenticate the individual measurements

that it produces. Then the AD-SNARK primitive can be used

to provide the required assurance to the health insurance

company.

Smart Metering. The service provider of some commodity

installs a trusted device in the facilities of the client. This

trusted device periodically measures consumptions and pro-

duces a list of readings, which are delivered to the client;

the client should give these readings to the service provider

for billing purposes. For privacy, the client may not want to

disclose these measurements as they may reveal more about

the client’s habits than she wishes to reveal (see, e.g., [4]).

For integrity, the supplier wants to evaluate a correct bill

2015 IEEE Symposium on Security and Privacy

© 2015, Michael Backes. Under license to IEEE.

DOI 10.1109/SP.2015.24

271

2015 IEEE Symposium on Security and Privacy

© 2015, Michael Backes. Under license to IEEE.

DOI 10.1109/SP.2015.24

271

and prevent customers from cheating. As before, the customer

keeps all the readings provided by the local meter, which must

be able to authenticate the data and operate as a trusted source.

Then, the customer computes the amount due to the provider,

and uses AD-SNARK to prove that the result is correct.

Financial Audits. Organizations are often subject to finan-

cial audits. Auditors will typically look at specific parts of the

accounting data and assert that the results of relevant com-

putations are accurate. However the accounting data should

be treated as sensitive information due to its business-critical

nature, and minimizing the amount of information disclosed

to auditors is desirable. In this scenario, the auditor plays the

role of the service provider, and the organization the role of

the data owner. The natural entity to play the role of the

trusted source is the person (or third party) who is legally

responsible for certifying the accounts of the organization,

e.g., the official bookkeeper. This entity would authenticate

the accounting data, so that the organization could internally

compute the audit data in a way that is verifiable by the

auditors with respect to both correctness and legitimacy. As

intended, using AD-SNARK in this context will transfer the

responsibility of any wrongdoing to the official bookkeeper.

In the full version of this paper we present three more ex-

ample applications: pay-as-you-drive insurance, loyalty cards,

and health statistics. We believe that, with the rise of small

computing devices and an increased awareness with respect

to privacy protection, many more applications will come to

fall into this three-party scenario.

Although the trust model in all of the previous applications

is the same, the complexity of the associated computations

varies significantly. Solutions have been proposed for smart-

metering, pay-as-you-drive insurance, and loyalty cards, e.g.,

in [5, 6], and [7], respectively (and also for other applications

of similarly low complexity). However, currently no generic
solution is able to scale in a satisfactory way to deal with

computations of arbitrary size such as those required for

scenarios like the ones of financial audits or health statistics.

Furthermore, although some scenarios admit to a close relation

between the trusted source and the service provider that

could lead to secret information being shared between the

two (in the style of symmetric cryptography), other scenarios

require verification for multiple parties, i.e., a form of public

verifiability that is even more challenging. The AD-SNARK

primitive and the efficient instantiation that we propose in this

paper provides a practical solution for the moderately complex

computations, even with public verifiability. Furthermore, the

proposed AD-SNARK construction is as practical as the

existing state of the art solutions for computations of arbitrary

size on non-authenticated data.1

Formal Model. We now illustrate more formally the three

party model we have introduced above (see Figure 1). We

consider a scenario in which a prover P (the data owner) is

requested to prove certain computations C(D) on input data

1Hence the designation “nearly practical” in the title of the paper.

D to third parties V (one or more service providers), which we

call the verifiers. Since the two parties P and V may not trust

each other, we are interested in the simultaneous achievement

of two main security properties: (1) integrity, in the sense

that V should be convinced about the correctness of C(D).
In particular, in order to verify that this statement holds for

some specific input D, the data is assumed to be generated

and authenticated by some trusted source S; and (2) privacy,

in the sense that V should not learn any information about D
beyond what is trivially revealed by C(D).

In addition to the security requirements above, any meaning-

ful solution has to meet the following properties that have been

identified as key for practical scalability in previous work:

(3) efficiency, meaning that V’s verification cost should be

much cheaper than the cost of computing C(D); and (4) data
independence, in the sense that the data source S should be

independent of P , i.e., S should be able to provide D without

knowing in advance what computations will be executed on D
(e.g., the billing function may change over time). In particular,

also D’s size should not be fixed in advance, i.e., S can

continuously provide data to P , even after some proofs have

been generated.

Related Work. The simultaneous achievement of integrity

and privacy is a fundamental goal that has a long research

history starting with the seminal work on zero-knowledge

proofs [8]. In the last years, the efficiency of zero-knowledge

proofs has improved a lot, and nowadays we are on the verge

of having nearly practical schemes for general-purpose com-

putations [9–11]. Proofs on authenticated data are an important

class of proofs that have been considered earlier especially in

very specialized contexts such as credentials and electronic

cash [12–15]. In the more general case of proving arbitrary

computations over authenticated data, there is however little

prior work, especially if one is concerned about achieving

practical efficiency. While we review this related work later in

Section VI, at this point we mention that the recent work ZQL

[6] aimed to address this problem by considering a three party

setting such as the one we presented above. ZQL provides

an expression language for (privacy-preserving) processing of

data that can be originated (i.e., authenticated) by trusted data

sources, and proposes a cryptographic scheme that achieves

integrity, privacy, and data independence. However, the current

ZQL language has some intrinsic limitations that limit its ap-

plicability to arbitrary computations while achieving efficiency

(i.e., if the verifier should perform less work than that required

to generate the proof). In summary, while we do have efficient

zero-knowledge proof systems for arbitrary computations, in

the case of proofs on authenticated data the situation is not

satisfactory.

A. Detailed Contributions

Inspired by the goals of ZQL, we formalize a cryptographic

primitive for privacy-preserving proofs on authenticated data,

and we propose a new realization that achieves the desired

efficiency goal for arbitrary computations. We then build a

system called ADSNARK and evaluate its performance in

272272

Prover
obtain witness w such that
C(x,w)=0 with x =(x1,...,xn)
and compute π = Prove(C,x,w,σ)

Source
measure data {xk }k

and sign it
σk = Auth(sk,Lk,xk)

{(xk, σk)}k π

Verifier
verify proof π
using L=(L1,...,Ln)
Ver(vk,L,π)

V

P ,

S

→ → →

→ → →

→

→

→

privacy

integrity &
efficiency

privacy

Figure 1. Three-party scenario in which a source S authenticates data xk ,
and a prover P proves to a verifier V the satisfiability of a circuit C based
on xk . The source and the prover are interested in data privacy, whereas the
verifier is interested in integrity and efficiency.

comparison with solutions based on the state of the art. More

in detail, our contributions are the following.

We fully formalize a model for the above problem by

defining a new cryptographic primitive that we call Succinct
Non-Interactive Arguments of Knowledge on Authenticated
Data (or AD-SNARK, for short). Succinct Non-Interactive

Arguments, first introduced by Micali under the name of

“CS proofs” [16], are proof systems that provide succinct
verification, i.e., the verifier is able to check a long poly-

time computation in much less time than that required to

run the computation, given the witness. Our new notion of

AD-SNARKs extends SNARKs to explicitly capture proofs

of NP relations R(x,w) in which the statement x (or a part

of it) is authenticated. More precisely, the main difference

between SNARKs and AD-SNARKs is that in the former,

the verifier always knows the statement, whereas in the latter,

the authenticated statements are not disclosed to the verifier,

yet the verifier can be assured about the existence of w such

that R(x,w) holds for the specific x authenticated by some

trusted source. Moreover, to model privacy (and looking ahead

to our applications) we define the zero-knowledge property to

hold not only for the witnesses of the relation, but also for

the authenticated statements. In particular, our zero-knowledge

definition holds also against adversaries who generate the

authentication keys.

Turning our attention to realizations, we show that

AD-SNARKs can be constructed in a generic fashion by em-

bedding digital signatures into SNARKs. However, motivated

by the fact that this “generic construction” is not efficient in

practice, our second contribution is a direct and more efficient
realization of AD-SNARKs, that from now on we refer to

as ADSNARK. Compared to instantiating the generic con-

struction with state-of-the-art SNARK schemes, ADSNARK
performs way better on the prover side, and achieves a level

of efficiency that makes it a plausible candidate for real-world

deployment. In what follows we give more details on this

efficiency aspect: We first discuss the efficiency of the generic

construction with state-of-the-art instantiations, and then we

describe our solution.

ON THE (IN)EFFICIENCY OF THE GENERIC CONSTRUC-

TION. The idea of the generic (not very practical) construction

of AD-SNARK for an NP relation R(x,w) is to let the prover

P prove an extended NP relation R′ which contains the set

of tuples (x′, w′) with x′ = (|x|, pk), w′ = (w, x, σ), and

σ = (σ1, . . . , σ|x|), such that there is a valid signature σi for

every statement value xi at position i under public key pk. The

problem with this generic construction is that, in practice, a

proof for such extended relation R′ is much more expensive

than a proof for R. The issue is that R′ needs to “embed” the

verification algorithm of a signature scheme. If we consider

very efficient SNARKs, such as the recent optimization of

Pinocchio [9] proposed in [11], then embedding the verifica-

tion algorithm means encoding the verification algorithm of

the signature with an arithmetic circuit over a specific finite

field Fp (where p is a large prime, the order of some bilinear

groups), and then creating a Quadratic Arithmetic Program

[17], a QAP for short, out of this circuit. Without going into

the details of QAPs (we will review them later in Section

II), we note that the efficiency of the prover in these systems

depends on the size of the QAP, which in turn depends on

the number of multiplication gates in the relation satisfiability

circuit.

Our main observation is that the circuit resulting from

expressing the verification algorithm of a digital signature

scheme is very likely to be quite inefficient (from a QAP

perspective), especially for the prover. Such inefficiency stems

from the fact that the circuit would contain a huge number of

multiplication gates. In Section III-C we discuss why this is

the case for various examples of signatures in both the random

oracle and the standard model, and based on different algebraic

problems. Our conclusions indicate that a QAP encoding a

signature verification circuit is likely to have significantly more

that one thousand multiplications for every signature that must

be checked. If, for instance, we consider smart-metering, in

which the prover wants to certify about 1 000 (signed) meter

readings (amounting to approximately 1 month of electricity

measurements), the costs can become prohibitive!

OUR SOLUTION. In contrast, we propose ADSNARK, a new,

direct, AD-SNARK scheme that achieves the same efficiency

as state-of-the-art SNARKs, e.g., [11], yet it additionally

allows for proofs on authenticated statements. Our scheme

builds upon an optimized version of Pinocchio proposed and

implemented in [11], and our key technical contribution is

a technique (illustrated in Section I-B) for embedding the

authentication verification mechanism directly in the proof

system, without having to resort to extended relations that

would incur the efficiency loss discussed earlier. As a result,

the performance of our scheme is almost the same as that

of running [11], but with the additional benefit of obtaining

proofs about authenticated values.

When comparing our direct construction with an instantia-

tion of the generic scheme with [11], ADSNARK introduces a

dramatic improvement (cf. Figure 2 above) in the generation

of setup keys (for the relation) and proofs, which is currently

273273

AD-PGHR ADSNARK Improvement
Key Generator 299 s 16 s 18.7×
Prover 491 s 20 s 24.5×
Verifier 0.062 s (PK) 0.61 s 0.1×

(SK) 0.035 s 1.8×
Proving key size 319 MB 16 MB 19.9×
Verification key size 31 KB 31 KB same
Proof size 0.3 KB (PK) 126 KB 0.002×

(SK) 0.4 KB 0.75×

Figure 2. Comparison between ADSNARK and the generic solution
(AD-PGHR) based on the [11] SNARK considering an arithmetic circuit
with 50K multiplication gates and 1000 authenticated inputs. Results obtained
by running libsnark for AD-PGHR and our implementation (based on
libsnark) of ADSNARK, both at a 128-bits security level.

the main bottleneck of state-of-the-art SNARKs (e.g., [9–11]).

Namely, while these schemes perform excellently in terms of

verification time and proof size, the performances get much

worse when it comes to generating keys and proofs, espe-

cially for relations that have “unfriendly” arithmetic circuit

representations, such as signature verification algorithms, as

discussed earlier. This is where our technique for avoiding

the explicit encoding of signature verification in the circuits

allows us to use much smaller QAPs, thus saving at least

one thousand multiplication gates per authenticated input. This

improvement is clearly evident in our experimental results that

show that the prover can obtain up to a 25× speed-up (20 s vs.

8 mins) and a 20× reduction in storage (16 MB vs. 320 MB).

As we discuss later, on the verifier side ADSNARK allows

for two different verification modes: one using the secret

authentication key and one completely public. Although in

the secret-key case, ADSNARK essentially achieves the same
verification efficiency and proof size of the generic solution,

our scheme pays more for public verification. However, in

contrast to what happens on the prover side of the generic

solution, the public verification of ADSNARK still achieves

timing (0.61 s) and proof size (126 KB) that can be definitely

considered practical.

B. An Intuitive Description of Our Techniques

The key idea for the construction of our AD-SNARK scheme

is to build upon SNARKs based on QAPs, and in particular

on the PGHR scheme in [11]. At a high level, our tech-

nique consists of extending PGHR by embedding a linearly-

homomorphic MAC that forces the prover to run the PGHR’s

Prove algorithm on correctly authenticated statements.

More precisely, the PGHR verifier, given a statement x =
(x1, . . . , xn), has to compute the linear combination ain =∑n

k=1xk ·ak(X) (where the ak(X) are the QAP polynomials).

However, recall that in AD-SNARKs the verifier does not

know the statement x, and thus is not able to compute ain . Our

key idea to solve this issue is to shift the computation of the

linear combination ain from the verifier to the prover. Then, to

force a cheating prover to provide the correct ain , we ask the

prover to additionally show that ain was indeed obtained by

using authenticated values xk. To this end, we employ another

proof system, namely efficient linearly-homomorphic MACs

[18, 19], that are particularly suitable for linear computations

over authenticated data. Specifically, we designed a novel

homomorphic MAC (which is implicitly embedded in our

AD-SNARK construction) that fits the above setting.

This technique, however, does not completely solve the

problem: a further complication arises from the fact that in

order to achieve zero-knowledge, the value ain computed

by the prover must be randomized (by adding a random

multiple of the QAP target polynomial z(X)). Unfortunately,

homomorphic MACs are known to authenticate only determin-

istic computations. We solve this issue using the following

ideas. First, we provide a novel technique to publicly re-

randomize our homomorphic MACs: roughly speaking, by

publicly revealing a MAC of z(X). Second, we force the

prover to use the same random coefficient for z(X) in both

ain and its MAC. Intuitively, this is achieved by asking the

prover to provide the linear combination ain in two distinct

subspaces. A final observation is that by using a MAC we only

get secret-key verification. Although this may not be an issue

in several applications, we also show how to further generalize

these techniques to obtain public verification.

C. Organization

The paper is organized as follows. In Section II, we recall

common definitions and background information on QAPs.

Section III presents our definition of AD-SNARKs, the generic

construction, and a discussion on the efficiency of encoding

signature verification with arithmetic circuits. We describe our

ADSNARK scheme in Section IV together with a theoretical

evaluation and comparison to the generic solution. In Section

V, we present our implementation and discuss the experimental

results. Section VI discusses further related work, and finally

Section VII concludes the paper. Extended proofs, and the

discussion of two extensions of AD-SNARKs – handling

multiple data sources, and achieving (amortized) constant-time

verification – are deferred to the full version of our work [20].

II. BACKGROUND

In this section, we review the notation and some basic defini-

tions that we will use in our work.

Notation. We will denote with λ ∈ N a security parameter. We

say that a function ε is negligible if it vanishes faster than the

inverse of any polynomial. If not explicitly specified otherwise,

negligible functions are negligible with respect to λ. If S is

a set, x ←R S denotes the process of selecting x uniformly

at random in S. If A is a probabilistic algorithm, x←R A(·)
denotes the process of running A on some appropriate input

and assigning its output to x. Moreover, for a positive integer

n, we denote by [n] the set {1, . . . , n}. We denote by F

a finite field and Fn is the field of size n. When n is a

prime number, then elements of Fn are represented as integers

modulo n. Elements of F are typically denoted by greek letters.

F[X] denotes the field of polynomials in one variable X and

coefficients in F, while F
≤d[X] is the subring of polynomials

in F[X] of degree at most d.

274274

a=(4,2,1,0,0,0,0,0)
b=(5,1,3,0,0,0,0,0)

a=(1,0,0,4,3,0,0,0)
b=(3,0,0,0,2,0,0,0)

a=(0,0,0,0,0,1,0,0)
b=(0,0,0,0,0,0,1,0)

s1 s2 a0(r5)=4 b0(r5)=5
a1(r5)=2 b1(r5)=1
a2(r5)=1 b2(r5)=3

c5(r5)=1

s3 s4

s5 s6

s7

a0(r6)=1 b0(r6)=3
a3(r6)=4 b4(r6)=2
a4(r6)=3 c6(r6)=1

G5 G6

G7 a5(r7)=1 b6(r7)=1
c7(r7)=1

ga
te

 G
5

ga
te

 G
6

ga
te

 G
7

s1 s2 s3

+ +
x

s4

7
3s1

-1s2

2
s2

-4s3

(b)(a)

a=(7,3,-1,0,0,…)
b=(2,0,1,-4,0,…)

Figure 3. Part (a): A bilinear gate representing the arithmetic function (7 +
3s1 − 1s2) · (2 + s2 − 4s3) specified by coefficients a and b.
Part (b): A QAP for an arithmetic circuit with 4 input wires, 1 output wire,
3 bilinear gates. The circuit encodes the function f(s1, s2, s3, s4) = (4 +
2s1 + s2) · (5 + s1 + 3s2) · (1 + 4s3 + 3s4) · (3 + 2s4). The non-zero
equations for the QAP polynomials are shown on the right.

Algebraic Tools. Let G(1λ) be an algorithm that, upon input

of the security parameter 1λ, outputs the description of (asym-

metric) bilinear groups bgpp = (p,G1,G2,GT , e,P1,P2)
where G1, G2, and GT are groups of the same prime order

p > 2λ; P1 ∈ G1 and P2 ∈ G2 are the respective generators;

and e : G1 × G2 → GT is an efficiently computable bilinear

map. We call such an algorithm G a bilinear group generator.

Note that G1 and G2 are additive groups, whereas GT is

a multiplicative group. In this work we rely on specific

computational assumptions in such bilinear groups: the q-DHE

[21], the q-BDHE [22], and the q-PKE [23] assumptions.

Arithmetic Circuits and QAPs. An arithmetic circuit C over

a finite field F consists of addition and multiplication gates
and of a set of wires between the gates. The wires carry

values over F. As in previous work [11], here we consider

only arithmetic circuits with bilinear gates: a gate with inputs
#„x = (x1, . . . , xk) is bilinear if its output can be written

as inner product 〈 #„a , (1, x1, . . . , xk)〉 · 〈 #„

b , (1, x1, . . . , xk)〉 for

some #„a ,
#„

b ∈ F
k+1. Note that this definition includes addi-

tion, multiplication, and constant gates (cf. Fig. 3(a) for an

example).

Associated to any arithmetic circuit, we define a satisfaction

problem as follows.

Definition 1 (Arith. Circuit Satisfaction [11]): The circuit

satisfaction problem of a circuit C : F
n × F

h → F
l with

bilinear gates is defined by the relation RC = {(#„x , #„w) ∈
F
n × F

h : C(#„x , #„w) = 0l} and its language is LC = { #„x ∈
F
n : ∃ #„w ∈ F

h, C(#„x , #„w) = 0l}.
The state-of-the-art SNARK schemes that we build on in

this paper directly operate on a different model to represent

computations called quadratic arithmetic programs (QAPs).

Definition 2 (QAP [17]): A quadratic arithmetic program
Q of size m and degree d over F consists of three vectors of

m + 1 polynomials #„a ,
#„

b , #„c ∈ F
≤d−1[X] of degree at most

d−1, and a target polynomial z(X) ∈ F[X] of degree exactly

d.

Associated to any QAP, there is a satisfaction problem

defined as follows.

Definition 3 (QAP Satisfaction): The satisfaction problem

of a QAP Q = (#„a ,
#„

b , #„c , z) of size m and degree d is the

relation RQ of pairs (#„x , #„s) such that:

(1) #„x ∈ F
n, #„s ∈ F

m for some n ≤ m;

(2) xi = si for i ∈ [n], i.e., #„s extends #„x ;

(3) z(X) divides the polynomial p(X) defined as

p(X) =
(
a0(X)+

m∑

i=1

siai(X)
)·(b0(X)+

m∑

i=1

sibi(X)
)

− (
c0(X) +

m∑

i=1

sici(X)
)

The following result implies that one can use any QAP-

based SNARK scheme as an efficient SNARK scheme taking

computations more conveniently represented as arithmetic

circuits.

Lemma 1 (Constructing QAPs [11, 17]): There exist two

polynomial time algorithms QAPInst and QAPwit such that,

for any circuit C : Fn×Fh → F
l with u wires and v (bilinear)

gates, QC = (#„a ,
#„

b , #„c , z) = QAPInst(C) is a QAP of size m
and degree d over F satisfying the following properties:

Efficiency: m = u, and d = v + l + 1.

Completeness: For any (#„x , #„w) ∈ RC , if it holds that #„s =
QAPwit(C, #„x , #„w) then (#„x , #„s) ∈ RQC

.

Proof of Knowledge: For any (#„x , #„s) ∈ RQC
, it holds

(#„x , #„w) ∈ RC where #„w is a prefix of #„s .

Non-Degeneracy: the polynomials a0(X), . . . , an(X) are all

nonzero and distinct.

The very basic intuition for building a QAP according to

Lemma 1 is to encode the input-output correctness for each

bilinear gate in the polynomials #„a ,
#„

b , #„c , z (see Fig. 3(b)

for a simple example). Slightly more in detail, for a gate

g this is done by first selecting an arbitrary value rg ∈ F

(a “root”) and then, for every left wire i going to gate g,

one imposes ai(rg) = c, where c is the coefficient which

multiplies the value of wire i in g’s left input (note that

c = 0 if wire i is not a left input). A similar process is

done for polynomials bi and ci w.r.t. right input and output

wires respectively.2 Once this procedure has been iterated for

every bilinear gate g (selecting distinct roots rg), one will have

essentially obtained three tables of size u·v with entries ai(rj),
bi(rj), and ci(rj), respectively, where i = 0 to u are all the

wires (where the 0 wire represents constants) and j = 1 to v
are all the bilinear gates. The final QAP polynomials #„a ,

#„

b , #„c
are built by extending each row i of the table into a polynomial

ai(X) (resp. bi(X), ci(X)) of degree v − 1 via interpolation

in F. The target polynomial z(X) is the degree-v polynomial

defined over the roots rg of the v bilinear gates: z(X) :=∏v
g=1(X − rg).

3 To see why the satisfiability of the QAP

implies the satisfiability of the circuit, the key observation is

that the third condition of Definition 3, i.e., z(X) | p(X),

2The case of ci is slightly different as coefficients are only 0 or 1.
3More precisely, in construction of Lemma 1 one needs to add one

“artificial” bilinear gate for every output wire, plus an additional constraint
to guarantee non-degeneracy: from which the final degree is d = v + l + 1.

275275

means that 〈(1, #„s), #„a (rg)〉·〈(1, #„s),
#„

b (rg)〉 = 〈(1, #„s), #„c (rg)〉
for all roots rg of the target polynomial z(X). In other words,

given the specific construction of the polynomials, the input-

output correctness of every bilinear gate g of the circuit is

satisfied.

III. SNARKS OVER AUTHENTICATED DATA

In this section, we define the notion of SNARKs [16, 24]

on authenticated data (AD-SNARKs, for short). Let C :
F
n × F

h → F
l be an arithmetic circuit, and let RC =

{(#„x , #„w)} ⊆ F
n×F

h be the corresponding circuit satisfaction

relation, where #„x ∈ F
n is called the statement, and #„w ∈ F

h

is the witness.

In this work, we consider a setting in which (1) the

statement #„x (or part of it) is provided to the prover by a

trusted source S , and (2) the portion of #„x provided by S is

not known to V (see Figure 1 for illustration). Yet, V wants to

be convinced by P that (#„x , #„w) ∈ RC holds for the specific
#„x provided by S , and not for some other #„x ′ of P’s choice

(which can still be in the language LC).

To formalize the idea that V checks that some values

unknown to V have been authenticated by S, we adopt the

concept of labeling used for homomorphic authenticators [19,

25]. Namely, we assume that the source S authenticates a set

of values Xauth = {xi, . . . , x�} against a set of (public) labels

L = {Li, . . . , L�} by using a secret authentication key (e.g., a

signing key). S then sends the authenticated Xauth to P . Later,

P’s goal is to prove to V that (#„x , #„w) ∈ RC for a statement
#„x in which some positions have been correctly authenticated

by S , i.e., xi ∈ Xauth for some i ∈ [n].
For such a proof system, we define the usual properties

of completeness and soundness, and in addition, to model

privacy, we define a zero-knowledge property. Moreover, since

we are interested in efficient and scalable protocols, we define

succinctness to model that the size of the proofs (and implicitly

the verifier’s running time) should be independent of the

witness’ size h = | #„w|. Finally, we consider AD-SNARKs that

can have either public or secret verifiability, the difference

being in whether the adversary knows or not the verification

key for the authentication tags produced by the data source S.

A. Definition of AD-SNARKs

Here we provide the formal definition for zero-knowledge

SNARKs over authenticated data.

Definition 4 (Zero-Knowledge AD-SNARK): A scheme

for Zero-Knowledge Succinct Non-interactive Arguments of
Knowledge over Authenticated Data for arithmetic circuit

satisfiability consists of a tuple of algorithms (Setup,AuthKG,
Auth,AuthVer,Gen,Prove,Ver) satisfying authentication cor-
rectness, completeness, succinctness, adaptive proof of knowl-
edge, and zero-knowledge (as defined below):

Setup(1λ): given the security parameter λ, output some com-

mon public parameters pp. The parameters also define

the finite field F over which the circuits will be defined.

AuthKG(pp): given the public parameters pp, the key gener-

ation algorithm outputs a secret authentication key sk, a

verification key vk, and public authentication parameters

pap.

Auth(sk, L, x): the authentication algorithm takes as input the

secret authentication key sk, a label L ∈ L, and a value

x ∈ F, and it outputs an authentication tag σ.

AuthVer(vk, σ, L, x): the authentication verification algorithm

takes as input a verification key vk, a tag σ, a label L ∈ L,

and a value x ∈ F. It outputs ⊥ (reject) or � (accept).

Gen(pap, C): given the public authentication parameters pap
and an arithmetic circuit C : Fn×Fh → F

l, the algorithm

outputs an evaluation key EKC and a verification key

VKC . Gen can hence be seen as a circuit encoding

algorithm.

Prove(EKC ,
#„x , #„w, #„σ): on input an evaluation key EKC , a

statement #„x ∈ F
n, a witness #„w ∈ F

h, and authentication

tags for the statement #„σ = (σ1, . . . , σn), the proof algo-

rithm outputs a proof of membership π for (#„x , #„w) ∈ RC .

We stress that #„σ does not need to contain authentication

tags for all positions: in case a value at position i is not

authenticated, the empty tag σi = � is used instead.

Ver(vk,VKC ,
#„

L , {xi}Li=�, π): given the verification key vk,

a circuit verification key VKC , labels
#„

L = (L1, . . . , Ln)
for the statement, unauthenticated statement components

xi, and a proof π, the verification algorithm outputs ⊥
(reject) or � (accept).

AUTHENTICATION CORRECTNESS. Intuitively, an

AD-SNARK scheme has authentication correctness if

any tag σ generated by Auth(sk, L, x) authenticates x with

respect to L. More formally, we say that an AD-SNARK

scheme satisfies authentication correctness if for any value

x ∈ F, all keys (sk, vk, pap) in the range of AuthKG(1λ),
any label L ∈ L, and any authentication tag σ generated by

Auth(sk, L, x), we have that AuthVer(vk, σ, L, x) = �.

COMPLETENESS. This property aims at capturing that if the

Prove algorithm produces π when run on (#„x , #„w, #„σ) for some

(#„x , #„w) ∈ RC then verification Ver(vk,VKC , L, {xi}Li=�, π)
will accept the proof whenever #„σ authenticates #„x with re-

spect to L. More formally, let us sample (sk, vk, pap) ←R
AuthKG(pp), fix a circuit C : F

n × F
h → F

l and take

keys (EKC ,VKC) ←R Gen(pap, C). Let (#„x , #„w) ∈ RC

be given; let
#„

L = (L1, . . . , Ln) ∈ (L ∪ {�})n be a

vector of labels, and let #„σ = (σ1, . . . , σn) be tags for

the statement such that {AuthVer(vk, σi, Li, xi) = �}Li �=�.

Then if π ←R Prove(EKC ,
#„x , #„w, #„σ), we require that

Ver(vk,VKC ,
#„

L , {xi}Li=�, π) = � with probability 1.

SUCCINCTNESS. Given a circuit C : Fn×Fh → F
l, the length

of the proof π is bounded by |π| = poly(λ)polylog(n, h).

ADAPTIVE PROOF OF KNOWLEDGE. Intuitively, the adaptive

proof of knowledge property captures that no malicious party

can produce proofs that verify correctly for a false state-

ment. We formalize our definition via an experiment, called

ExpAD-PoK
A,E , which is described in Figure 4. The experiment is

parametrized by both an adversary A and an extractor E, and

it works for a class C of circuits. BothA and E run on the same

276276

ExpAD-PoK
A,E (1λ, C, z):

pp ←R Setup(1λ)
(sk, vk, pap)←RAuthKG(pp)
GameOutput ← 0
S ← ∅, T ← ∅
AGen,Auth,Ver(pp, pap, z)
Return GameOutput

procedure Gen(C)

(EKC ,VKC)←RGen(pap, C)
S ← S ∪ {(C,EKC ,VKC)}
Return (EKC ,VKC)

procedure Auth(L, x)
if (L, ·, ·) ∈ T Return ⊥
σ ←R Auth(sk, L, x)
T ← T ∪ {(L, x, σ)}
Return σ

procedure Ver(C,
#„
L , {xi}Li=�, π)

if (C, ·, ·) /∈ S Return ⊥
fetch VKC with (C, ·,VKC) ∈ S

v ← Ver(vk,VKC ,
#„
L , {xi}Li=�, π)

if v = � then

if ∃ Li ∈ #„
L : (Li, ·, ·) /∈ T then

GameOutput ← 1 // Type 1
else
fetch #„x = (x1, . . . , xn) with
{(L1, x1, ·), . . . , (Ln, xn, ·)} ⊆ T
for all Li �= �

#„w ← E(pp, pap, z, S, auxE)
if (#„x , #„w) /∈ RC then
GameOutput ← 1 // Type 2

Return v

Figure 4. Experiment for the adaptive proof of knowledge definition.

input and random tape, including some auxiliary input z. As

the only difference, E takes an additional input auxE which

includes: the secret authentication keys sk, vk, and all the

random coins used to run the Auth oracle. E is an algorithm

that, for every verification query of A that is accepted by the

Ver algorithm, outputs a witness #„w. One should think of such

E as A itself, and the extraction capability intuitively means

that if A is able to produce an accepting proof, then A must

know the corresponding witness, and thus such witness can

be extracted from A’s memory. Note also that the additional

input auxE taken by E is generated independently of the

circuits in C, and thus it cannot help the extractor to generate

witnesses more than A can do. The three procedures Gen,

Auth, and Ver essentially give to the adversary oracle access

to the algorithms Gen, Auth, and Ver, respectively, with some

additional bookkeeping information, and under the restriction

that Gen is queried on a circuit C ∈ C. It is worth noting that

Ver returns the output of Ver, and additionally, checks whether

a proof accepted by Ver (i.e., v = �) proves a false statement

according to RC . In this case, Ver sets GameOutput← 1.

Adaptive proof of knowledge is formally defined as follows.

Let C be a class of polynomially many circuits. We say

that a scheme satisfies adaptive proof of knowledge if for

any sufficiently large λ ∈ N, for any C and for every PPT

adversary A, there exists a PPT extractor E such that for

every polynomial-size auxiliary input z ∈ {0, 1}poly(λ) the

probability Pr[ExpAD-PoK
A,E (C, 1λ, z) = 1] is negligible in λ.

Our definition above is inspired by the security definition

for homomorphic authenticators [18, 19, 25]. The catch here

is that there are essentially two ways to create a “cheating

proof”, and thus to break the adaptive proof of knowledge

of an AD-SNARK. The first way, Type 1, is to produce an

accepting proof without having ever queried an authentication

tag for a label Li. This basically captures that, in order to create

a valid proof, one needs to have all authenticated parts of the

statement, each with a valid authentication tag. The second

way to break the security, Type 2, is the more “classical” one,

i.e., generating a proof that accepts for a tuple (#„x , #„w) which

ExpReal
D,C(1λ) :

pp ←R Setup(1λ)
(sk, vk, pap) ←R D(1λ, pp)
(EKC ,VKC) ←R Gen(pap, C)

(#„x ,
#„
L , #„σ , #„w) ← D(EKC ,VKC)

π ←R Prove(EKC , #„x , #„w, #„σ)
if (#„x , #„w) /∈ RC ∨
∃i ∈ [n],

AuthVer(vk, σi, Li, xi) =⊥
then Return 0
else Return D(π)

ExpSim
D,C(1λ) :

pp ←R Setup(1λ)
(sk, vk, pap) ←R D(1λ, pp)
(EKC ,VKC , td)

←R Sim1(sk, vk, pap, pp, C)
(#„x ,

#„
L , #„σ , #„w) ← D(EKC ,VKC)

π ←R Sim2(td, L, {xi}Li=�)
if (#„x , #„w) /∈ RC ∨

∃i ∈ [n],
AuthVer(vk, σi, Li, xi) =⊥

then Return 0
else Return D(π)

Figure 5. Experiments for the zero knowledge definition.

is not the correct one, i.e., (#„x , #„w) �∈ RC .

Second, we note that the above game definition captures

the setting in which the verification key vk is kept secret.

The definition for the publicly verifiable setting is obtained

by providing vk to the adversary.

ZERO-KNOWLEDGE. Loosely speaking, a zero-knowledge
AD-SNARK is an AD-SNARK in which the Prove algorithm

generates proofs π that reveal no information: neither about

the witness, nor about the authenticated statements. In other

words, the proofs do not reveal anything beyond what is known

by the verifiers when checking a proof.

Formally, let C ∈ C be an arithmetic circuit. Then an

AD-SNARK is zero-knowledge if there exists a simulator

Sim = (Sim1, Sim2), such that for all PPT distinguishers

D, the following difference is negligible |Pr[ExpReal
D,C(1

λ) =

1] − Pr[ExpSim
D,C(1

λ) = 1]|, where the experiments Real and

Sim are defined as in Figure 5. We note that the distinguisher

D in these experiments has a shared state that is persistent

over all invocations of D.

We stress that the above zero-knowledge notion aims at

capturing, in the strongest possible sense, that the verifier

cannot learn any useful information on the inputs, even if it
knows (or chooses) the secret authentication key. Indeed, as

one can see, our definition allows the distinguisher to choose

the authentication key pair as well as the authentication tags.

We also remark that the notion of AD-SNARKs immedi-

ately implies a corresponding notion of verifiable computation
on authenticated data (similar to [19]). In [24], it is dis-

cussed how to construct a verifiable computation scheme from

SNARGs for NP with adaptive soundness. This is simply

based on the fact that the correctness of a computation can be

described with an NP statement. It is not hard to see that, in

a very similar way, one can construct verifiable computation

on authenticated data from AD-SNARKs.

B. A Generic Construction

We show how to construct a zero-knowledge AD-SNARK

scheme from SNARKs and digital signatures. A similar con-

struction was informally sketched in [24][Appendix 10.1.2 of

the full version]. Here we make it more formal with the main

purpose of offering a comparison with our direct AD-SNARK

construction proposed in the next section.

The high-level idea of the generic construction is to em-

bed digital signatures into SNARKs. Let therefore Π′ =

277277

(Gen′,Prove′,Ver′) be a SNARK scheme, and Σ = (Σ.KG,
Σ.Sign,Σ.Ver) be a signature scheme.

We will use the signature scheme to sign pairs consisting

of a label L and an actual message m. Although labels

and messages can be arbitrary binary strings, for ease of

description we assume that labels can take a special value

�. Also, we modify the signature scheme in such a way that

Σ.Sign(sk, �|m) = � and Σ.Ver(vk, �|m′, �) = 1. Basically,

we let everyone (trivially) generate a valid signature on a

message with label �.

We define an AD-SNARK Π = (Setup,AuthKG,Auth,
AuthVer,Prove,Ver) as follows.

Setup(1λ): Output pp = 1λ.

AuthKG(pp): run (sk′, vk′) ←R Σ.KG(1λ) to generate the

key pair of the signature scheme and return sk = sk′ and

vk = pap = vk′.
Auth(sk, L, x): compute a signature on the concatenation of

the label L and the value x, i.e., σ′ ← Σ.Sign(sk′, L|x).
Finally, output σ = (σ′, L).

AuthVer(vk, σ, L, x): let σ = (σ′, L′). Output the result of the

signature verification algorithm Ver′(vk′, L|x, σ′).
Gen(pap, C): for the given circuit C : F

n × F
h → F

l we

define C ′ as the circuit that outputs 0l on all the pairs

(#„x , #„w) such that C(#„x , #„w) = 0l and each xi is correctly

signed with respect to a set of labels and a public key.

More formally, define C ′ : F
n′ × F

h′ → F
l as the

circuit that takes as inputs pairs (#„x ′, #„w ′) with #„x ′ =
(y1, L1, . . . , yn, Ln, vk) and #„w ′ = (#„w, z1, σ1, . . . , zn, σn)
such that, by setting xi = yi if Li = � and xi = zi other-

wise, for all i ∈ [n], it holds: (i) ((x1, . . . , xn),
#„w) ∈ RC ,

and (ii) Σ.Ver(vk, Li|xi, σi) = 1.

Finally, run Gen′(1λ, C ′) to generate (EK′
C′ ,VK′

C′) and

output EKC = EK′
C′ , VKC = VK′

C′ .

Prove(EKC ,
#„x , #„w, #„σ): Let EKC be an evaluation key as

defined above, (#„x , #„w) ∈ F
n × F

h be a statement-

witness pair, and #„σ = (σ1, . . . , σn) be a tuple of

authentication tags for #„x = (x1, . . . , xn). If all the

tags verify correctly, define #„x ′ = (y1, L1, . . . , yn, Ln,
vk), #„w ′ = (#„w, z1, σ

′
1, . . . , zn, σ

′
n) so that for all i ∈ [n]:

zi = xi, yi = xi if σi = � and yi = 0 otherwise. Next,

run π ←R Prove(EK′
C′ , #„x ′, #„w ′) to generate a proof for

(#„x ′, #„w ′) ∈ RC′ and return π.

Ver(vk,VKC ,
#„

L , {xi}Li=�, π): given the verification key vk,

a circuit verification key VKC , statement labels
#„

L =
(L1, . . . , Ln), unauthenticated statement components xi,

and a proof π, the verification algorithm defines #„x ′ =
(y1, L1, . . . , yn, Ln, vk) with yi = xi if Li = � and

yi = 0 otherwise. Finally, it returns the output of

Ver′(VK′
C′ , #„x ′, π).

Note that the input size of C ′ is a circuit larger than C as

follows: n′ = n+n · |Li|+ |vk| and h′ = h+n+n · |σ|, where

|vk|, |Li|, and |σ| represent the size, in terms of field elements,

of the public key, a label, and a signature, respectively. In terms

of gates and wires, C ′ is at least as large as C plus the circuit

size of Σ.Ver for every signature verification, that is up to n

of such circuits.

Theorem 1: If Π′ is a zero-knowledge SNARK and Σ is a

secure digital signature, then the scheme described above is a

zero-knowledge AD-SNARK.

A proof sketch appears in the full version [20].

C. Signature Verification Overhead

We now discuss why the circuit C ′ resulting from explicitly

encoding the verification algorithm of a digital signature

scheme, as described in the generic construction, is bound to

render the construction very inefficient. We consider various

examples of signatures in both the random oracle and the

standard model, and based on different algebraic problems.

If one considers signature schemes in the random oracle

model (which include virtually all the schemes used in prac-

tice), any such scheme uses a collision-resistant hash function

(e.g., SHA-1) which is thus part of the verification algorithm

computation. Unfortunately, as shown also in [9], a QAP (just)

for a SHA-1 computation is terribly inefficient due to the high

number of multiplication gates (roughly 24 000, for inputs

of 416 bits). On the other hand, if we focus on standard

model signature schemes, it does not get any better: These

schemes involve specific algebraic computations, and encoding

these computations into an arithmetic circuit over a field Fp

is costly. For instance, signatures based on pairings [26, 27]

require pairing computations that amount to, roughly, 10 000

multiplications. RSA-based standard-model signatures (e.g.,

Cramer-Shoup [28]) require exponentiations over rings of large

order (e.g., 3 000 bits), and simulating such computations over

Fp ends up with thousands of multiplication gates as well.

Lattice-based signatures (in the standard model), e.g., [29], can

be cheaper in terms of the number of multiplications. However,

such multiplications typically work over Zq for a q much

smaller than our p. An option would be to implement mod-

q-reductions in Fp circuits, which is costly. Another option

would be to let these schemes work over Zp, but then one

has to work with higher dimensional lattices (or polynomial

rings) for security reasons, again incurring a large number of

multiplications.

This state of affairs suggests that a QAP encoding a signa-

ture verification circuit is likely to require at least (and this

is a very optimistic estimate) one thousand multiplications for

every signature that must be checked.

IV. OUR CONSTRUCTION OF ZERO-

KNOWLEDGE AD-SNARKS

In this section we describe our construction of an AD-SNARK

scheme for the satisfiability of arbitrary arithmetic circuits. The

scheme can be used with either secret or public verifiability.

The main difference between the two verification modes is

that the size of the proof in the secretly verifiable case

is a fixed constant, whereas in the publicly verifiable case,

the proof grows linearly with the number of authenticated

statement values. Although we lose constant-size proofs for

public verifiability, we stress that: (i) proofs are linear only

in the number N ≤ n of authenticated values and their size

278278

does not depend on the complexity of the circuit, and (ii) the

verification algorithm runs linearly in N in any case (even

in the generic construction). Furthermore, when considering

concrete implementations and applications, although the proof

size of ADSNARK with public verifiability is not constant, it

still scales very well, e.g., the size of an ADSNARK proof

for a monthly electricity bill is under 170 KB vs. a constant-

size proof of 0.3 KB when using the generic scheme with

[11]. In contrast, when considering the prover’s performance,

ADSNARK remains in the realm of practicality – 18 seconds

for a monthly bill – whereas for the generic scheme the timing

goes up to 10 minutes.

For verifiers that know the secret authentication key (e.g.,

as in a smart metering/insurance application where companies

install a symmetric key in the devices), ADSNARK proofs

have constant size, and – crucially – the knowledge of such a

secret key by the verifier does not compromise privacy.

Our scheme is proven secure under two computational

assumptions in bilinear groups, the q-Diffie-Hellman Exponent

assumption (q-DHE) [21] and the q-Power Knowledge of

Exponent assumption (q-PKE) [23]. We note that the latter one

is a non-falsifiable assumption. As discussed in Section VI,

this kind of assumption is likely to be inherent for SNARKs

for NP . For privacy, we show that the scheme offers sta-

tistical zero-knowledge. We stress that this property holds

even against adversaries who know (and even generate) the

authentication keys.

A detailed description of our scheme follows.

Setup(1λ): On input the security parameter 1λ, run pp = (p,
G1,G2,GT , e,P1,P2) ←R G(1λ) to generate a bilinear

group description, where G1, G2, and GT are groups of the

same prime order p > 2λ, P1 ∈ G1 and P2 ∈ G2 are the

respective generators, and e : G1×G2 → GT is an efficiently

computable bilinear map. We let the finite field F be the set

of integers modulo p.

AuthKG(pp): Create a key pair (sk′, vk′)←RΣ.KG(1λ) for

a regular signature scheme. Run (S, prfpp) ←R F.KG(1λ)
to obtain the seed S and the public parameters prfpp of

a pseudorandom function FS : {0, 1}∗ → F. Choose a

random value κ ←R F and compute K1 = κP1 ∈ G1,

K2 = κP2 ∈ G2. Return the secret key sk = (sk′, S, κ),
the public verification key vk = (vk′,K2), and the public

authentication parameters pap = (pp, prfpp,K1).

Auth(sk, L, x): To authenticate a value x ∈ F with label L,

generate φ← FS(L) using the PRF, compute μ = φ+κ·x ∈ F

and Φ = φP2 ∈ G2. Then compute a signature σ′ ←R
Σ.Sign(sk′,Φ|L), and output the tag σ = (μ,Φ, σ′).

AuthVer(vk, σ, L, x): Let vk = (vk′,K2) be the verification

key. To verify that σ = (μ,Φ, σ′) is a valid authentication

tag for a value x ∈ F with respect to label L, output � if

μP2 = Φ + xK2 in G2, and if Σ.Ver(vk′,Φ|L, σ′) = 1.

Output ⊥ otherwise. In the secret key setting (i.e., if vk is

replaced by sk), the tag σ can be verified by checking whether

μ = FS(L) + κ·x.

Gen(pap, C): Let C : Fn × F
h → F

l be an arithmetic circuit.

To generate the keys, proceed as follows.

1) Compute QC = (#„a ,
#„

b , #„c , z) = QAPInst(C) to build a

QAP of size m and degree d for C. Recall that #„a ,
#„

b , #„c
are vectors of m+ 1 polynomials in F

≤d−1[X], while the

target polynomial z ∈ F[X] has degree d. Extend #„a ,
#„

b , #„c
with 3 more polynomials each, by setting:

am+1 = z am+2 = 0 am+3 = 0

bm+1 = 0 bm+2 = z bm+3 = 0

cm+1 = 0 cm+2 = 0 cm+3 = z

Let Ix , Imid be the following partitions of {1, . . . ,m+3}:
Ix = {1, . . . , n}, Imid = {n + 1, . . . ,m + 3}. In other

words, we partition all the circuit wires into the n statement

wires Ix , and the remaining “internal” wires Imid (which

include the h witness wires).

2) Pick ρa, ρb, τ, αa, αb, αc, β, γ ←R F uniformly at ran-

dom, set ρc = ρa · ρb, and compute the following values:

Z = z(τ)ρc P2 Ka = z(τ) ρa K1

∀k ∈ {0, ...,m+ 3} :
Ak = ak(τ)ρa P1 A′

k = αa ak(τ)ρa P1

Bk = bk(τ)ρb P2 B′
k = αb bk(τ)ρb P1

Ck = ck(τ)ρc P1 C ′
k = αc ck(τ)ρc P1

Ek = β(ak(τ)ρa + bk(τ)ρb + ck(τ)ρc)P1

3) Output the evaluation key EKC and the verification key
VKC defined as follows:

EKC =
(
QC ,

#„

A,
#„

A′,
#„

B,
#„

B′,
#„

C,
#„

C ′,
#„

E,

{τ i P1}i∈{0,...,d}, Ka

)

VKC =
(P1, P2, αa P2, αb P1, αc P2, Z,

γ P2, β γ P1, β γ P2, {Ak}nk=0

)

Prove(EKC ,
#„x , #„w, #„σ): Let EKC be an evaluation key defined

as above, (#„x , #„w) ∈ F
n×F

h be a statement-witness pair, and

σ = (σ1, . . . , σn) be a tuple of authentication tags for x such

that, for any i ∈ [n], either σi = (μi,Φi, σ
′
i) or σi = �. We

define Iσ = {i ∈ Ix : σi �= �} ⊆ Ix as the set of indices

for which there is an authenticated statement value, and let

I� = Ix \ Iσ be its complement. To produce a proof for the

satisfiability of C(#„x , #„w) = 0l proceed as follows.

1) Compute #„s = QAPwit(C, #„x , #„w) ∈ F
m (and recall that

si = xi for all i ∈ [n]).

2) Randomly sample δσa , δ
mid
a , δb, δc ←R F, and set δa =

δσa + δmid
a . Also, define the vector #„u = (1, #„s , δa, δb, δc) ∈

F
m+4.

3) Solve the QAP QC by computing the coefficients

(h0, . . . , hd) ∈ F
d+1 of the polynomial h ∈ F[X] such

that h(X)z(X) = a(X)b(X)− c(X), where a, b, c ∈ F[X]

279279

are

a(X) = a0(X) +
∑

k∈[m]

sk · ak(X) + δa · z(x)

b(X) = b0(X) +
∑

k∈[m]

sk · bk(X) + δb · z(x)

c(X) = c0(X) +
∑

k∈[m]

sk · ck(X) + δc · z(x)

Then compute H = h(τ)P1 using the values τ i P1

contained in the evaluation key EKC . Note that we have

a(X) = 〈 #„u , #„a 〉, b(X) = 〈 #„u ,
#„

b 〉 and c(X) = 〈 #„u , #„c 〉.
4) Compute the following values:

πb = 〈 #„u ,
#„

B〉 πc = 〈 #„u ,
#„

C〉
π′
b = 〈 #„u ,

„

B′〉 π′
c = 〈 #„u ,

„

C ′〉
πσ = 〈 #„u ,

#„

A〉Iσ + δσa Am+1

π′
σ = 〈 #„u ,

„

A′〉Iσ + δσa A′
m+1

πmid = 〈 #„u ,
#„

A〉Imid
− δσa Am+1

π′
mid = 〈 #„u ,

„

A′〉Imid
− δσa A′

m+1

πE = 〈 #„u ,
#„

E〉
5) Authenticate the value πσ by computing

πμ = 〈 #„μ,
#„

A〉Iσ + δσa Ka

6) Construct and return proof π as the tuple

(πμ, πσ, π
′
σ, πmid , π

′
mid , πb, π

′
b, πc, π

′
c, πE , H). To make

the proof publicly verifiable, include also {Φk, σ
′
k}k∈Iσ .

Ver(vk,VKC , L, {xi}Li=�, π): Let VKC be the verification

key for the circuit C,
#„

L = (L1, . . . , Ln) be a vector of labels,

and let π be a proof as defined above. In a similar way as

in Prove, we define Iσ = {i ∈ Ix : Li �= �} ⊆ Ix and

I� = Ix \ Iσ . The verification algorithm computes A� =
A0 + 〈 #„x ,

#„

A〉I� and proceeds as follows:

(A.1secret) If verification is done using the secret key sk =
(S, κ), check the authenticity of πσ against the labels

#„

L

by checking whether the following equation holds in G1:4

πμ = 〈FS(
#„

L),
#„

A〉Iσ + κ πσ

(A.1public) If the verification is performed using the public

verification key vk = (vk′,K2): first, check the validity

of all Φk by verifying that Σ.Ver(vk′, Φk |Lk, σ′
k) = 1

for all k ∈ Iσ; second, check the authenticity of πσ by

verifying that the following equation is satisfied over GT :

e(πμ ,P2) =
∏

k∈Iσ

e(Ak,Φk) · e(πσ , K2)

(A.2) Check the validity of knowledge commitments for the

authenticated values:

e(π′
σ , P2) = e(πσ , αaP2)

4The expansion of 〈FS(
#„
L),

#„
A〉I is defined as the component-wise appli-

cation of F, i.e.,
∑

i∈I FS(Li) ·Ai.

(P.1) Check the satisfiability of the QAP:

e(A� + πσ + πmid , πb) = e(H , Z) · e(πc , P2)

(P.2) Check the validity of knowledge commitments:

e(π′
mid , P2) = e(πmid , αaP2) ∧

e(π′
b ,P2) = e(αbP1, πb) ∧

e(π′
c , P2) = e(πc , αcP2)

(P.3) Check that all the QAP linear combinations use the

same coefficients:

e(πE , γP2) =

e(A� + πσ + πmid + πc , βγP2) · e(βγP1, πb)

If all checks above are satisfied, return �; otherwise ⊥.

ReRand(EKC , L, {xi}Li=�, π): The scheme also allows for

perfect re-randomization of an existing proof, say π given

by tuple (πμ, πσ, π
′
σ, πmid , π

′
mid , πb, π

′
b, πc, π

′
c, πE , H). If π

verifies for a set of labels L and a set of non-authenticated

values {xi}Li=�, then π can be re-randomized as follows.

First, choose random values δ̃σa , δ̃
mid
a , δ̃b, δ̃c ←R F, and set

δ̃a = δ̃σa + δ̃mid
a . Second, compute

π̃b = πb + δ̃b Bm+2 π̃′
b = π′

b + δ̃b B
′
m+2

π̃c = πc + δ̃c Cm+3 π̃′
c = πc + δ̃c C

′
m+3

π̃σ = πσ + δ̃σa Am+1 π̃′
σ = π′

σ + δ̃σa A′
m+1

π̃mid = πmid + δ̃mid
a Am+1

π̃′
mid = π′

mid + δ̃mid
a A′

m+1

π̃E = πE + δ̃a Em+1 + δ̃b Em+2 + δ̃c Em+3

π̃μ = πμ + δ̃σa Ka

H̃ = H + δ̃aπb + δ̃bπa + δ̃aδ̃bz(τ)P1 − δ̃c P1

where z(τ)P1 can be included in EKC . Finally, output the

re-randomised proof π̃ as

(π̃μ, π̃σ, π̃
′
σ, π̃mid , π̃

′
mid , π̃b, π̃

′
b, π̃c, π̃

′
c, π̃E , H̃).

It is not hard to check that π̃ is identically distributed as a

fresh proof π generated by Prove.

The following theorem shows that the scheme ADSNARK
described above is a zero-knowledge AD-SNARK.

Theorem 2: If F is a pseudorandom function, and the q-PKE

[23] and the q-DHE [21] assumptions hold, then ADSNARK
is a secretly-verifiable zero-knowledge AD-SNARK. Fur-

thermore, if additionally Σ is a secure signature scheme,

then ADSNARK is a publicly-verifiable zero-knwoledge

AD-SNARK.

Security Intuition. A proof of the theorem appears in the full

version [20]. Here we provide only an intuition. The complete-

ness of the scheme follows from the properties of the QAP

and from the construction of the authentication mechanism. As

an intuition for seeing why the scheme has adaptive proof of

knowledge, note that the adversary can fool the verification

equation in three ways: (i) a false proof involving a label

that was never queried during the game; (ii) a false proof

280280

involving labels L1, . . . , Ln that were all queried during the

experiment for values x1, . . . , xn, but such that the element

πσ does not encode all x1, . . . , xn; (iii) a false proof in which

all labels L1, . . . , Ln were queried and the element πσ encodes

exactly the same x1, . . . , xn authenticated with the respective

labels during the security game. The hardness of breaking

the security in case (i) follows by the pseudorandomness of

the PRF: equation (A.1) will indeed use a value FS(Lk) that

was never seen by the adversary and that is pseudorandomly

distributed in F; roughly speaking, this means that (A.1) can be

satisfied only with negligible probability 1/p ≈ 2−λ. Breaking

the security in case (ii) reduces to breaking the security of the

linearly-homomorphic MAC, i.e., the adversary should be able

to come up with a πμ and an incorrect πσ that satisfy equation

(A.1). Producing such incorrect values intuitively requires to

know the secret key κ: we formally prove this by showing that

any adversary breaking the security in this case can be reduced

to an adversary breaking the q-DHE assumption [21] in the

underlying bilinear groups. Breaking security in the last case

(iii) essentially means that the adversary is providing a false

proof using the same values that were correctly authenticated.

For this case the intuition is that the adversary must break the

PGHR SNARK; we formally prove this argument by relating

the security of the two schemes accordingly.

A very similar proof applies to the publicly verifiable setting

where the main difference is that the hardness of case (i) stems

from the hardness of breaking the signature scheme. Note that

in the publicly verifiable case, our AD-SNARK satisfies a

relaxed notion of succinctness in which the proof does not

depend on the complexity of the computation but may depend

linearly on the number of authenticated inputs.

Finally, the intuition behind the zero-knowledge property

of ADSNARK is that the proof elements πσ, πmid , πb, πc

are statistically randomly distributed, while the remaining

elements are uniquely determined by the verification equations

once the above elements are fixed.

Performance and Comparison. Here we pause to discuss

the performance of our scheme ADSNARK in comparison

with the PGHR SNARK [9]. More precisely, we consider its

optimization proposed by Ben-Sasson et al. [11].

First, we note that the Gen algorithm is virtually the same

in both schemes except that in ADSNARK we have one

more exponentiation5 in G1 to generate Ka = z(τ) ρa K1.

Also, from a bandwidth point of view, the evaluation key of

EKC of ADSNARK contains only one more G1 element, Ka,

compared to the evaluation key of PGHR. The verification key

instead is the same in both schemes.

Second, let us focus on the differences in the Prove algo-

rithm. ADSNARK’s Prove has to compute three more G1 ele-

ments: πσ , π′
σ, and πμ. Generating these elements amounts to

performing three multi-exponentiations that involve N = |Iσ|
terms each. When looking at the proof size, ADSNARK’s

5We use the term “exponentiation” only for ‘historical’ reasons, as G1 is
actually an additive group.

proof contains such three additional elements in the group G1,

plus the signatures {σk}k∈Iσ in the publicly verifiable setting.

Third, we analyze the differences between ADSNARK and

PGHR in the Ver algorithm. The equations (P.1), (P.2), and

(P.3) are identical in both schemes and thus require the

same computational effort. In PGHR one computes Ax =
A0 +

∑n
k=1 xkAk ∈ G1, whereas in ADSNARK we compute

a similar value A� = A0+
∑

k∈I�
xkAk ∈ G1 which involves

fewer terms: precisely |I�| = n − N . Then, ADSNARK
has to perform some additional computation for verifying

equations (A.1) and (A.2). (A.2) costs only two pairings – a

constant overhead. The first equation instead requires different

computations according to whether we are in the secretly

verifiable case ((A.1)secret) or in the publicly verifiable case

((A.1)public). (A.1)secret requires one multi-exponentiation

with N = |Iσ| terms (plus the cost of running the PRF which

is unnoticeable compared to the multi-exponentiation). Hence,

considering the cost of computing Ax in PGHR and the total

cost of computing A� and (A.1)secret in ADSNARK, these

are essentially the same. In other words, ADSNARK’s secretly

verifiable case is slightly slower than PGHR for the cost of

computing two pairings in (A.2).

In the publicly verifiable case, equation (A.1)public requires

to check a total of N signatures, {σk}k∈Iσ , and then to com-

pute e(πμ,P2)e(πσ,−K2) and
∏

k∈Iσ
e(Ak,Φk). In general,

note that the verification of such N signatures can be done

by using batching techniques, and the “multi pairings” can

also be computed efficiently. In particular, as we show in our

instantiation, this cost is close to the cost of computing Ax in

PGHR. In other words, ADSNARK’s publicly verifiable case

is slightly slower than PGHR for the cost of computing the

pairings in (A.1) and (A.2) and for checking the signatures.

In Section V, we give concrete comparisons resulting from

our experiments, which are consistent with the analysis above.

Indeed, we show based on concrete timings that ADSNARK
performs almost as PGHR used without authenticated data.

These results conclude that our technique added an important

property to the SNARK at almost no cost.

However, for the sake of fairness, we should also consider

a comparison of the two protocols when they are used to pro-

vide equivalent guarantees, i.e., when proving statements on

authenticated data. To this end, we now compare ADSNARK
against the best possible instantiation of the generic construc-

tion of Section III-B, which we take to be PGHR working with

the “extended” circuit C ′. We call this scheme AD-PGHR. In

our analysis, we assume that the verification of every signature

requires an arithmetic circuit with c multiplication gates, and

also assume (very optimistically) that this is the only additional

cost for the design of C ′. This means that: if C yields a QAP
of size m and degree d, then C ′ yields a QAP of, at least,

size m′ = m+ cN and degree d′ = d+ cN .

In AD-PGHR, the performance of Ver remains the same

as the one of Ver in PGHR discussed above. On the other

hand, the Prove algorithm of AD-PGHR heavily depends on

the QAP size m′ and degree d′. Precisely, Prove performs

281281

multi-exponentiations with m′ and d′ terms, and a polynomial

division operation whose cost is O(d′ log2 d′).
In conclusion, if we fix a circuit C and a number N of

authenticated values, and we compare ADSNARK for circuit

C against AD-PGHR for the same C (i.e., PGHR with the

extended circuit C ′), then we obtain:
For secret verification, both schemes perform almost the

same, the only difference being that we need to perform

two more pairings; for public verification, ADSNARK has

an additional cost of one multi-pairing computation with N
terms plus the signature verification. For proof generation,

AD-PGHR has to perform additional operations that involve a

factor at least linear in c · N . We recall from the discussion

in Section III-C that such c is likely to be larger than 1000.

Therefore, one can see that while our solution charges a

little more to the verifier (and only in the public verification

case), the costs of our scheme on the prover side can be

much cheaper, at least by a factor c · N . We confirm the

above asymptotic comparison in Section V by showing the

experimental results obtained by running our implementation.

V. EVALUATION

We now describe our implementation of the ADSNARK
scheme proposed in Section IV and then present the ex-

perimental results we obtained to support the efficiency and

practical applicability claims for our construction.

A. Implementation
We have implemented our ADSNARK scheme as an exten-

sion to the libsnark library6 [10, 11]. Our scheme extends the

PGHR SNARK implementation offered by this library and

supports the same class of statements expressed in the NP-

complete language R1CS (rank-1 constraint systems), which

is similar to arithmetic circuit satisfiability. The resulting

implementation is totally generic, following the libsnark code

writing policies, and can be instantiated with arbitrary digital

signatures and PRF constructions (in addition to the various

parameterization options already offered by the libsnark li-

brary). The source code is available upon request.
The modifications to the original PGHR SNARK implemen-

tation required by our extensions were relatively small.7 In

the global parameter generation algorithm, the modifications

were limited to one additional exponentiation. In the sym-

metric verification algorithm, we replaced the computations

performed on the (known) inputs with (essentially equivalent)

computations on the corresponding authentication elements.8

6libsnark is available from https://github.com/scipr-lab/libsnark. Details on
the publication of our libsnark extension can be found in the full version.

7This would be expected from the theoretical description of our scheme, but
praise should also go to the developers of the libsnark library, who produced
a nice, modular and well documented implementation on which it was easy
to build upon.

8We deviate slightly from the original implementation in the way we
store these input authentication elements. We use a simple (dense) vector
representation as opposed to the more elaborate (sparse) map representation
in the original. This originated a slight improvement in verification times in
the experiments we conducted, but this is simply due to the fact that we did
not explore more complex input handling scenarios, where our representation
of inputs data might prove less adequate.

In the prover algorithm, the extra code comprises the three

multi-exponentiations required to compute the extra authenti-

cation elements. Finally, our extensions are most visible in the

public verification algorithm where, in addition to the digital

signature verification operations, the number of pairings to

be computed also increases linearly with the number of au-

thenticated inputs. Our implementation strategy was to employ

the optimizations available in the libsnark codebase whenever

possible, taking advantage of the existing multi- and batch-

exponentiation algorithms. The additional pairing computa-

tions required in public verification are performed two-by-two,

exploiting the available double Miller loop optimization.

For the extra cryptographic components required by our

construction, i.e., the generic signature scheme and the PRF

mapping labels to field elements, we have turned to the state-

of-the-art implementations offered by the most recent version

of the Supercop framework.9 For the signature scheme, we

have used the ed2551910 implementation described in [30],

which offers extremely fast batch verification that we incor-

porated in the ADSNARK public verification algorithm (recall

that one signature per input must be verified). For the PRF im-

plementation, we have fixed labels to be 128-bit binary strings

and the PRF key to be a 256-bit string partitioned as two

AES keys. The PRF construction uses one AES computation

to map the input label to a 128-bit pseudorandom seed, applies

an independent instance of AES in counter mode to expand

the seed to 384 pseudorandom bits, and then uses modular

reduction to obtain a pseudorandom 254-bit field element.11 To

select the best ed25519 and AES implementations, we have

simply run Supercop on our target machine to exhaustively

evaluate all available implementations, and then used the

recommendations that this framework produced for the fastest

implementations and corresponding compilation options.

Microbenchmarks. All measurements were taken in a modest

machine with two Dual-Core AMD Opteron 2218 processors

clocked at 1 GHz, with 12 GB RAM. The reported values for

every parameter correspond to the median of measurements

computed over at least 100 runs. Following the original

implementation of the libsnark library, we have equipped our

implementation of the verification algorithm with the capabil-

ity to perform part of the computation off-line. However, all

our results pessimistically report the full verification time. The

security level was set at 128-bits.

B. Experiments Setup

We have conducted experiments to carry out two types of

performance evaluation: the first targeting general circuits, and

the second focusing on a concrete application.

General circuits. To obtain our first set of experimental

results, we have relied on the libsnark functionality that

permits generating random instances of constraint systems of

9http://bench.cr.yp.to/supercop.html
10http://ed25519.cr.yp.to/
11It is straightforward to prove that this construction yields a secure PRF,

assuming that AES is itself a secure PRF.

282282

arbitrary sizes. This allowed us to evaluate the performance

of our protocol when dealing with proof goals corresponding

to computations of growing complexity and with a varying

number of inputs. Our goal here was to corroborate the

theoretical analysis presented in Section IV, by benchmarking

our protocol against both the original (unauthenticated) PGHR
SNARK protocol and the generic AD-SNARK construction

described in Section III-B instantiated with PGHR, that we

call AD-PGHR.

We have arbitrarily fixed the complexity of the computation

associated with the proof goal to involve 50K restrictions (or

equivalent, roughly 50K multiplication gates), which typically

corresponds to a computation of intermediate complexity

according to the state of the art (see for example [9]). The

concrete size of the computation is not important, since we will

be concerned with the relative degradation of the performance

of the various protocols, as we gradually increase the number

of (possibly authenticated) inputs to the computation from

100 to 1000. For the generic construction AD-PGHR, we

have (very optimistically) taken the penalty for including the

signature verification circuit in the proof goal to be only of

1000 multiplications per signature. The fact that, in practice,

the cost will probably be higher only strengthens our claims.

Concrete Application. Our second set of experimental results

targets a real-world scenario, where the security guarantees

provided by an AD-SNARK are highly relevant: a concrete

smart-metering application like the one described in the in-

troduction. Analogous results can be obtained for similar

applications such as the pay-as-you-drive insurance or the

health risk assessment. Our goal here is to indeed demonstrate

the practical applicability of our ADSNARK implementation

and to show that the overhead incurred by the generic con-

struction can be prohibitive in practice, as it may lead to a

significant increase in the complexity of the proof goal. This

is particularly true if the proof goal is reasonably simple to

start with, as is the case in the application that follows.

We focus on the smart-metering application described in [5,

6] where a (non-linear) cumulative price function is applied

to the consumption measurements in order to determine the

aggregated cost. The idea here is that the smart meter is able

to authenticate the measurements, and that the client locally

computes the monetary value corresponding to the measured

consumption. The client can then use an AD-SNARK protocol

to demonstrate to the supplier that the computation is correct

and based on legitimate measurements, without divulging

the details of the individual values. As a simple example

of a cumulative policy [5], one may think of a non-linear

function defined by the following list of threshold/price pairs:

[(0, 2), (3, 5), (7, 8)]. This policy establishes four consumption

intervals and their corresponding prices, as follows: [0, 3]→ 2,

(3, 7] → 5, (7,∞) → 8. For a measured consumption of 9,

the price due is 3× 2 + 4× 5 + 2× 8 = 42.

In this application, the complexity of the price computation

depends on both the number of measurements and the number

of intervals prescribed by the cost function.

We have implemented a generator of R1CS statements that,

for a specified number of measurements and a concrete cumu-

lative cost function, is able to construct a constraint system

for an arithmetic circuit that checks the correctness of the

computed cost, for any given set of measurements. The number

of multiplication gates in (i.e., the number of constraints

associated to) the resulting circuits is 36×#measurements×
#intervals+1.12 For the generic construction AD-PGHR, we

have again used the estimate of 1000 additional multiplications

per signature verification. We set the number of thresholds to

5 (a coarse level of granularity in specifying the non-linear

policy) so that we obtain a moderately sized circuit even for a

month’s worth of readings. We then take the indicative value

of 48 measurements per day, and vary the number of days

separating the price computation to be 1, 7, 14, 21, and 28

days. The policy is defined by thresholds 5, 10, 15, 20, and

25. The measurement values were sampled at random in the

range 0 to 100.

C. Performance for General Circuits

Figure 6 shows the results we obtained in terms of execution

time. It is clear from the graphs the rapid degradation of the

global generation and proving times in the case of AD-PGHR.

This is a direct consequence of increasing the size of the

circuit and corresponding increase in the size of the proving

key, which for 1000 inputs in AD-PGHR approaches 320

MB, as opposed to 15 MB for ADSNARK and PGHR.13 The

(relatively) small penalty payed for using public verification

in ADSNARK is visible in the verification times. Furthermore,

it is interesting to observe that the secret-key verification

of ADSNARK is as fast as the one of AD-PGHR or the

(unauthenticated) PGHR. The size of the proof is under 500

bytes for all protocols except the public verification version of

AD-PGHR, where the authentication data takes an additional

128 bytes per input. Even so, for 1000 inputs, the proof size

is under 126Kbytes.14

D. Performance for Smart Metering Billing

Figure 7 shows the results we obtained in terms of execution

time. It is clear from the graphs that ADSNARK yields proving

times that are compatible with real-world deployment: even

for one month’s worth of measurements, the proving time

is around 18 seconds, the proof size is under 0.5 KB for

secret verification and under 170 KB for public verification.

The contrast to AD-PGHR is evident, where the proof size is

essentially the same as ADSNARK with secret verification, but

the running time of the AD-PGHR’s prover goes up to over

10 minutes. Moreover, even for a month’s worth of readings,

ADSNARK would pay little more time for public verification

(around 0.8 seconds vs. 0.08 seconds of AD-PGHR). Although

12The circuit implementation assumes that measurements and thresholds
are represented as 32-bit integer values.

13For PGHR and ADSNARK, the variations in generation and proving
times with the increasing number of inputs are barely visible due to the fact
that the number of constraints in the circuit is fixed at 50K.

14In our implementation, each signature and public key takes 64 bytes, and
the group element takes 64 bytes per input.

283283

��

���

����

����

����

����

����

����

���� ���� ���� ���� �����

	

�
��
�
��
��
��
��

����������
������

���������

�����

 !"�����

 !#� �$�

��

����

����

����

����

%���

&���

���� �%�� %��� '%�� �����

	�
�
	�

	�
�

�

��

����	���������
�

����	�

�����

 !"�����

 !#� �$�

��

����

����

����

����

����

��(�

��)�

���� ���� ����)��� �����

	

�
��
	�
��
��
��

�

����������
������

���
���

�����

 !�����

 !#� �$�#$�

 !#� �$��$�

Generation Time (seconds) Proving Time (seconds) Verification Time (seconds)

Inputs PGHR AD-PGHR ADSNARK PGHR AD-PGHR ADSNARK PGHR AD-PGHR ADSNARK SK ADSNARK PK

100 16.259 44.441 16.269 19.600 56.349 19.558 0.017 0.017 0.014 0.073
250 16.312 84.695 16.358 19.651 111.008 19.597 0.025 0.025 0.017 0.165
500 16.317 159.943 16.335 19.561 212.162 19.473 0.038 0.038 0.023 0.316
750 16.344 236.379 16.307 19.602 380.563 19.672 0.050 0.050 0.029 0.470

1 000 16.350 299.314 16.276 19.513 490.852 19.612 0.062 0.062 0.035 0.613

Proving Key Size (KBytes) Verification Key Size (KBytes) Proof size (Kbytes)

Inputs PGHR AD-PGHR ADSNARK PGHR AD-PGHR ADSNARK PGHR AD-PGHR ADSNARK SK ADSNARK PK

100 15 650 45 944 15 657 3.5 3.5 3.5 0.3 0.3 0.4 12.9
250 15 640 91 885 15 657 8.2 8.2 8.2 0.3 0.3 0.4 31.6
500 15 622 167 092 15 657 16.0 16.0 16.0 0.3 0.3 0.4 62.9
750 15 605 250 459 15 657 23.8 23.8 23.8 0.3 0.3 0.4 94.1

1 000 15 587 318 590 15 657 31.5 31.5 31.5 0.3 0.3 0.4 125.4

Figure 6. Experimental results showing generation, proving and verification times for random constraint systems of size 50K and varying number of inputs.
For AD-PGHR, the number of multiplication gates is 50K + 1000×#inputs. For ADSNARK in the public verification variant, the proof size is equal to
the SNARK proof size plus the size of the authentication data, which is 128 bytes per input.

this may not be very important for smart-metering, it shows,

once more, that the public verification time scales very well.

VI. FURTHER RELATED WORK

As we mentioned earlier, our work extends the notion of

succinct non-interactive arguments of knowledge (SNARKs)

[16, 24], which in turn build on (succinct) interactive proofs

[8] and interactive arguments [31, 32]. In particular, we focus

on the so-called preprocessing model where the verifier is

required to run an expensive but re-usable key generation

phase. In this preprocessing model, several works [17, 23,

33, 34] proposed efficient realizations of SNARKs, and more

recent works [9–11] have shown efficient, highly-optimized,

implementations that support general-purpose computations.

These schemes can also support zero-knowledge proofs. It is

worth mentioning that all known SNARKs are either in the

random oracle model or rely on non-standard non-falsifiable

assumptions [35]. Assumptions from this class have been

shown [36] likely to be inherent for SNARKs for NP .

The notion of SNARKs is also related to verifiable compu-
tation [37], in which a (computationally weak) client delegates

the computation of a function to a powerful server and wants

to verify the result efficiently. As noted in previous work, by

using SNARKs for NP , it is possible to construct a verifiable

computation scheme, and several works [9, 10, 17] indeed

follow this approach. However, alternative approaches to re-

alizing verifiable computation have been proposed, notably

based on fully homomorphic encryption [37–39] or attribute-

based encryption [40].

The Pantry system [41] considers an extension of verifiable

computation to a setting similar to ours, where the verifier

may not know the full input. The Pantry solution in this

model combines memory-checking techniques with verifiable

computation. In particular, Pantry heavily relies on proving

the correctness of hash computations which suffer the same

efficiency problems as those discussed in Section III-C.

Another line of work which is closely related to ours is

the one on homomorphic authentication (comprising both

homomorphic/malleable signatures [42–45] and MACs [18,

19, 25]). The main idea of homomorphic authenticators is

that, given a set of messages (σ1, . . . , σn) authenticated using

a secret key sk, anyone can evaluate a program P on such

authenticated messages in a way that the result σ ← P ({σi})
is again authenticated with respect to the same key sk (or

some public key vk in the case of signatures). Some works in

this area [44, 45] considered various privacy notions (called

context-hiding) to model that signatures on the outputs of a

computation should not reveal information about the inputs.

In this sense, AD-SNARKs are closely related to the notion

of multi-input malleable signatures [45]. However, to the best

of our knowledge, none of these schemes achieves practical

efficiency for arbitrary computations.

The recent work Z∅ [7] aimed to combine the best of

different zero-knowledge proof systems by doing an efficiency

cost analysis to use the best one for every application. In

particular, Z∅ relies on both ZQL and Pinocchio [9]. However,

when using Pinocchio with authenticated data, Z∅ does not

provide any guarantee on the integrity of this data, i.e., on the

284284

��

���

����

����

����

����

����

����

����

����

����

�� '� ��� ��� ���

	

�
��
	�
��
��
��

�

���������������	�����������������������
�

���������

 !������

 !#� �$�

��

����

����

����

����

����

����

*���

�� *� ��� ��� �+�

	

�
��
	�
��
��
��

�

���������������	�+���������������������
�

������

 !�����

 !#� �$�

��

����

����

����

����

����

��	�

��
�

��,�

��-�

��
� ��� ��� �,�

	�
�
�
��
�
��

��
��

������������������������������������

������

 !������

 !#� �$�#$�

 !#� �$��$�

Generation Time (seconds) Proving Time (seconds) Verification Time (seconds)

Days Mgates AD-PGHR ADSNARK AD-PGHR ADSNARK AD-PGHR ADSNARK SK ADSNARK PK

1 8 641 17.929 3.262 21.760 0.622 0.013 0.013 0.042
7 60 481 110.164 18.296 151.146 4.463 0.030 0.020 0.219

14 120 961 214.457 34.507 306.705 9.078 0.047 0.028 0.421
21 181 441 213.647 50.770 444.592 14.314 0.062 0.037 0.628
28 241 921 431.341 65.539 629.003 18.426 0.077 0.043 0.823

Proving Key Size (KBytes) Verification Key Size (KBytes) Proof size (Kbytes)

Days Mgates AD-PGHR ADSNARK AD-PGHR ADSNARK AD-PGHR ADSNARK SK ADSNARK PK

1 8 641 17 463 2 500 1.9 1.9 0.3 0.4 6.4
7 60 481 124 274 17 641 10.9 10.9 0.3 0.4 42.4

14 120 961 248 547 35 282 21.3 21.4 0.3 0.4 84.4
21 181 441 364 661 52 923 31.8 31.8 0.3 0.4 126.4
28 241 921 497 094 70 563 42.2 42.3 0.3 0.4 168.4

Figure 7. Experimental results showing generation, proving, and verification times for the smart metering application, with the number of measurements
varying from 1 day to 28 days (with 48 measurements per day). For AD-PGHR, the number of multiplication gates is #Mgates+1000×#days× 48. For
ADSNARK in the public verification variant, the proof size is equal that of the SNARK proof plus the size of the authentication data (128 bytes per input).

validity of the corresponding signatures.

VII. CONCLUSIONS

This paper presents and addresses the problem of enabling

privacy-preserving (aka zero-knowledge) data processing with

a specific focus on the case where the input data is authen-

ticated, and solely the authentication guarantees “percolate”

to the resulting proof, without disclosing information on

the original data. Current approaches to solve this problem

are limited in either the class of computations that can be

supported [6], or in the prover’s scalability (as we show in

our experiments).

In this paper, we propose a formal approach to this three-

party problem via a new cryptographic primitive, AD-SNARK,

of which we propose an efficient realization. Starting from

our realization, we build and evaluate a nearly practical

system, ADSNARK, for proving arbitrary computations over

authenticated data in a privacy-preserving way.

Our experimental evaluations show that ADSNARK per-

forms essentially as well as non-authenticated state of the

art solutions [9, 11], which means that it scales excellently

for modest computations. Moreover, ADSNARK dramatically

improves over generic solutions to the input authentication

problem. Furthermore, since ADSNARK leverages the recent

developments in zero-knowledge proof systems, it permits

handling arbitrary computations in an easy and usable way.

Indeed, any of the available compilers (e.g., [9]) can be used

as a front-end tool for translating from high-level languages

(e.g., C++) into arithmetic circuit satisfaction problems that

can later be passed to the zero-knowledge backend, in our

case to ADSNARK.

ADSNARK also inherits some of the limitations of existing

SNARKs, such as the use of the circuit computation model.

Recent work [11] have shown how to move to more efficient

representations such as RAM. We leave it as future work to

study the extension of AD-SNARKs to more convenient and

efficient computation models.

ACKNOWLEDGMENT

The research of Dario Fiore has been partially supported by

the European Commission’s Seventh Framework Programme

Marie Curie Cofund Action AMAROUT II (grant no. 291803).

Manuel Barbosa was partially supported by: i. the BEST

CASE project (NORTE-07-0124-FEDER-000056) financed by

the North Portugal Regional Operational Programme (ON.2

- O Novo Norte), under the National Strategic Reference

Framework (NSRF), through the European Regional Devel-

opment Fund (ERDF), and by national funds, through the

Foundation for Science and Technology (FCT); and ii. the

European Union’s Seventh Framework Program (FP7/2007-

2013) grant agreement n. 609611 (PRACTICE).

Michael Backes is supported by the BMBF competence

center CISPA.

REFERENCES

[1] R. M. Reischuk, “Declarative design and enforcement for secure cloud
applications,” Ph.D. dissertation, Saarland University, Saarbrücken, Ger-
many, 2014.

[2] Vitalconnect, “Healthpatch,” http://www.vitalconnect.com, 2014.

285285

[3] BBC, “Google unveils ’smart contact lens’ to measure glucose levels,”
http://www.bbc.com/news/technology-25771907, 2014.

[4] R. Anderson and S. Fuloria, “On the security economics of electricity
metering,” in 9th Annual Workshop on the Economics of Information
Security, WEIS 2010, Harvard University, Cambridge, MA, USA, June
7-8, 2010, 2010.

[5] A. Rial and G. Danezis, “Privacy-preserving smart metering,” in
Proceedings of the 10th Annual ACM Workshop on Privacy in the
Electronic Society, ser. WPES ’11. New York, NY, USA: ACM, 2011,
pp. 49–60. [Online]. Available: http://doi.acm.org/10.1145/2046556.
2046564

[6] C. Fournet, M. Kohlweiss, G. Danezis, and Z. Luo, “ZQL: A compiler
for privacy-preserving data processing,” in Proceedings of the 22Nd
USENIX Conference on Security, ser. SEC’13. Berkeley, CA, USA:
USENIX Association, 2013, pp. 163–178.

[7] M. Fredrikson and B. Livshits, “ZO: An optimizing distributing zero-
knowledge compiler,” in USENIX Security, 2014.

[8] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity
of interactive proof systems,” SIAM Journal on Computing, vol. 18,
no. 1, pp. 186–208, 1989.

[9] B. Parno, C. Gentry, J. Howell, and M. Raykova, “Pinocchio: Nearly
practical verifiable computation,” in IEEE Symposium on Security and
Privacy, Oakland, 2013, corrected version (13 May 2013): http://eprint.
iacr.org/2013/279.

[10] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza,
“SNARKs for C: Verifying program executions succinctly and in zero
knowledge,” in CRYPTO 2013, Part II, ser. LNCS, R. Canetti and J. A.
Garay, Eds., vol. 8043. Springer, Aug. 2013, pp. 90–108.

[11] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct non-
interactive zero knowledge for a von Neumann architecture,” in USENIX
Security, 2014, pp. 781–796.

[12] D. Chaum, “Security without identification: Transaction systems to make
big brother obsolete,” Commun. ACM, vol. 28, no. 10, pp. 1030–1044,
Oct. 1985. [Online]. Available: http://doi.acm.org/10.1145/4372.4373

[13] I. Damgård, “Payment systems and credential mechanisms with provable
security against abuse by individuals,” in CRYPTO’88, ser. LNCS,
S. Goldwasser, Ed., vol. 403. Springer, Aug. 1988, pp. 328–335.

[14] A. Lysyanskaya, R. L. Rivest, A. Sahai, and S. Wolf, “Pseudonym
systems,” in SAC 1999, ser. LNCS, H. M. Heys and C. M. Adams,
Eds., vol. 1758. Springer, Aug. 1999, pp. 184–199.

[15] S. Meiklejohn, C. C. Erway, A. Küpçü, T. Hinkle, and A. Lysyanskaya,
“Zkpdl: A language-based system for efficient zero-knowledge
proofs and electronic cash,” in Proceedings of the 19th USENIX
Conference on Security, ser. USENIX Security’10. Berkeley, CA,
USA: USENIX Association, 2010, pp. 13–13. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1929820.1929838

[16] S. Micali, “CS proofs (extended abstracts),” in 35th FOCS. IEEE
Computer Society Press, Nov. 1994, pp. 436–453.

[17] R. Gennaro, C. Gentry, B. Parno, and M. Raykova, “Quadratic span
programs and succinct NIZKs without PCPs,” in EUROCRYPT 2013,
ser. LNCS, T. Johansson and P. Q. Nguyen, Eds., vol. 7881. Springer,
May 2013, pp. 626–645.

[18] D. Catalano and D. Fiore, “Practical homomorphic MACs for arithmetic
circuits,” in EUROCRYPT 2013, ser. LNCS, T. Johansson and P. Q.
Nguyen, Eds., vol. 7881. Springer, May 2013, pp. 336–352.

[19] M. Backes, D. Fiore, and R. M. Reischuk, “Verifiable delegation of
computation on outsourced data,” in ACM CCS 13, A.-R. Sadeghi, V. D.
Gligor, and M. Yung, Eds. ACM Press, Nov. 2013, pp. 863–874.

[20] M. Backes, M. Barbosa, D. Fiore, and R. M. Reischuk, “ADSNARK:
nearly practical and privacy-preserving proofs on authenticated data,”
Cryptology ePrint Archive, Report 2014/617, 2014.

[21] J. Camenisch, M. Kohlweiss, and C. Soriente, “An accumulator based
on bilinear maps and efficient revocation for anonymous credentials,”
in PKC 2009, ser. LNCS, S. Jarecki and G. Tsudik, Eds., vol. 5443.
Springer, Mar. 2009, pp. 481–500.

[22] D. Boneh, X. Boyen, and E.-J. Goh, “Hierarchical identity based
encryption with constant size ciphertext,” in EUROCRYPT 2005, ser.
LNCS, R. Cramer, Ed., vol. 3494. Springer, May 2005, pp. 440–456.

[23] J. Groth, “Short pairing-based non-interactive zero-knowledge argu-
ments,” in ASIACRYPT 2010, ser. LNCS, M. Abe, Ed., vol. 6477.
Springer, Dec. 2010, pp. 321–340.

[24] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, “From extractable
collision resistance to succinct non-interactive arguments of knowledge,
and back again,” in ITCS 2012, S. Goldwasser, Ed. ACM, Jan. 2012,
pp. 326–349.

[25] R. Gennaro and D. Wichs, “Fully homomorphic message authenticators,”
in ASIACRYPT 2013, Part II, ser. LNCS, K. Sako and P. Sarkar, Eds.,
vol. 8270. Springer, Dec. 2013, pp. 301–320.

[26] D. Boneh and X. Boyen, “Short signatures without random oracles,” in
EUROCRYPT 2004, ser. LNCS, C. Cachin and J. Camenisch, Eds., vol.
3027. Springer, May 2004, pp. 56–73.

[27] B. R. Waters, “Efficient identity-based encryption without random
oracles,” in EUROCRYPT 2005, ser. LNCS, R. Cramer, Ed., vol. 3494.
Springer, May 2005, pp. 114–127.

[28] R. Cramer and V. Shoup, “Signature schemes based on the strong RSA
assumption,” in ACM CCS 99. ACM Press, Nov. 1999, pp. 46–51.

[29] X. Boyen, “Lattice mixing and vanishing trapdoors: A framework for
fully secure short signatures and more,” in PKC 2010, ser. LNCS, P. Q.
Nguyen and D. Pointcheval, Eds., vol. 6056. Springer, May 2010, pp.
499–517.

[30] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B. Yang,
“High-speed high-security signatures,” J. Cryptographic Engineering,
vol. 2, no. 2, pp. 77–89, 2012. [Online]. Available: http://dx.doi.org/10.
1007/s13389-012-0027-1

[31] J. Kilian, “A note on efficient zero-knowledge proofs and arguments
(extended abstract),” in 24th ACM STOC. ACM Press, May 1992, pp.
723–732.

[32] ——, “Improved efficient arguments (preliminary version),” in
CRYPTO’95, ser. LNCS, D. Coppersmith, Ed., vol. 963. Springer,
Aug. 1995, pp. 311–324.

[33] H. Lipmaa, “Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments,” in TCC 2012, ser. LNCS,
R. Cramer, Ed., vol. 7194. Springer, Mar. 2012, pp. 169–189.

[34] N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, and O. Paneth, “Succinct
non-interactive arguments via linear interactive proofs,” in TCC 2013,
ser. LNCS, A. Sahai, Ed., vol. 7785. Springer, Mar. 2013, pp. 315–333.

[35] M. Naor, “On cryptographic assumptions and challenges (invited talk),”
in CRYPTO 2003, ser. LNCS, D. Boneh, Ed., vol. 2729. Springer, Aug.
2003, pp. 96–109.

[36] C. Gentry and D. Wichs, “Separating succinct non-interactive arguments
from all falsifiable assumptions,” in 43rd ACM STOC, L. Fortnow and
S. P. Vadhan, Eds. ACM Press, Jun. 2011, pp. 99–108.

[37] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifi-
able computing: Outsourcing computation to untrusted workers,” in
CRYPTO 2010, ser. LNCS, T. Rabin, Ed., vol. 6223. Springer, Aug.
2010, pp. 465–482.

[38] K.-M. Chung, Y. Kalai, and S. P. Vadhan, “Improved delegation of
computation using fully homomorphic encryption,” in CRYPTO 2010,
ser. LNCS, T. Rabin, Ed., vol. 6223. Springer, Aug. 2010, pp. 483–501.

[39] B. Applebaum, Y. Ishai, and E. Kushilevitz, “From secrecy to soundness:
Efficient verification via secure computation,” in ICALP 2010, Part I,
ser. LNCS, S. Abramsky, C. Gavoille, C. Kirchner, F. Meyer auf der
Heide, and P. G. Spirakis, Eds., vol. 6198. Springer, Jul. 2010, pp.
152–163.

[40] B. Parno, M. Raykova, and V. Vaikuntanathan, “How to delegate and
verify in public: Verifiable computation from attribute-based encryption,”
in TCC 2012, ser. LNCS, R. Cramer, Ed., vol. 7194. Springer, Mar.
2012, pp. 422–439.

[41] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg, and
M. Walfish, “Verifying computations with state,” in ACM Symposium
on Operating Systems Principles, SOSP 2013, 2013.

[42] R. Johnson, D. Molnar, D. X. Song, and D. Wagner, “Homomorphic
signature schemes,” in CT-RSA 2002, ser. LNCS, B. Preneel, Ed., vol.
2271. Springer, Feb. 2002, pp. 244–262.

[43] D. Boneh and D. M. Freeman, “Homomorphic signatures for polynomial
functions,” in EUROCRYPT 2011, ser. LNCS, K. G. Paterson, Ed., vol.
6632. Springer, May 2011, pp. 149–168.

[44] J. H. Ahn, D. Boneh, J. Camenisch, S. Hohenberger, a. shelat, and
B. Waters, “Computing on authenticated data,” in TCC 2012, ser. LNCS,
R. Cramer, Ed., vol. 7194. Springer, Mar. 2012, pp. 1–20.

[45] M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn, “Mal-
leable signatures: New definitions and delegatable anonymous creden-
tials,” in Computer Security Foundation (CSF), 2014.

286286

