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Abstract

Cloud computing sparked interest in Verifiable Computation

protocols, which allow a weak client to securely outsource com-

putations to remote parties. Recent work has dramatically re-

duced the client’s cost to verify the correctness of their results,

but the overhead to produce proofs remains largely impractical.

Geppetto introduces complementary techniques for reducing

prover overhead and increasing prover flexibility. With Multi-

QAPs, Geppetto reduces the cost of sharing state between com-

putations (e.g., for MapReduce) or within a single computation

by up to two orders of magnitude. Via a careful choice of cryp-

tographic primitives, Geppetto’s instantiation of bounded proof

bootstrapping improves on prior bootstrapped systems by up

to five orders of magnitude, albeit at some cost in universality.

Geppetto also efficiently verifies the correct execution of propri-

etary (i.e., secret) algorithms. Finally, Geppetto’s use of energy-

saving circuits brings the prover’s costs more in line with the

program’s actual (rather than worst-case) execution time.

Geppetto is implemented in a full-fledged, scalable compiler

and runtime that consume LLVM code generated from a variety

of source C programs and cryptographic libraries.

1 Introduction

The recent growth of mobile and cloud computing makes out-

sourcing computations from a weak client to a computationally

powerful worker increasingly attractive economically. Verify-

ing the correctness of such outsourced computations, however,

remains challenging, as does maintaining the privacy of sen-

sitive data used in such computations, or even the privacy of

the computation itself. Prior work on verifying computation

focused on narrow classes of computation [32, 51], relied on

physical-security assumptions [41, 47], assumed uncorrelated

failures [19, 20], or achieved good asymptotics [2, 28, 30, 31,

33, 38, 44] but impractical concrete performance [46, 50].

Recently, several lines of work [9, 46, 49, 52] on verifiable

computation [28] have combined theoretical and engineering in-

novations to build systems that can verify the results of general-

purpose outsourced computations while making at most cryp-

tographic assumptions. Two of the best performing, general-

purpose protocols for verifiable computation [46, 49] are based

on Quadratic Arithmetic Programs (QAPs) [29]. To provide

non-interactive, publicly verifiable computation, as well as

zero-knowledge proofs (i.e., proofs of computations in which

some or all of the worker’s inputs are private), many recent sys-

tems [3, 7, 9, 10, 16, 25, 39, 54] have converged on the Pinoc-

chio protocol [46] as a cryptographic back end. Pinocchio, in

turn, depends on QAPs.

While these protocols have made verification nearly practical

for clients, the cost to generate a proof remains a significant

barrier to practicality for workers. Indeed, most applications

are constrained to small instances, since proof generation costs

3–6 orders of magnitude more than the original computation.

With Geppetto1, we combine a series of interlocked tech-

niques that support more flexible, and hence more efficient,

provers. These techniques include the new notion of Multi-

QAPs for sharing state between or within computations,

bounded bootstrapping for succinct proof aggregation, a QAP-

friendly C library for verifying cryptographic computations,

and a new technique for energy-saving circuits, which ensures

the prover’s costs grow with actual execution time, rather than

worst-case execution time.

In more detail, we first generalize QAPs to create MultiQAPs,
which allow the verifier (or prover) to commit to data once and

then use that data in multiple related proofs. For example, the

prover can commit to a data set and then use it in many differ-

ent MapReduce jobs. At a finer granularity, we show how to use

MultiQAPs to break an arithmetic circuit up into many smaller,

simpler verifiable circuits that efficiently share state. Today,

compiling code from C to a QAP typically requires unrolling

all loops and inlining all functions, leading to a huge circuit

full of replicated subcircuit structures. Since key size, and key

and proof generation time all depend linearly (or quasilinearly)

on the circuit size, this blowup severely degrades performance.

With MultiQAPs, instead of unrolling a loop, we can create a

single circuit for the loop body, use a proof for each iteration

of the loop, and connect the state at the end of each iteration

to the input of the next iteration. This allows us to shrink key

size and key generation time, and, more importantly, to save

the prover time and memory. Prior work suggested achieving

similar properties via Merkle hash trees [8, 12, 27, 29, 43], but

implementations show that this approach increases the degree

of the QAP by tens or hundreds per state element [9, 16, 54],

whereas with MultiQAPs, the degree increases only by 1.

With MultiQAPs, the prover generates multiple proofs about

related data. This improves flexibility and performance for the

prover, but it degrades attractive features of Pinocchio, namely

that the proof consists of a (tiny) constant-sized proof, and the

verifier’s work scales only with the IO.

1A skilled craftsman who can create and coordinate many Pinocchios.

2015 IEEE Symposium on Security and Privacy

© 2015, Craig Costello. Under license to IEEE.

DOI 10.1109/SP.2015.23

253

2015 IEEE Symposium on Security and Privacy

© 2015, Craig Costello. Under license to IEEE.

DOI 10.1109/SP.2015.23

253



As a second contribution, we explore the use of bounded
proof bootstrapping to obtain MultiQAPs with constant-sized

proofs. In theory, with proof bootstrapping [11, 53], the prover

can combine any series of proofs into one by verifiably com-

puting the verification of all of those proofs. Very recent work

elegantly instantiates unbounded proof bootstrapping [9], but

this generality comes at a cost (§5,§7.3.1). Our instantiation and

implementation of bounded proof bootstrapping shows that, as

with semi-homomorphic vs. fully homomorphic encryption, if

we pragmatically set a bound on the number of proofs we intend

to combine, we can achieve more practical performance.

To support bounded proof bootstrapping, Geppetto includes a

QAP-friendly C library for general-purpose cryptographic com-

putations. Such computations arise in many outsourcing appli-

cations. For instance, a MapReduce job may need to compute

over signed data, or a customer with a smart meter may wish to

privately compute a bill over signed readings [48]. As another

example, recent work [7, 25] shows how to anonymize Bitcoin

transactions using Pinocchio [46] and would benefit from the

ability to verify signatures within transactions. In existing QAP

systems, computations take place over a relatively small (e.g.,

254-bit) field, so computing cryptographic operations (e.g., a

signature verification) requires an awkward embedding of the

cryptographic machinery via either a BigInteger library built

out of field elements or via large extension fields [25]. With

our techniques, all of these examples can be naturally and effi-

ciently embedded into a proof of an outsourced computation.

By considering (bounded or unbounded) bootstrapping in the

context of our QAP-friendly crypto library, we show how to ef-

ficiently compile and outsource computations so that the com-

putation itself is hidden from the verifier. For example, a patient

might verify that a trusted authority (say the US FDA) signed

the code for a medical-data analysis, and that the analysis was

correctly applied to the patient’s data, without the patient ever

learning anything about the proprietary analysis algorithm. Pre-

vious systems could potentially support this scenario via univer-

sal circuits [46, 49] or circuits executing CPU instructions [9],

but the extra level of interpretation potentially slows the com-

putation down by orders of magnitude (see §7.3.1).

Lastly, just as MultiQAPs eliminate the redundancy that

comes from code repetition (e.g., in the form of loops or func-

tion invocations), we introduce the notion of energy-saving cir-
cuits to eliminate the redundant work that arises from code

branching. With energy saving, the prover only exerts crypto-

graphic effort for the actual path taken (e.g., only the ‘if’ branch

when the condition is true). While energy-saving circuits are

generally useful, they are particularly beneficial when using

bounded proof bootstrapping to combine many proofs from a

MultiQAP. Such proof compaction requires the key generator

to commit, in advance, to the maximal number of proofs to

be combined. With energy saving circuits, the key generator

can choose a large number, and if a particular computation re-

quires fewer proofs, the prover only performs cryptographic op-

erations proportional to the number of proofs used, rather than

the maximum chosen by the key generator.

We have implemented Geppetto as a complete toolchain for

verifying the execution of C programs. Geppetto’s code is avail-
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Figure 1: MultiQAPs (a) Most existing verifiable computation sys-
tems compile programs to a single large circuit-like representation,
leading to internal redundancy. (b) By extracting common substruc-
tures, we can represent a program as an assembly of smaller circuits,
but the verifier must now also check all connections between circuits.
(c) MultiQAPs connect circuits using bus structures that support suc-
cinct and efficient commitments to the bus values.

able at https://vc.codeplex.com. It includes a compiler

in F#, a cryptographic runtime in C++, QAP-friendly libraries

in C, and various programming examples. Our compiler takes

as input LLVM code produced by clang, a mainstream state-of-

the-art optimizing C compiler; this enables us to focus on QAP-

specific compilation. Our libraries support explicit, low-level

control for programming MultiQAPs, allowing the C program-

mer to dictate how state flows from one QAP to another and

hence control the resulting cryptographic costs. Geppetto also

provides higher-level C libraries for common programming pat-

terns, such as MapReduce or loops.

2 Geppetto Overview
In this section, we give an overview of Geppetto’s main con-

structions: MultiQAPs (§2.1), proofs for cryptographic op-

erations and bootstrapping (§2.2), and energy-saving circuits

(§2.3). We defer cryptographic definitions to §3 and our pro-

tocol to §4.

2.1 MultiQAPs
2.1.1 MultiQAP Intuition

At a high level, prior verifiable computation systems like Pinoc-

chio [46] allow a prover to convince a skeptical verifier that

F(u) = y, where u is a verifier-supplied vector of inputs. The

prover accomplishes this with a constant-sized proof π, and the

verifier’s work scales linearly in |u|+ |y|, regardless of the com-

plexity of F . However, as F grows to encompass larger and

more complex functionality (see Figure 1), the CPU and mem-

ory costs for the prover (as well as its key size) increase su-

perlinearly. As §7.2 shows, this limits prior systems to modest

application parameters.
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To scale to larger problems, we can naturally decompose the

proof of F into a conjunction of proofs of m simpler functions

F0, . . . , Fm−1. For example, if F(u) = F1(F0(u)), then naı̈vely

the prover could use Pinocchio twice to prove:

z = F0(u) (0)

y = F1(z) (1)

The verifier would check a proof for each equation separately

and check that the output from F0 was correctly used as input

to F1. Unfortunately, this means that the prover must send the

intermediate state z to the verifier, and the verifier must perform

work linear in |z|. If z is large, then handling so much interme-

diate state would make it difficult or impossible for the verifier

to benefit from outsourcing.

Instead, with Geppetto, we have the prover return a constant-

sized digest, Dz, representing the intermediate state z. The ver-

ifier uses this digest when checking the proof for Equation (0)

and when checking the proof for Equation (1), ensuring that

the prover consistently used the same intermediate state in both

proofs, but without requiring the verifier to explicitly handle z.

Prior work achieved a similar reduction in verifier effort by

extending F0 to hash its output and F1 to hash its input, so the

verifier need only handle the constant-sized hash value [8, 12,

29, 43]. However, those hash computations make both functions

more expensive [9, 16]. In contrast, with Geppetto, we observe

that Pinocchio already computes a digest-like structure and that,

with a careful refinement of its encoding, we can have the prover

compute digests almost for free.2

In more detail, we divide all of the variables used to com-

pute F into disjoint sets we call banks. Each bank falls into one

of three categories: a bank may represent F’s (the overall com-

putation’s) input and output (u and y in our earlier example); it

may represent a set of ‘local’ variables used within a single Fi;
or it may be a bus, i.e., a set of variables shared between multi-

ple Fi (e.g., z).

Each bank is associated with its own cryptographic key ma-

terial, used to compute a succinct digest of the values assigned

to the bank’s variables: the prover produces a digest for each

local bank and for each bus, while the verifier produces a digest

for the IO banks as part of the verification process. The latter

ensures that the proof verification is with respect to the input the

verifier supplied, and the alleged output the prover produced.

To verify a proof that a given Fi was computed correctly, the

verification algorithm will need a digest for Fi’s local bank, and

digests for any buses or IO banks that Fi reads or writes. Con-

tinuing our earlier example, the verifier computes IO digests Du
and Dy. The prover computes and returns digests DF0

and DF1

summarizing the intermediate variables used by F0 and F1 re-

spectively, and a single digest Dz representing the values on the

bus between them. He also returns proofs π0 and π1 to demon-

strate that F0 and F1 were computed correctly. The verifier runs

the verification algorithm twice:

Verify((Du,DF0
,Dz),π0) (2)

Verify((Dz,DF1
,Dy),π1) (3)

2We use ‘digest’ rather than ‘commitment’, since only some of the digests

need to be binding—see §3.1.

F ;F0, . . . ,Fm−1 Function F is decomposed into m functions Fi
χχχ Formal variables used when computing F

B, � A partition of χχχ into banks Bb ∈ B with �
�
= |B |

B(tb)b An instance tb of bank Bb;

χb Commit-and-prove message for bank Bb (Defn. 2)

σ, n A proof schedule (Defn. 1) with length n �
= |σ |

Q�, Qi The MultiQAP Q�, combining sub-QAPs Qi
ρ,d A QAP has size ρ and degree d

Figure 2: Notation summary for §2.

and accepts y as F(u) if both checks succeed.3 Note that Dz oc-

curs in both verification checks. Formally, a system that allows

a prover to commit to state in this fashion and use the result-

ing commitments in multiple proofs is known as a commit-and-

prove (CP) scheme (see §3.1).

As shown in Figure 1, proofs of complex functions F may in-

volve multiple instances of a simpler function Fi. For example,

Fi may represent the execution of a single function call, or a sin-

gle loop iteration in F . Each instance of Fi requires the prover

to generate (and the verifier to check) a fresh proof, along with

digests for the banks involved. In §2.1.2, we formalize these

relationships with a proof schedule (Defn 1); each step in the

schedule indicates which Fi is “active”, which banks it depends

on, and which set of bank values this particular instance of Fi
depends on.

To efficiently build a commit-and-prove system supporting

such schedules, we use Pinocchio’s techniques to express each

function Fi as a Quadratic Arithmetic Program (QAP) Qi, a for-

mat suitable for succinct cryptographic proofs. To share state

between individual Qi, we combine them into a single Multi-
QAP Q� that also efficiently incorporates the buses connecting

them. Using a MultiQAP also simplifies our definitions, con-

structions, and security proofs. In particular, we can repeat-

edly use a commit-and-prove scheme for a single relation for all
proof schedules composed of different Qi steps, with the abil-

ity to share compact, private digests between the proof steps.

MultiQAPs support this functionality without significantly in-

creasing the prover’s costs beyond what is required to handle

each sub-QAP of the schedule individually.

2.1.2 Scheduling Proofs With Shared State

As described in §2.1.1, we decompose the proof of a complex

function F into a conjunction of proofs of m simpler functions

F0,. . . ,Fm−1.4 Let χχχ represent all of the formal variables used

when computing F ; this includes F’s input and output variables,

variables “local” to the computation of each Fi, and the variables

shared across the Fi. Based on these different roles, we partition

χχχ into banks Bb ∈ B.

A given execution of F may involve several instances of the

same bank (e.g., if Fi represents a loop body, then the banks

3This approach generalize’s Pinocchio’s, which calls (DF0
,π0) the proof for

F0 and has the verifier compute Du and Dz inside the verification algorithm.
4Cryptographers think of F as a language, and F’s IO as a language instance.

Programmers may see this proof as a trace-property, e.g., interpreting u,y as a

valid input-output sequence obtained by running a program whose specification

is captured by F .
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corresponding to its IO and local variables may take on differ-

ent concrete values on each loop iteration). We refer to these

distinct instances of bank Bb as B(tb)
b for tb = 1,2, . . . reserving

tb = 0 for the instance that assigns the constant 0 to every vari-

able in Bb. With these notations (summarized in Figure 2), we

can define proof schedules.

Definition 1 (Multi-proof schedule) A schedule σ is a se-
quence of steps of the form (i, t) where i ∈ [m] and t is a vector
with an index tb ≥ 0 for each bank Bb ∈ B. We define n �

= |σ | to
be the length of the schedule, and � �

= |B | the number of banks.
Each step (i, t) of the schedule selects a function Fi and the

instances B(tb)
b of the banks it uses, with tb = 0 whenever Fi does

not use Bb. We require that Fi use only its local bank BFi , that
is, tFj = 0 whenever i �= j.
A proof for σ consists of (1) a proof πi for each of its steps,

and (2) a digest D(t)
b for each of its bank instances B(t)

b .
Intuitively, the schedule indicates a sequence of calls to Fis

for which the prover must generate (or the verifier must check)

a proof, and the indexes t of the banks digests that the prover

(or the verifier) should use with that proof. The variables in any

banks not used in a given step are implicitly set to 0 and hence

can be represented with a trivial digest.

Returning to our example from §2.1.1, we have B = (Bu,By,
BF0

,BF1
,Bz) and the schedule for Equations (0) and (1) would

be σ = [(0,(1,0,1,0,1)),(1,(0,1,0,1,1))].

2.1.3 An Efficient CP System from MultiQAPs

To understand Geppetto’s MultiQAPs, it helps to review how

Pinocchio encodes computations as QAPs. This encoding en-

ables Pinocchio’s efficient cryptographic protocol.

Quadratic Arithmetic Programs (QAPs) [29, 46] Ab-

stractly, Pinocchio compiles a function F into a conjunction of

d equations of the form

Q(χχχ) �
=

∧

r∈[d]
(vr ·χχχ)(wr ·χχχ) = (yr ·χχχ) (4)

where χχχ is the vector of F’s variables, which range over some

large, fixed prime field Fp, and the vectors vr, wr, yr each de-

fine linear combinations over the variables χχχ. Each equation

(indexed by r) can be thought of as encoding a two-input mul-

tiplication gate in the arithmetic circuit computing F , with vr
indicating each variable’s contribution (if any) to the gate’s left

input, wr indicating each variable’s contribution to the gate’s

right input, and yr indicating the variable’s relation to the gate’s

output. We say that Q has size ρ �
= |χχχ | and degree d.

Crucially, Pinocchio’s evaluation key (used by the prover to

create his proof) contains cryptographic key material for each

variable χ ∈ χχχ, and the structure of that key material depends

directly on which (and how) χ participates in each of the d equa-

tions in Equation (4), i.e., on the value of χ’s entry in each of

the vectors vr, wr, yr.

From QAPs to MultiQAPs If we decompose F into sim-

pler functions Fi, then we can create a corresponding QAP Qi

for each Fi. Suppose we wish to connect Q0, which has some

variables z0 representing F0’s output, with Q1, which has some

variables z1 representing F1’s input, with |z0 | = |z1 |. Since F0

and F1 are different functions, z0 and z1 undoubtedly participate

in different equations in Q0 and Q1, and hence, as explained

above, will have different key material representing z0 and z1.

As a result, a digest for z0 will be completely different from a

digest for z1, even if z0 = z1! We could fix this by combining Q0

and Q1 into a single QAP and adding equations requiring that

z0 = z1, but then we lose the benefits we hoped to gain from

decomposing F .

Instead, we combine all of the (Qi)i∈[m] into a single Multi-

QAP Q�. Q� has the same equations and variables χχχ used in

the Qi. In addition, for each variable s that we wish to share

between some subset Q̂ of the Qi, we add a new variable ŝ to a

new bus bank associated with Q̂, and we add an equation relat-

ing ŝ to the local copy of s in each of the Qi in Q̂. Continuing

our earlier example, we will introduce a new bus for variables

ẑ with | ẑ | = |z0 | = |z1 |, and for each ẑ in ẑ, we will add an

equation:

z0 + z1 = ẑ (5)

relating it to the corresponding variables in Q0 and Q1. By

adding the ẑ bus as a layer of indirection, it no longer matters if

z0 is used differently in Q0 than z1 is in Q1; the prover can cre-

ate a single digest Dẑ representing the values on the bus, and the

verifier can use this digest when checking the correct execution

of Q0, as well as that of Q1, just as in the example in §2.1.1,

when computing Equations (2) and (3). Because the verifier

only accepts proof schedules with trivial digests for all other

local banks (Definition 1), when she verifies a proof of Q0, all

of the variables in Q1 are set to 0, and hence Equation (5) says

that z0 = ẑ, whereas when she verifies a proof of Q1, all of the

variables in Q0 are set to 0, and hence (5) says that z1 = ẑ.
If we follow these steps to combine m sub-QAPs (Qi)i∈[m],

each of size ρi and degree at most d, along with the buses

connecting them, into a single MultiQAP Q�, then Q� has size

ρ� = |s |+∑i∈[m] ρi and degree d� = d+ |s |, where s includes

all intermediate variables shared between the Qi. By choosing

a decomposition from F to (Fi)i∈[m] that exploits the structure

of F , Geppetto’s compiler can ensure that most variables are lo-

cal to one Fi, so we typically achieve |s |<< d. Since each step

in a proof schedule considers only one Qi at a time, the size and

degree of the “active” QAP within Q� is only slightly larger

than the original Qi. Thus, MultiQAPs enable state sharing

across sub-QAPs without significantly increasing the prover’s

costs beyond what is required to handle the sub-QAPs of the

schedule individually.

2.1.4 Other Techniques for Stateful Computations

Prior work explores other, largely complementary mechanisms

for handling verifiable computations over state. As discussed in

§2.1.1, a classic way to condense state is to commit to it via a

hash [8, 12, 29, 43]. When specifying the IO to a function F ,

the verifier only gives the hash value h = H(u). The prover

supplies the full data values and, as part of the verifiable com-

putation, hashes the data and proves that the hash matches the

256256



one supplied by the verifier. A recent system, Pantry [16], im-

plements such collision-resistant hashing on top of the existing

QAP-based Pinocchio [46] and Zaatar protocols [49].

As shown in §7.2, using MultiQAPs is much cheaper than

hashing when all (or most) of the state will be used in a given

computation. Thus, MultiQAPs will typically be advantageous

when passing state between computations, such as between

mappers and reducers in a MapReduce job or within a decom-

posed program such as the one shown in Figure 1, since a good

compiler will ensure that state is passed between computations

only if both computations actually need it. MultiQAPs are also

advantageous for IO when the verifier’s inputs can be split in

two pieces, a (mostly) static and a dynamic portion, that inter-

act in each computation. For example, we might see this pattern

if the computation takes in a large dataset and a small query, and

the query needs to verifiably compute on most of the dataset.

In contrast, hashing is advantageous when the inputs are

large, but the verifiable computation only accesses a small por-

tion of the input at a time. For example, if the computation is

over a large database but any given computation only selects a

handful of records, then hashing makes sense. Hashing is also

suitable for transferring state between verifiable computations

performed with keys created by mutually distrusting parties.

As an orthogonal contribution, Pantry uses hashes to build

a RAM abstraction based on Merkle trees [43], though subse-

quent work [10, 54] suggests that handling RAM via memory

routing networks [8] performs better for most memory sizes.

Regardless, these techniques are orthogonal to Geppetto in the

sense that they focus on dynamic RAM access within a com-

putation/QAP, rather than on transferring state between com-

putations. Indeed, routing networks would likely be the most

efficient way to allow a given Geppetto sub-QAP to incorpo-

rate a RAM abstraction. Recent work demonstrates [54] that

such abstractions can be naturally integrated with Geppetto’s

compilation-based approach.

Finally, in concurrent work, Backes et al. modify the Pinoc-

chio protocol to incorporate a linearly homomorphic MAC in

order to optimize computing on authenticated data [3]. Using

signed Geppetto commitments offers an alternate approach; we

defer evaluating the tradeoffs to future work.

2.2 Verifiable Crypto and Bootstrapping Proofs

In theory, we should be able to verify cryptographic compu-

tations (e.g., a signature verification) just like any other com-

putation. In practice, as discussed in §1, a naive embedding

of cryptographic computations into the field Fp that our Mul-

tiQAPs operate over leads to significant overhead. In §5, we

use a careful choice of cryptographic primitives and parameters

to build a large class of crypto operations (e.g., signing, ver-

ification, encryption) using elliptic curves built “natively” on

Fp. For example, this makes it cheap to verify computations on

signed data, since the data and the signature both “live” in Fp.

Prior work used such tailoring for unbounded bootstrapping [9]

and hashing [9, 16].

Our most complex application of this technology is a form

of proof bootstrapping [11, 53], which we use to address the

main drawback of CP schemes. With CP schemes, includ-

ing our MultiQAP-based scheme, the size of the cryptographic

evidence—and the verifier costs—grow linearly with the num-

ber of digests and proofs. While often acceptable in practice,

these costs can be reduced to a constant by using another in-

stance of our CP scheme to outsource the verification of all of

the cryptographic evidence according to a target proof schedule.

More formally, let Verifyσ�(D,Π) be the function checking

that a scheduled CP proof cryptographically verifies, where D
and Π are the collections of digests and proofs used in the

schedule σ�. We recursively apply Geppetto to generate a

quadratic program Qσ� for Verifyσ� . This yields another, more

efficient verifier Verify◦σ�(D◦,π◦) with a single, constant-sized

digest D◦ of D, Π, and all intermediate variables used to verify

them according to σ�, and with a single constant-sized proof π◦
to verify, now in constant time.

We further observe that Verify◦σ� need not be limited to just

verifying the execution of Verifyσ� . For example, suppose an

authority the client trusts (e.g., the US FDA) cryptographically

signs the verification keys for Verifyσ� , and we define Verify◦σ�

to first verify the signature on the keys before using them to

run Verifyσ� . If we use Geppetto’s option to make digests and

proofs perfectly hiding, then the verifier checks a constant-sized

proof and learns that a trusted algorithm (for example, a medical

diagnosis) ran correctly over her data, but she learns nothing

about the algorithm. Thus, a client can efficiently and verifiably

outsource computations with proprietary algorithms.

Although the general idea of bootstrapping is well-

known [11, 53], its practicality relies on careful cryptographic

choices to support an efficient embedding. Recent work [9] in-

stantiated and implemented an embedding that supports boot-

strapping an unbounded number of proofs but this generality

comes at a cost (§5).

In §5, we explore a pragmatic alternative that supports only

bounded-length schedules but can achieve better performance.

Intuitively, the construction is based on the observation that the

algorithm Verify◦σ� described above, can itself be scheduled and

bootstrapped. In other words, given an initial CP scheme P ,

we define a second CP scheme P ′ that verifies a schedule for

P of length at most L. If our application requires a schedule

longer than L, we can define a third CP scheme P ′′ that con-

denses digests and proofs from P ′. With enough levels, we can

ensure that the verifier only receives a constant-sized digest and

proof, and hence only performs work linear in the overall com-

putation’s IO, regardless of how the prover decomposes F into

smaller functions. The overall protocol can be thought of as

a tree of proof schedules, where the arity of each node is L,

and as we move towards the root of the tree, each level con-

denses the digests and proofs from the nodes above it. Our full

paper [23] formalizes this process, adapting the usual proof-of-

a-proof bootstrapping techniques [11, 53].

Using multiple levels reduces both the key sizes and the

prover’s work. For example, suppose the application produces

N proofs for P . The naı̈ve approach of using a single recursive

level P ′ would require a key capable of consuming all N proofs.

Instead, with multiple levels, we can design P ′ to consume
√
N

proofs from P and design P ′′ to consume
√
N proofs from P ′.
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Figure 3: Energy-Saving Circuits. Moving the multiplex step can
nullify expensive crypto operations, since at runtime, in one of the two
circuit blocks, every wire inside takes on the value zero.

The resulting keys will be O(
√
N), instead of size N for a single

recursive layer.

Our CP definitions and theorems (§3), as well as our compiler

(§6.4), support multiple-levels of bootstrapping through such

recursion. For example, our compiler (§6.4) rewrites source

programs to replace outsourced function calls by proof verifi-

cation and can be called on its own output.

2.3 Energy-Saving Circuits
Existing verifiable computation systems represent a computa-

tion as a quadratic program (informally, a circuit), which results

in a program whose size reflects the worst-case computational

resources necessary over all possible inputs. For instance, when

branching on a runtime-value, Pinocchio’s prover interprets and

proves both branches and only then joins their results. Con-

cretely, the command if(b) {x = y} else {x=2*z} is ef-

fectively compiled as x = 2z + b*(y-2z), as shown generi-

cally in the left side of Figure 3. Similarly, if a loop has a static

bound of N iterations, the prover must perform work for all N,

even if the loop typically exits early.

Ideally, we would like to “turn off” parts of the circuit that

are not needed for a given input, much the same way hardware

circuits can power down parts not currently in use. Geppetto

achieves this by observing that in our cryptographic protocol,

there is no cryptographic cost for QAP variables that evalu-

ate to zero (however these variables still increase the degree of

the QAP, and hence the cost of the polynomial operations the

prover performs). Thus, if at compile-time we ensure that all
intermediate variables for the branch evaluate to 0 in branches

that are not taken, then at run-time there is no need to evalu-

ate those branches at all. The right side of Figure 3 shows an

example of how we achieve this for branches by applying the

condition variable to the inputs of each subcircuit, rather than

to the outputs. Thus, in contrast with Pinocchio, the prover only

does cryptographic work proportional to the path actually taken

through the program.

Prior compilers [49] use a related technique that applies the

condition variable to the equations in each branch, rather than to

the inputs. This avoids the need to interpret untaken branches,

but produces more constraints than Geppetto in the common

case when the branch contains more equations than inputs.

§6.5 explains how our compiler produces energy-saving cir-

cuits, while §7.4 quantifies the significant savings we recoup via

this technique.

3 Defining Proof Composition
We now give formal cryptographic definitions for the concepts

introduced in §2, deferring our concrete protocol to §4.

3.1 Commit-and-Prove Schemes
As discussed in §2.1.1, Geppetto employs three types of digest,

one for F’s IO, one for the local variables for each Fi, and one

for each bus. Each digest, D, may hide the values it represents

via randomness o. Without hiding, we use a trivial opening

o= 0 (and may omit it). We require that all digests of bus values

be binding, as otherwise the prover could, say, use one set of

values for the bus when proving that F0 correctly wrote to the

bus, while using a different set of values when proving that F1

correctly read from the bus. In contrast, digests used only in a

single proof, e.g., for intermediate local variables, need not be

binding, since the verifier only needs to know that there exists

an assignment of values to those variables corresponding to a

single correct execution. Finally, digests of IO naturally need

not be binding since the verifier computes them herself.

As a side note, while Geppetto uses commit-and-prove

schemes to prove function executions, such schemes also en-

able interactive protocols where values are committed, used in

proofs, and opened dynamically. For instance, they easily inte-

grate with existing Σ-protocols as employed in anonymous cre-

dential systems [5, 17].

Since we are interested in succinct proofs, we modify earlier

definitions of commit-and-prove schemes [18, 26, 37] to only

consider computationally bounded adversaries. As a succinct

digest implies that more than one plaintext maps to a given di-

gest value, an unbounded adversary can always “escape” the

digest’s binding property.

Each MultiQAP Q� in our construction defines a relation R
from the family R of all MultiQAPs over a fixed field F. As

our security definition has a security parameter λ ∈ N (which

intuitively determines the size of the field F), we actually talk

about a sequence of families of polynomial-time verifiable rela-

tions {R λ}λ∈N.

Definition 2 (Succinct Commit-and-Prove) Consider �-ary
polynomial-time verifiable relations {R λ}λ∈N on tuples χχχ of
a fixed length �.

A succinct commit-and-prove scheme P = (KeyGen =
(KeyGen1,KeyGen2),Digest,Prove,Verify) for {R λ}λ∈N con-
sists of five polynomial-time algorithms as follows:

• Key generation is split into two probabilistic algorithms:
τ← KeyGen1(1

λ) takes the security parameter λ as input
and produces a trapdoor τ = (τS ,τE ) (independent of R
and consisting of a simulation and extraction component).
(EK,VK)← KeyGen2(τ,R) takes the trapdoor and a rela-
tion R ∈R λ as input and produces a public evaluation key
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EK and a public verification key VK. To simplify notation,
we assume that EK includes a copy of VK, and that EK
and VK include digest keys EKb and VKb for b ∈ [�].

• D(t)
b ←Digest(EKb,χ

(t)
b ,o(t)b ): Given an evaluation key for

b, message instance t for b (χ(t)
b ), and corresponding ran-

domness o(t)b , the deterministic digest algorithm produces

a digest D(t)
b of χ(t)

b .
• π← Prove(EK,χχχ,o): Given an evaluation key, messages

χχχ ∈ R, and openings o, the deterministic prove algorithm
returns a succinct proof π; i.e., |π| is poly(λ).

• {0,1}← Verify(VKb,D
(t)
b ): Given a verification key for b,

the deterministic digest-verification algorithm either re-
jects (0) or accepts (1) the digest D(t)

b .
• {0,1} ← Verify(VK,D,π): Given a verification key and �
digests D, the deterministic verification algorithm either
rejects (0) or accepts (1) the proof π.

Proof-verification guarantees apply only when each digest D(t)
b

in D either passes the digest-verification algorithm or was com-
puted directly by the verifier.

We define two security requirements below. Standard defi-

nitions for correctness and zero-knowledge are in the full pa-

per [23]. First, we require that digests shared across multiple

proofs (i.e., those representing bus values) be binding, meaning

the prover cannot claim the digest represents one set of values in

the first proof and a different set of values in the second proof.

We collect the indexes of their keys in what we call the binding
digest subset S⊂ [�].

Definition 3 (Binding) The commit-and-prove scheme P is
binding for �-ary relations {R λ}λ∈N and binding digest sub-
set S⊂ [�], if for all efficient A and any R ∈ R λ,

Pr[ τ← KeyGen1(1
λ);τ = (τS ,τE );

(EK,VK)← KeyGen2(τ,R);(
b,χ,o,χ′,o′

)← A(EK,R,τE ) :

χ �= χ′ ∧ b ∈ S ∧
Digest(EKb,χ,o) = Digest(EKb,χ′,o′) ] = negl(λ).

Second, we require that if an adversary creates a set of digests

and a proof that Verify accepts, then the adversary must “know”

a valid witness, in the sense that this witness can be successfully

extracted by “watching” the adversary’s execution. Note that

the trapdoor the extractor receives from KeyGen1 is generated

independently of relation R and hence cannot make it easier for

the extractor to produce its own witnesses.

Definition 4 (Knowledge Soundness) The commit-and-prove
scheme P is knowledge sound for �-ary relations {R λ}λ∈N, if
for all efficient A there is an efficient extractor E taking the
random tape of A such that, for any R ∈ R λ,

Pr[ τ← KeyGen1(1
λ);τ = (τS ,τE );

(EK,VK)← KeyGen2(τ,R);
(D,π;χχχ,o)← (A(EK,R) ‖ E(EK,R,τE )) :
(∃b ∈ [�]. Verify(VKb,D

(t)
b )∧D(t)

b �= Digest(EKb,χ
(t)
b ,o(t)b ))∨

(∀b ∈ [�]. Verify(VKb,D
(t)
b )∧Verify(VK,D,π)∧χχχ /∈ R

)

] = negl(λ).

3.2 Composition by Scheduling
As discussed in §2, intuitively, we can verify the correct execu-

tion of a complex F by verifying simpler functions and using

digests to share state between them. We now formalize this in-

tuition by extending knowledge soundness to multiple related

proofs that share digests according to a proof schedule.

Definition 5 (Scheduled Knowledge Soundness) The commit
and-prove scheme P is scheduled knowledge sound for �-ary
relations {R λ}λ∈N and binding digest subset S ⊂ [�], if for all
efficient A there is an efficient extractor E taking the random
tape of A such that, for any R ∈ R λ,

Pr[ τ← KeyGen1(1
λ);

(EK,VK)← KeyGen2(τ,R);
(σ,D,Π;χχχ,o)← (A(EK,R) ‖ E(EK,R,τ)) :

∀D(t)
b ∈ D. (Verify(VKb,D

(t)
b )⇒ D(t)

b = Digest(EKb,χ
(t)
b ,o(t)b ))∧

(∀D(t)
b ∈ D. Verify(VKb,D

(t)
b ) ∧

∀(i, t) ∈ σ. Verify(VK,D(t),πi)
)

⇒∀(i, t) ∈ σ. χχχ(t) ∈ R

] = 1−negl(λ),

where D(t) indicates a digest instance t for each bank b used in
a given proof (and default digests of 0 values for any bank not
used), and χχχ(t) represents the digested values.

Theorem 1 (Scheduled Knowledge Soundness) If a CP P is
knowledge sound and binding for �-ary relations and binding
digest subset, then it is scheduled knowledge sound for the same
relations and subset.

The proof of Theorem 1 can be found in the full paper [23].

Intuitively, it follows from extracting valid digest openings from

all subproofs, and leveraging the binding property of the bus

digests to guarantee consistency across subproofs.

4 Geppetto’s CP Protocol
We now construct an efficient commit-and-prove protocol for

�-ary relations {RQ�
λ
}λ∈N (see §3.1) defined by a MultiQAP Q�

derived from multiple QAPs Qi, as described in §2.1.3.

4.1 MultiQAPs as Polynomials
We use Pinocchio’s technique (which originated with Gennaro

et al. [29]) to lift quadratic programs to polynomials.
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Given MultiQAP Q�, of size ρ� and degree d�, we first de-

fine a set D of d� “root values” of the form r ∈ {2i}d�i=1,5 and

we define the polynomial δ(x) as the polynomial with all r ∈D
as roots. Recalling §2.1.3, we then define a set V of ρ� poly-

nomials vk(x) by interpolation over the roots in D such that for

k ∈ [ρ�],r ∈ D: vk(r) = vr,k. Each of the k polynomials es-

sentially summarizes the effect one of χχχ’s variables has on the

computation. We define similar sets W and Y using the vectors

wr and yr.
We say that the polynomial MultiQAP is satisfied by χ if δ(x)

divides p(x), where:

p(x) =
(
∑ρ
k=0 χk · vk(x)

) ·(∑ρ
k=0 χk ·wk(x)

)−(
∑ρ
k=0 χk · yk(x)

)
.

We use MultiQAPs to prove statements about shared state.

To achieve this, the polynomials corresponding to bus values

need to fulfill an additional condition. We say that a bus bank

Bb is commitment compatible if (i) the polynomials in each set

{yk(x)}k∈Bb are linearly independent, meaning that no linear

combination of them cancels all coefficients, and (ii) all poly-

nomials in the set {vk(x),wk(x)}k∈Bb are 0. The first property

is crucial for commitments to be binding, while the second im-

proves performance and facilitates zero-knowledge when using

externally generated commitments.

By inspection of Equation (5), the buses in our MultiQAP

construction in §2.1.3 are commitment compatible. Concretely,

continuing our example from that section, Equation (5) will be

encoded as the QAP equation:

(0+ · · ·+0)(0+ · · ·+0) = (1 · z0 +1 · z1 +(−1) · ẑ).

4.2 Commit-and-Prove Scheme for MultiQAPs
Geppetto’s protocol inherits techniques from Pinocchio [46];

the key differences are starting with MultiQAPs instead of

QAPs, and splitting the prover’s efforts into separate digest and

proof computations.

We present our protocol in terms of a generic quadratic en-

coding E [29]. In our implementation, we use an encoding

based on bilinear groups. Specifically, let e be a non-trivial bi-

linear map [13] e : G1×G2 → GT and let g1, g2 be generators

of G1 and G2 respectively. To simplify notation, we define the

encoding E(x) to be either gx1 or gx2 depending on whether it

appears on the left or the right side of a product ∗.
Below, each Bb ∈ B represents a subset of [ρ�], and we use

the commit-and-prove message χ(t)
b to represent the values of

bank instance B(t)
b .

Protocol 1 (Geppetto)
• τ← KeyGen1(1

λ):

Choose s,{αv,b,αw,b,αy,b}b∈[�],rv,rw R← F. Construct τ as
(τS ,τE ) = (s,{αv,b,αw,b,αy,b}b∈[�],rv,rw),(rv,rw).

• (EK,VK)← KeyGen2(τ,RQ�):

Choose {γb,βb}b∈[�] R← F. Set ry = rv ·rw. To simplify nota-
tion, define Ev(x) = E(rvx) (and similarly for Ew and Ey).

5Choosing roots of this form enables our C++ library to implement an effi-

cient d� logd� algorithm [15] for the prover’s polynomial division.

For the MultiQAP Q� = (ρ�,d�,B,V ,W ,Y ,δ(x)), con-
struct the public evaluation key EK as:

(EKb)b∈[�], (E(si))i∈[d] , Ev(δ(s)),Ew(δ(s)),Ey(δ(s))

where each bank’s digest key EKb is defined as:(
Ev(vk(s)), Ew(wk(s)), Ey(yk(s))

Ev(αv,bvk(s)), Ew(αw,bwk(s)), Ey(αy,byk(s)),

E(βb(rvvk(s)+ rwwk(s)+ ryyk(s))),
)
k∈Bb

Ev(αv,bδ(s)), Ew(αw,bδ(s)) Ey(αy,bδ(s)),
Ev(βbδ(s)), Ew(βbδ(s)), Ey(βbδ(s)).

Construct the public verification key VK as:

(VKb)b∈[�], E(1), Ey(δ(s)) ,

where each bank’s digest verification key VKb is:

VKb = E(αv,b),E(αw,b),E(αy,b),E(γb),E(βbγb) .

Additionally VK includes digest keys EKb for digests that
the verifier computes (e.g., for IO banks). Since EK and
VK are public, the split into prover and verifier keys is pri-
marily designed to reduce the verifier’s storage overhead.

• D(t)
b ← Digest(EKb,χ

(t)
b ,o(t)b ):

Parse o(t)b as (ov,ow,oy).
If Bb is an IO bank, simply return:

Ev(v(b)(s)), Ew(w(b)(s)), Ey(y(b)(s)),

where v(b)(s) = ∑k∈Bb χkvk(s)+ ovδ(s) (and similarly for
w(b)(s) and y(b)(s)). Since the verifier typically computes
these digests, ov is typically 0. Note that all of these terms
can be computed using the values in VKb, thanks to the
linear homomorphism of the encoding E.
For any other bank, compute:

Ev(v(b)(s)), Ew(w(b)(s)), Ey(y(b)(s)),
Ev(αv,bv(b)(s)), Ew(αw,bw(b)(s)), Ey(αy,by(b)(s)),
E(βb(rvv(b)(s)+ rww(b)(s)+ ryy(b)(s))) .

Note that all of these terms can be computed using the
values in EKb. The values above constitute an extractable
digest of the χ(t)

b values, perfectly hidden via o(t)b . For
commitment-compatible buses, this digest is also binding.
Furthermore, for all commitment-compatible buses,
v(b)(s),w(b)(s),ov,ow are all 0, so the digest above
simplifies to:

Ey(y(b)(s)),Ey(αy,by(b)(s)),E(βb(ryy(b)(s))) ;

• π←Prove(EK,χ,o): Parse each ob ∈ o as (ob,v,ob,w,ob,y)
and use the coefficients χ to calculate:

v(x) = ∑
k∈[ρ�]

χkvk(x)+ ∑
b∈[�]

ob,vδ(x),

and similarly for w(x), and y(x).
Just as in a standard QAP proof [29], calculate h(x) such
that h(x)δ(x) = v(x)w(x)− y(x), that is, the polynomial
that proves that δ(x) divides v(x)w(x)−y(x). Compute the
proof as π← E(h(s)) using the E(si) terms in EK.
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• {0,1}← Verify(VKb,D
(t)
b ): Verify digest D(t)

b by checking

Ev(v(b)(s))∗E(αv,b) = Ev(αv,bv(b)(s))∗E(1) (6)

Ew(w(b)(s))∗E(αw,b) = Ew(αw,bw(b)(s))∗E(1) (7)

Ey(y(b)(s))∗E(αy,b) = Ey(αy,by(b)(s))∗E(1) (8)

and the β check:

E
(

βb(rvv(b)(s)+ rww(b)(s)+ ryy(b)(s))
)
∗E(γb) = (9)

(
Ev(v(b)(s))+Ey(y(b)(s))

)
∗E(βbγb)+E(βbγb)∗Ew(w(b)(s)).

(For buses, we do not require the checks in Equations (6)

and (7), and we can simplify the β check (Eqn (9)).)
• {0,1} ← Verify(VK,D0, . . . ,D�−1,π): Combine the di-
gests and perform the divisibility check on the proof term
E(h(s)) in π:

(
∑b∈[�]Ev(v(b)(s))

)
∗
(

∑b∈[�]Ew(w(b)(s))
)

(10)

−
(

∑b∈[�]Ey(y(b)(s))
)
∗E(1) = E(h(s))∗Ey(δ(s)) .

As described, the protocol supports non-interactive zero-

knowledge proofs, in addition to verifiable computation. For

applications that only desire the latter, the multiples of δ(s) in

the EK and the use of digest randomizations o may be omitted.

Theorem 2 Protocol 1 has binding digests, as defined by Defi-
nition 3 under the d-SDH assumption.

Theorem 3 Protocol 1 is a knowledge-sound commit-and-
prove scheme, as defined by Definition 4.

Theorem 4 Protocol 1 is a perfectly zero-knowledge commit-
and-prove scheme.

We refer to the full paper [23] for the proofs of these theorems

and the definition of their assumptions. Like the protocol, the

proofs inherit their techniques from Pinocchio.

5 Verifiable Crypto Computations
Background Pinocchio, along with the systems built atop it,

instantiates its cryptographic protocol using pairing-friendly el-

liptic curves. Such curves ensure good performance and com-

pact keys and proofs. An elliptic curve E defines a group of

prime order p′ where each element in the group is an (x,y)
point, with x and y drawn from a second field Fp of large prime

characteristic p. When Pinocchio is instantiated with such a

curve, the QAPs (and hence all verifiable computations) are de-

fined over Fp′ , and hence code that compiles naturally to oper-

ations on Fp′ is cheap.

Approach At a high-level, we choose the curve E we use to

instantiate Geppetto such that the group order “naturally sup-

ports” operations on a second curve Ẽ, which we can use for any

cryptographic scheme built on Ẽ, e.g., anything from signing

with ECDSA to the latest attribute-based encryption scheme.

In more detail, suppose we want to verify ECDSA signatures

over an elliptic curve Ẽ built from points chosen from Fq. If

we instantiate Geppetto using a pairing-friendly elliptic curve

E with a group of prime order p′ = q, then operations on points

from Ẽ embed naturally into our QAPs, meaning that basic op-

erations like adding two points cost only a handful of crypto-

graphic operations, rather than hundreds or thousands required

if p′ did not align with q.

Bootstrapping As described in §2.2, proof bootstrapping is

a particularly compelling example of verifying cryptographic

operations, since it allows us to condense a long series of proofs

and digests into a single proof and digest.

Remarkably, Karabina and Teske [35] show that it is possi-

ble to generate two MNT curves [45] E and Ẽ that are pairing

friendly and, more importantly, Ẽ can be embedded in E, and E
can be embedded in Ẽ.

Ben-Sasson et al. [9] recently instantiated and implemented

such curves to bootstrap the verification of individual CPU in-

structions. Geppetto can use a similar approach to achieve un-

bounded bootstrapping of entire QAPs. Specifically, we could

instantiate two versions of Geppetto, one built on E that con-

denses proofs consisting of points from Ẽ and another built on Ẽ
that condenses proofs consisting of points from E.

Unfortunately, there are drawbacks to using the curves Ben-

Sasson et al. found. First, they were only able to find a pair of

curves that provide 80 bits of security. Finding cycles of perfor-

mant curves for the more standard 128-bit setting appears non-

trivial, since just finding 80-bit curves required over 610,000

core-hours of computation. Second, the MNT curve family

is not the most efficient family at higher security levels, and

achieving a cycle requires larger-than-usual fields, creating ad-

ditional inefficiency [9].

To estimate the costs of using MNT curves at the 128-bit se-

curity level used by Pinocchio, we coded up all of the relevant

curve operations in Magma [14] and counted the group opera-

tions required. We made very optimistic assumptions about the

optimal implementation of the curves, e.g., by assuming that

the operations employ all available EC tricks within the pairing

computation, even though the actual curves may not allow for

them. Even under these assumptions, our measurements indi-

cate that key and proof generation, as well as IO verification, for

Geppetto’s first batch of proofs would be 34-77× slower than

a standard Pinocchio-style proof, while the constant pairing-

based portion of proof verification would be 11× slower; sub-

sequent batches would cost more, due to technical challenges in

the way the curves fit together [9].

As a pragmatic alternative, we use a sequence of nested

curves (an option suggested previously [9, Footnote 10]) to in-

stantiate and implement bounded bootstrapping, Specifically,

we instantiate one version of Geppetto with the same highly

efficient BN curve [6] employed by Pinocchio. We use the

BN curve to generate a collection of digests and proofs for

our MultiQAP-based CP scheme. We then construct a sec-

ond curve capable of efficiently embedding the BN curve op-

erations. When instantiated with the second curve, Geppetto

can efficiently verify crypto operations on the BN curve. Thus,
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a verifier can, for example, check signatures on the verification

key built on the BN curve and then use that key to verify the

BN digests and proofs. To gain greater scalability, this process

can be repeated with a bounded number of additional carefully

constructed curves, each used to verify the digests and proofs

from the previous curve. Unfortunately, none of the curves can

efficiently embed later curves, and hence when generating keys,

the client must ultimately commit to the maximum number of

BN proofs that will be verified. Fortunately, our use of energy-

saving circuits saves the prover effort if it ends up using fewer

proofs.

Details We construct bilinear systems, GIN and GOUT . To

achieve this at the 128-bit security level, we instantiate GIN us-

ing a Barreto-Naehrig (BN) elliptic curve [6], and then construct

GOUT accordingly with the Cocks-Pinch method [21]. Roughly,

the latter constructs a pairing-friendly curve by outputting a fi-

nite field corresponding to a given, prescribed group order. We

fix the prime p from the BN parameterization as the group order,

so that the output of the Cocks-Pinch algorithm is the prime p̃
(as well as the other parameters required in the description of

GOUT ). The following lemma makes this explicit in a special

case that is of most interest in the current work.

Lemma 1 Let x∈Z be such that p= 36x4+36x3+24x2+6x+
1 and p′ = 36x4 +36x3 +18x2 +6x+1 are prime. If

p̃= 5184x8+10368x7 +12204x6 +8856x5 +4536x4

+1548x3 +363x2 +48x+4 (11)

is also prime, then there exists both an elliptic curve E/Fp of
order #E(Fp) = p′ with embedding degree k= 12 (with respect
to p′), and an elliptic curve Ẽ/Fp̃, such that its order #Ẽ(F p̃) is
a multiple of p and Ẽ has embedding degree k̃ = 6 (w.r.t. p).

Our full paper contains proofs and construction details [23].

To construct additional nesting curves, given a group order,

we once again apply the Cocks-Pinch approach to produce a

sequence of curves E(i), defined over prime fields Fpi , respec-

tively, such that pi divides #E(i+1)(Fpi+1
). Each hop creates a

larger curve, and hence will eventually produce curves equal to

or larger than the MNT curves that support unbounded boot-

strapping. For example, for the first Cocks-Pinch curve, p̃ is

509 bits (with embedding degree 6), and the next two levels are

1023 bits and 2055 bits with embedding degrees 3 and 1.

Even when we reach these larger sizes, the inner layers (es-

pecially the BN curve where most of the “real” computation

happens) are still more efficient than the MNT curves, and even

at comparable sizes, exponentiations on the Cocks-Pinch curves

are faster due to a CM endomorphism (not available for MNT

curves) and a G2 cubic twist. Of course, for sufficiently large

problems, the unbounded approach eventually offers better per-

formance.

6 Implementation
The Geppetto system includes a library for guiding the compila-

tion of banks and buses, a cryptographic compiler that operates

on C programs via LLVM, and libraries that support common

programming patterns and bootstrapped computation.

Although it has been applied to over 10,000 lines of C and

supports many LLVM instructions, Geppetto imposes semantic

restrictions on source programs, thereby reflecting limitations

of compilation to QAP encodings. For instance, it offers almost

no support for computations on pointers. Recent work shows

how to remove many of Geppetto’s restrictions [54].

We first explain our programming model by example, then

describe the design and selected features of our compiler, and

finally discuss C libraries and programming patterns.

6.1 Programming Model
A Geppetto programmer defines the structure of outsourced

computations, their compound proofs, and the shared buses that

connect them, thereby explicitly controlling cost and amortiza-

tion of proof and digest generation. This structure is embed-

ded in source C programs via library invocations. (The design

of higher-level syntactic sugar and programming abstractions is

left as future work.)

From the verifier’s viewpoint, Geppetto’s C programming

model is reminiscent of remote procedure calls (RPCs). The

programmer marks some function calls as outsourced, indicat-

ing that the verifier should remote the calls to an untrusted ma-

chine, then verify their results using the accompanying crypto-

graphic evidence. This approach provides a clear operational

specification of the verified computation, even for complex

proof schedules: when the main program of the verifier com-

pletes, its outputs and return values must be the same as those

that would be obtained by executing the entire program on a

single trusted machine.

We illustrate the definition of outsourced functions on the

Geppetto program sample.c, outlined in Figure 4. The

program defines some application code (elided), notably

compute() that operates on a matrix and a vector of integers.

The programmer intends to fix the matrix across instances

of compute, and vary the input vector. To this end,

sample.c declares three banks for verifiable outsourced com-

putation. For instance, relying on the Geppetto header file,

BANK(QUERY, vector) defines a QUERY bank datatype that

carries values of type vector, and functions like save_QUERY

and load_QUERY, analogous to RPC marshalling and unmar-

shalling functions. By convention, each bank instance can be

assigned only once, and must be assigned before being loaded.

The program then defines two functions: job, the outsourced

function, and main, that repeatedly calls job and processes its

arguments. Note that the call to job is marked as OUTSOURCE,

and that the digest db to the largest input M is computed just

once, outside the loop.

• When compiling sample.c natively outside Geppetto,

geppetto.h provides trivial definitions that implement

DATA, QUERY, and RESULT as in-memory buffers and

OUTSOURCE as a local call: OUTSOURCE(job, db, q) is

replaced with job(db, q).

• During compilation, Geppetto interprets the outsourced

function of sample.c, using symbolic values for the pay-
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#include "geppetto.h" // Geppetto banks and proofs

// application code

typedef struct { int M[SIZE][SIZE]; ...} bigdata;

typedef struct { int x[SIZE]; ...} vector;

void compute(bigdata *db, vector *in, vector *out);

BANK(DATA, bigdata) // we define 3 IO banks

BANK(QUERY, vector)

BANK(RESULT, vector)

RESULT job(DATA db, QUERY in) {

bigdata M;

vector query, result;

load_DATA(db,&M);

load_QUERY(in,&query);

compute(&M, &query, &result);

return (save_RESULT(&result));

}

int main() {

bigdata M;

vector query[N], result[N];

... // prepare the data & queries

DATA db = save_DATA(&M); // digest M once into db

for (i=0; i<N; i++) {

QUERY q = save_QUERY(&query[i]);

RESULT r = OUTSOURCE(job, db, q);

load_RESULT(r,&result[i]);

}

... // do something with the results

}

Figure 4: Example Geppetto Program (sample.c).

load of its input banks, and generates a public key pair

(EK,VK).
• In prove mode, using EK, Geppetto interprets sample.c

with concrete values to produce cryptographic digests (D)

for each bank; it intercepts OUTSOURCE to accumulate in-

termediate values during the execution of job and to pro-

duce a proof (π) for each outsourced call.

• In verify mode, using VK, Geppetto produces a version of

the program that replaces bank loads and outsource calls

with cryptographic verifications; this version can then be

natively compiled with clang -DVERIFY sample.c.

In both modes, the execution flow of main determines the

schedule (σ) of calls to outsourced functions.

In more details, in verify mode, verification keys are initially

loaded from files, banks are supplemented with cryptographic

functions for verifying digests, and OUTSOURCE(job, db, q)

is replaced with the function call verify_job(db, q). In Fig-

ure 5, we show the implementation of verify_job, generated

by Geppetto during the Geppetto compilation of sample.c and

included during its native compilation with the -DVERIFY flag.

Just like job, verify_job takes two banks and returns a bank.

The input banks propagate previously computed (or verified) di-

gests from the caller; in particular, the bigdata digest is shared

across all calls. The function loads and digests the prover’s pro-

posed value for the output bank, verifies the local bank’s digest

RESULT verify_job(DATA b0, QUERY b1) {

digest D[4];

D[0] = b0->d; // use digest produced by save_DATA

D[1] = b1->d; // use digest produced by save_QUERY

RESULT b2 = load_redigest_RESULT();

D[2] = b2->d;

load_verify_digest(&STATE.vk, &D[3], LOCALS);

proof pi;

load_proof("job", &pi);

verify_proof(&STATE.vk, &pi, 4, D);

return b2;

}

Figure 5: Simplified Verification Example. Geppetto replaces the
original outsourced function job with a version that loads the function
result and cryptographic evidence and then verifies that the function
was computed correctly.

evidence, and verifies the computation’s proof. If any veri-

fication fails, the program exits with an error. Otherwise, the

resulting bank b2 carries the correct response to the outsourced

computation.

6.2 MultiQAP Programming Patterns
Geppetto provides additional support for common commit-and-

prove patterns, coded as generic C libraries.

Sequential Loops Many large computations consist of a main

loop with a code body that updates loop variables at every iter-

ation, and also reads (but does not modify) outer variables.
Geppetto provides a generic template for outsourcing each

loop iteration (or, more generally, for outsourcing fixed num-

bers of iterations that fit within a single QAP), with a bank for

the outer variables; hence the cost to digest and verify the outer

bank is amortized across all loop iterations.

What about the loop variables? Recall that our commit-and-

prove scheme requires that each bank be assigned at most once
in every proof. Thus, we use two buses for the loop variables,

alternating between odd and even iterations of the loop, and we

compile the loop body twice, once reading the even loop vari-

ables and writing the odd loop variables, and once the other way

round. Hence, our generic template defines three banks, two

outsourced functions, and a refined loop that alternates calls be-

tween the two. The verifier then checks two digests and one

proof for each iteration, except for the first iteration (where it

computes a digest of the initial values of the loop variables) and

the last (where it recomputes a digest of the final values returned

by the prover).

MapReduce Geppetto also provides a few generic templates

for parallel loops (like sample.c above) and MapReduce com-

putations. As with sequential loops, for MapReduce computa-

tions, we use a series of buses to succinctly share potentially

many variables between mappers and reducers. Specifically, we

adopt Pantry’s model [16] in which M mappers feed R reduc-

ers. Geppetto compiles a MapReduce job into a MultiQAP with

two sub-QAPs (Qm for the mapper computation and Qr for the

263263



reducer computation) with max(M,R) shared buses in between

them. Each reducer reads from M buses and computes its out-

put. Each mapper computation takes an ID as input, telling it

which R buses to write its outputs to. For example, suppose

M = 10 and R = 2, and hence we have 10 shared buses. The

first mapper writes its output for reducer 1 to bus 1 and for re-

ducer 2 to bus 2 (and implicitly writes zeros to the other buses).

The second mapper writes its output for reducer 1 to bus 2 and

for reducer 2 to bus 3. This continues until the tenth mapper

writes its output for reducer 1 to bus 10 and its output for re-

ducer 2 to bus 1. The prover sends the digests for all of the

computations and buses, along with the proofs binding them

together, back to the verifier, who ensures (via the digests fed

into each Verify call) that the data was routed correctly between

mappers and reducers. If desired, all of the proofs and digests

can be made zero knowledge, and since the dataflow between

mappers and reducers is data independent, the computation as a

whole is zero knowledge as well.

Automated QAP Partitioning As explained above, Gep-

petto’s libraries enable programmer-directed QAP partitioning.

We also experimented with automated partitioning of large

monolithic QAPs, expressed as finding hyper-graph cuts. We

had some success efficiently finding approximate cuts in graphs

of up to 200,000 equations with the METIS tool [36]. However,

the programmer-directed approach is more flexible and better

exploits regular structure such as loops.

6.3 Symbolic Interpretation via LLVM
Next, we provide details on the construction of the Geppetto

compiler. We elide QAP techniques described elsewhere [46].

General-Purpose LLVM Front-End As a front-end com-

piler, we use clang [40], a fast full-fledged C compiler with rich

syntax, standard semantics, and optimizations. Hence, Gep-

petto compilation to quadratic equations starts from a low-level,

typed, integer-centric representation of the program, obtained

by running (for instance) clang -O2 -S -DQAP -emit-llvm

sample.c -o sample.s, where -DQAP declares but does not

define Geppetto primitive types and functions.

Compiling to QAPs benefits from clang’s aggressive inlining

and partial evaluation. We disable other, unhelpful clang opti-

mizations, such as its replacement of multiplication by a con-

stant x ∗8 (free in QAPs) with a bit shift x << 3 (which incurs

bit splitting). Using clang should also facilitate extension to

other LLVM-supported languages, but this may require adding

support for more of LLVM’s instruction set.

Interpreting LLVM Bitcode Instead of emitting an arith-

metic circuit, Geppetto first compiles, then evaluates programs

(in prove mode) by symbolic interpretation of LLVM code.

Keeping the circuit implicit facilitates the generation of proofs

for large computations, inasmuch as the unfolded circuits can

be much larger than the LLVM code that generates them.

Our interpreter relies on a shallow embedding into F#, re-

lying on the F# control stack and heap; i.e., function calls are

implemented by calls to an F# call function, and mallocs are

F# array creations.

Some values are known at compile time, and used to special-

ize the QAP equations (Eqn. (4)) we produce. Others are known

only at run time; these values are treated symbolically, using an

abstract domain for integers; their operations generally involve

adding QAP equations.

Interpretation is cheap relative to cryptography, so, in prove

mode, we simply re-interpret the LLVM code to produce con-

crete witnesses for all run-time intermediate variables (the

‘wires’ of the implicit circuit), and we accumulate them into

digests and proofs. Thus, Geppetto uses two related interpreters

(described below) that differ in their interpretation of integers.

Symbolic Interpretation (1): Compilation Geppetto sepa-

rately interprets each outsourced function. As a side-effect of

their operations, variables and equations are added to the func-

tion’s QAP. For instance, multiplying two unknown integers

adds a variable (for the result) and an equation. Global caches

identify and eliminate common subexpressions.

For this interpretation, we represent unknown integers as a

triple of (i) a linear combination of QAP variables; (ii) a source

semantics: either some LLVM intn integer (e.g., int, short,

char) or a field element (for embedded cryptography); and (iii) a

range: an interval in Z that covers any value this integer may

have at run time. Keeping track of ranges enables us to opti-

mize precomputations for fast exponentiations, to minimize bi-

nary decompositions (which cost one equation per potentially

active bit), to detect field overflows, and to defer integer trunca-

tion (which require binary decompositions) for almost all op-

erations. For instance, our compiler may represent the (un-

known) value of an LLVM local variable as ‘an int32, obtained

by adding the 5th and 6th QAP variables, with range 1..100’.

At this stage of the compilation, the MultiQAP consists of

one QAP per function, plus ‘linking’ information on the shared

buses. This suffices to generate keys, as the compiler traverses

each function’s QAP in turn, while keeping the buses virtual.

Symbolic Interpretation (2): Evaluation in ‘prove’ mode
We use another, faster instance of our interpreter, and we now

interpret the whole program, not just its outsourced code. De-

pending on the program’s control flow, one outsourced function

may be interpreted many times with different ‘run-time’ val-

ues. The evaluator still distinguishes between ‘compile-time’

and ‘run-time’ values, although it has values for both, because it

needs to accumulate QAP witnesses for any operation on ‘run-

time’ values, in strict correspondence with the QAP variables

and equations produced by the compiler. Hence, values for all

QAP variables introduced at compile time are stored as inputs

for the cryptographic digests.

Because some compiler optimizations depend on data not

available at run time (such as integer ranges and caches), the

evaluation of some operations depends on auxiliary ‘interpreta-

tion hints’ passed along by the compiler. For example, before

XORing a variable with a constant, a hint tells the evaluator

whether a new binary decomposition is required (as we try to

re-use existing decompositions) and, when required, how many
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bits it uses (as the evaluator must record a witness for every bit

of the decomposition provisioned by the compiler).

The evaluator also intercepts calls to load or save banks, as

well as OUTSOURCE calls, and computes digests and proofs re-

spectively. When evaluation completes, the prover will have

produced exactly the evidence expected by the verifier.

Cryptography (FFLib) All cryptographic operations are im-

plemented in a separate high-performance C++ library, with ef-

ficient support for many base fields and elliptic curves. FFLib

is optimized for native x64 execution, unlike our QAP-friendly

crypto libraries (§6.4). In addition to default curves that achieve

128-bit security, it also supports toy curves for testing and de-

bugging. Since as much as 75% of the total run time (for key,

digest, and proof generation) is spent multiplying and exponen-

tiating elliptic curve points, we optimize these operations using

standard pre-computation and batching techniques [46].

Primitive Libraries Whenever possible, we reflect (and even

implement) primitive features of the interpreter using C types

and functions. Pragmatically, this keeps our code base small,

and lets us rely on standard (non-cryptographic) tools for testing

and debugging purposes—for instance by comparing printfs

between native clang runs and interpreted runs of the same code.

We provide a basic IO library. When loading from a file,

a flag indicates whether this is a ‘compile-time’ or a ‘run-time’

file. Values from compile-time files are baked into the compiled

QAP. For run-time files, the compile-time interpreter allocates

fresh local QAP variables, and the evaluation-time interpreter

loads the file’s contents as run-time values. Thus, the file repre-

sents private, untrusted inputs provided by the prover.

As another example, for many programs, QAP size intri-

cately depends on compile-time values; the interpreter provides

a primitive function int nRoot() that returns the degree of

the QAP being generated (or proved), thereby letting C pro-

grammers debug the cryptographic performance of their code

and even control the partitioning of their code between several

QAPs of comparable degrees—for instance by unrolling a loop

until four million QAP equations have been generated.

6.4 Cryptographic Libraries and Bootstrapping
Geppetto has specific support for the compilation of programs

that evaluate cryptographic operations, to enable bootstrapping

and other flexible applications of nested evaluation.

Field arithmetic and cryptography To support bootstrap-

ping, we provide custom C libraries that implement primitive

field operations including addition, multiplication, division, and

binary decomposition. These enable fast, field-based embed-

ding of cryptography, intuitively taking advantage of 254-bit

words. The field type is also implemented natively. Thus, field

operations can be compiled both with clang and for bootstrap-

ping by Geppetto.

Accordingly, our IO library supports loading C structs that

mix machine integers and field elements. As shown in the code

of verify_job, we use it to load cryptographic evidence as

‘run-time’ data, and similarly for all other pieces of evidence.

By choosing to load the verification keys at ‘compile time’ or

‘run time’, we select a different trade-off between performance

and flexibility (see §7.3).

QAP-Friendly Elliptic Curves Cryptography We devel-

oped a plain, QAP-friendly C implementation of the elliptic-

curve algorithms for §5, including optimal Ate pairings. We

briefly discuss two specific optimizations.

As in prior work [9], we use affine coordinates (2 field el-

ements) instead of projective ones (3 field elements). Native

implementations use projective coordinates to avoid a field divi-

sion when adding two points; since we verify the computation,

however, a field division is just as fast as a field multiplication.

For fast multiplication, the native algorithm has four cases at

each iteration of the loop, due to the special treatment of infinite

points in addition. To prevent these conditional branches, which

are costly when compiling to QAPs, we add an initial summand

and remove it at the end.

Bounded Bootstrapping Our compiler implements multiple

levels of bootstrapping, as described in §2.2. Continuing with

our example in §6.1, assume we wish to compress the N proofs

by writing a bootstrapped function that aggregates the values

in the result[N] array. Geppetto’s libraries will ensure that

all N proofs (and corresponding digests) are verifiably verified,

in addition to verifying the aggregation of the result array.

To this end, we include another, similar but distinct copy of

our Geppetto library that lets the C programmer define ‘level

2’ or ‘outer’ banks and outsourced functions. We can then pro-

gram with two nested levels of verifiable computations, with the

outer top-level calling ‘level 2’ outsourced functions, which in

turn call inner ‘level 1’ outsourced functions according to their

own schedules. Hence, we also support proof schedules, digest

re-use, and MultiQAP programming at ‘level 2’. As before,

we obtain our verification specification by using a trivial im-

plementation of banks as local buffers and ignoring OUTSOURCE

annotations.

When compiling, we first run the Geppetto compiler with

the trivial definition of ‘level 2’ banks and OUTSOURCE, and the

primitive Geppetto definitions for ‘level 1’. This generates keys

and code for outsourcing all ‘level 1’ functions. We then run the

Geppetto compiler with the primitive Geppetto definitions for

‘level 2’, and with the -DVERIFY flag for ‘level 1’, thereby in-

cluding, e.g., the code of verify_job instead of job, as well as

our supporting cryptographic libraries for all ‘level 1’ elliptic-

curve verification steps.

When proving, we run the Geppetto prover first at level 1

(producing evidence for its outsourced calls) then at level 2

(loading that evidence from untrusted, ‘run-time’ files). When

verifying, we simply compile the source program with the

-DVERIFY flag for level 2.

The approach above applies for further bootstrapping levels.

265265



6.5 Branching and Energy-Saving
When evaluating a program, there is no proof cost involved for

QAP variables that evaluate to zero: formally, we add a poly-

nomial contribution multiplied by 0 (§4.1), and we multiply di-

gests by 1 (a key element exponentiated by 0). Thus, if at com-

pile time we ensure that all intermediate variables for a branch

evaluate to 0 when the branch is not taken, then at run time there

is no need to evaluate that branch at all.

For example, consider the code fragment if(b) t = f(x).

At compile time, if b is known, we just interpret the test, and

compile the call to f only if b is true. If b is unknown, we in-

terpret this fragment as t = f(b*x) + (1 - b)*t and, cru-

cially, we compile the call to f conditionally on the guard b,

with the following invariant: if b is 0 and f’s inputs are all 0,

then its result must be zero, and zero must be a correct assign-

ment for all its intermediate variables. Additionally, any store

in f is conditionally handled, using similar multiplications by b.

Note that the addition of (1 - b)*t is generally required to

ensure that, if the branch is not taken, then the value of t is

unchanged.

More generally, we extend our ‘compile-time’ interpreter so

that its main evaluation function takes an additional parame-

ter: its guard, g, with range 0..1. The guard is initially 1, but

it can also be unknown (typically one of the QAP variables).

Except for branches, the guard is left unchanged by the in-

terpreter. Whenever the interpreter accesses a register with a

less restrictive guard, it multiplies it by g before using it. (We

cache these multiplications.) When branching on an unknown

boolean, say b, both branches are evaluated with guards g ∗ b
and g∗ (1−b), respectively. When joining, we sum the results

of the corresponding branches, as explained next.

The single-static-assignment discipline of LLVM and its ex-

plicit handling of joins help us implement this feature. In our

example, the code actually passed from clang to Geppetto is

entry:

%tobool = icmp eq i32 %b, 0

br i1 %tobool, label %if.end, label %if.then

if.then:

%result = ...

br label %if.end

if.end:

%t = phi i32 [ %result, %if.then ], [ %t, %entry ]

...

where the compile-time function phi selects which register to

use for the resulting value of t after the join. At compile time,

as we symbolically execute all branches, we simply interpret

the phi function as a weighted sum instead of a selector.

At run time, our representation of b tells us whether it was

known at compile time or not; we use that information to (im-

plicitly) provide 0 values for any branch not actually taken.

7 Evaluation

Below, we evaluate the effect of Geppetto’s optimizations on

the performance of the prover. We run our experiments on an

Barreto-Naehrig Cocks-Pinch

Op Base Twist Level 1 Level 2

Fixed Base Exp. 21.2μs 87.2μs 161.3μs 1027.5μs

Multi Exp. (254 bit) 55.6μs 241.5μs 454.5μs 2008.2μs

Pairing 0.6ms 5.0ms 31.9ms

Field Addition 44.2ns 43.3ns 65.2ns

Field Multiplication 288.2ns 288.0ns 726.0ns

Figure 6: Microbenchmarks for Cryptography. Breakdown of the
main sources of performance overhead in Geppetto’s larger protocol.
Each value is the average of 100 trials. Standard deviations are all
less than 4%.

HP Z420 desktop, using a single core of a 3.6 GHz Intel Xeon

E5-1620 with 16 GB of RAM.

7.1 Microbenchmarks

To calibrate our results, we summarize the cost of our cryp-

tographic primitives in Figure 6. We generally use a Barreto-

Naehrig (BN) curve for generating digests and proofs, and we

use the Cocks-Pinch (CP) curves to handle embedded crypto-

graphic computations like bootstrapping. We show measure-

ments from two CP curves to illustrate how the costs grow for

each progressive level. The BN curve is asymmetric, meaning

that one source group (base) is cheaper than the other (twist).

Geppetto’s protocol and compiler are designed to keep most of

the work on the base group.

The CP curves are slower than the BN for two reasons. First,

the CP curves are chosen to support bounded bootstrapping, so

they use larger field elements than the BN curve (see §5). Sec-

ond, the BN code has been extensively optimized, including

hand-tuned assembly code, while the CP code is newly writ-

ten C. Based on operation counts from Magma [14], the first

CP curve should be within 2-4× of the BN curve, and indeed

comparing the CP curve’s performance with a similar C version

of the BN curve confirms this.

7.2 MultiQAPs

We compare the use of MultiQAPs for shared state with the

use of hashing in prior work such as Pantry [16]. At a mi-

cro level, Pantry’s results suggest that hashing an element of

state increases the degree of the QAP by ∼11.25/byte. In con-

trast, with MultiQAPs, a full field element only increases the

degree by one, so with Geppetto, the degree only increases by

∼0.03/byte, a savings of 375×. Even if we want to operate on

32-bit values, instead of full field elements, Geppetto only costs

0.25/byte, a savings of 45×.

At a macro level, for MapReduce, Pantry and Geppetto share

the same costs for proving that the core mapper and reducer

computations were performed correctly; on top of that, to han-

dle state transferred between mappers and reducers, Pantry

proves the correctness of 2M ·R hashes (since both the mappers

and the reducers must prove they hashed the state correctly),

while Geppetto proves the correctness of M ·R bus digests. As

a result, Geppetto’s keys end up being a bit smaller; Geppetto’s
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QAP Degree KeyGen Prover Verifier Baseline

MR: Dot product Geppetto 10K 5s 3s 10ms
0.5ms

(m= 10K) Pantry 1.1M (103×) 643s (114×) 3696s (1169×) 58ms (5.8×)

MR: Dot product Geppetto 161K 49s 53s 10ms
6.3ms

(m= 160K) Pantry 16.8M (104×) 14130s† (283×) 22187s† (412×) 58ms† (5.8×)

MR: Nucleotide substring Geppetto 1K 0.7s 1s 36ms
0.2ms

(m= 6K,d = 10) Pantry 98K (84×) 39s (55×) 126s (72×) 58ms (1.6×)

MR: Nucleotide substring Geppetto 26K 21s 43s 35ms
0.3ms

(m= 60K,d = 32) Pantry 327K (13×) 155s (7×) 909s (21×) 58ms (1.7×)

Loop: Matrix exponentiation Geppetto 8K 5s 51s 411ms
0.9ms

(n= 10,e= 40) Pantry 32K (4.0×) 15s (3.1×) 405s (8×) 211ms (0.5×)

Loop: Matrix exponentiation Geppetto 37K 15s 253s 421ms
1.1ms

(n= 20,e= 40) Pantry 131K (3.5×) 54s (3.5×) 1463s (6×) 211ms (0.5×)

Figure 7: Apps with Shared State. For MapReduce (MR) apps, we give per-mapper statistics. For Loop, we consider the entire computation.
These apps do not use bootstrapping. Parenthetical values show Pantry’s relative overhead. Entries with † indicate simulated Pantry values.

keys save further relative to Pantry, as Pantry needs key mate-

rial for R hashes for each mapper and M hashes for each reducer,

while Geppetto only needs max(M,R) shared buses (§6.2).

A naı̈ve alternative to MultiQAPs and hashing is to build one

gigantic Pinocchio QAP, so that the shared state becomes sim-

ply internal circuit wires. However, our experiments quickly

showed the futility of this approach; even for the relatively

modest applications shown in Figure 7 and assuming only 10

mappers, this approach would require a QAP with a degree of

10M+, while the Pinocchio prover keels over (i.e., begins swap-

ping) before it can reach 3M on a 16 GB machine.

7.2.1 Applications

To measure the end-to-end effect of MultiQAPs, we evaluate

Geppetto on the following applications. We compare Gep-

petto’s results against Pantry’s implementation running on the

same hardware, except when Pantry runs out of memory, in

which case we use Pantry’s validated cost model [16]. We bor-

row the first two examples from Pantry [16] to give a direct com-

parison with their work. We adopt Pantry’s ratio of 10 mappers

to 1 reducer, and we use their extension of Pinocchio to ensure

an apples-to-apples comparison.

MapReduce: Dot Product [16] The verifier specifies (in

Pantry via hash, in Geppetto via a digest) two vectors of in-

tegers; each mapper receives m integers and computes a partial

dot product, and the reducer sums the mapper outputs.

MapReduce: Nucleotide Substring Search [16] The veri-

fier specifies a DNA string that is divided amongst the mappers,

each receiving m nucleotides. The mapper then searches for

dynamically supplied length-d substrings reporting a match (if

any) to the reducer which combines the matches.

Loop: Matrix Exponentiation The verifier supplies a dy-

namically chosen n× n matrix M and an exponent e, and the

prover returns Me. Matrix exponentiation is useful for many

applications, e.g., to compute the width of a graph represented

as an adjacency matrix [52].

This example shows the benefits of intertwined MultiQAPs.

With Pinocchio, the QAP would scale with e, limiting the size of

the problem, whereas, with MultiQAPs, we only need to com-

pile the loop body (after some loop unfolding), which can then

be used for arbitrary values of e. With Pantry, the loop body

needs to hash a matrix on the way in and again on the way out,

whereas MultiQAPs incur a handful of crypto operations per

intermediate state generated.

7.2.2 MultiQAP Results

Figure 7 summarizes the impact of using MultiQAPs for shared

state. The results only show CPU costs and do not include net-

work latency or bandwidth, though the latter is unlikely to be

a problem for either Pantry or Geppetto, given that proofs and

digests are only a few hundred bytes each.

For MapReduce, we see the largest discrepancy between

Geppetto and Pantry on the dot-product app. For this app, the

QAP for the computation itself is quite simple, so for Pantry,

the cost of hashing dwarfs the cost of the computation. For the

nucleotide app, the shared state is still a dominant portion of the

calculation for Pantry (though not as dominant as in dot prod-

uct), and hence Geppetto maintains a wide margin.

For the Loop application, the QAP for the computation itself

is non-trivial and grows faster than the IO between loop itera-

tions; thus, the cost of state sharing relative to the computation

is lower than for dot product, and the ratio drops further for

larger matrices. Since Geppetto and Pantry generate essentially

the same QAP for the computation itself, Geppetto’s relative

advantage drops accordingly.

7.3 Verifying Cryptography and Bootstrapping
In §5, we claimed that embedding cryptographic operations

without matching field sizes was exorbitantly expensive. To

validate this claim, we combined data from a basic ECC pairing

operation coded in Magma with cost models from Pinocchio
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for various operations such as bit splitting. Our calculations es-

timate that the pairing alone would require a QAP with degree

of 44 million.

Fortunately, our choice of matching curves in §5 brings this

cost down significantly. For example, a pairing only requires a

QAP of degree 14K, an improvement of 3100× vs. the naı̈ve

approach, while an exponentiation, i.e., gx, increases the degree

by ∼60 per bit in x.

Furthermore, as discussed in §5, for a comparable security

level, our initial curves for bounded bootstrapping provide ap-

proximately 34-77× better performance than curves supporting

unbounded bootstrapping [9]. As §7.1 shows, however, perfor-

mance degrades with each level added, and hence will eventu-

ally reach a point where they fall short of the unbounded curves’

performance.

7.3.1 Bootstrapping

From the verifier’s perspective, one level of bootstrapping is at-

tractive, since she only receives (and only verifies) one constant-

sized, 512-bit proof, and one constant-sized, 448-byte digest.

Without bootstrapping, the only way for the prover to gen-

erate such concise proofs would be via one massive Pinocchio-

style QAP, which our results above (§7.2) show is infeasible.

Nonetheless, bootstrapping does come at a cost. While boot-

strapping, the “outer” QAP’s degree grows with each digest or

proof that it must verify. We summarize these costs below as-

suming that the verification keys are known at compile-time.

• For each recomputed digest, we increase the degree by 2K

for each 32-bit integer value committed.

• For each full digest verification, we pay 79.6K (including

the pairings needed for the checks from Equations (6)-(9)).

• For each bus digest verification, we pay 33.8K (since, as

noted in §4.2, buses require fewer checks).

• For each proof verification (Eqn (10)), we pay 28.2K.

With keys unknown at compile-time, we pay instead 89.8K and

30.6K for full digest and proof verification, respectively.

We also observe that the prover’s cryptographic cost for

“outer” proofs and digests is typically higher than for work on

the “inner” instance, even for QAPs of the same size. One rea-

son is that the outer CP curve is less efficient than the inner BN

curve (§7.1). A second reason is that many of the values the

prover commits to for the inner instance arise from the program

being verified, and hence they are often 1, 32, or 64 bits. In con-

trast, the outer curve verifies elliptic curve operations and hence

many values are full-fledged 254-bit values.

While these costs are substantial, they are low enough that

we can employ bootstrapping to scale the prover to much larger

computations. For example, with our existing implementation,

we could bootstrap up to 14 “inner” proofs sharing 16 buses; ap-

plying this to, say, the matrix exponentiation example allows us

to produce a single, constant-size proof for a computation with

a useful (i.e., not counting bootstrapping costs) QAP degree of

over 50 M. When evaluating the computation, the prover exe-

cutes 24M LLVM instructions and generates a proof in 152 min-

utes. While slow, this is five orders of magnitude faster than the
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Figure 8: Energy-Saving Circuits. The energy-saving multiplexer
allows us to include an optional circuit that has low cost when unused.

unbounded bootstrapping in previous work (BCTV) [9], which,

with a reported clock rate of 26 milliHz (and a lower 80-bit se-

curity level), would take approximately 29 years.

No source code was available for BCTV, so analyzing the

causes of this large performance gap requires some guesswork.

First, we estimate that one order of magnitude comes from the

different choices of curves.

Second, BCTV use a circuit that checks a general-purpose

CPU transition function for each program instruction. Thus, for

straight-line code like matrix multiplication, they use hundreds

of equations for each operation, whereas Geppetto generally

uses one. BCTV’s interpreter, however, supports RAM access

and data-dependent control flow, while Geppetto’s compilation-

based implementation currently does not, and thus, one might

expect a smaller performance gap on applications making use

of those features. However, recent work [54] indicates that the

compilation-based approach can incorporate these features and

still outperform interpretation by 2-4 orders of magnitude on

straight line code, and 1-3 orders of magnitude on RAM and

data-dependent benchmarks.

Finally, BCTV apply bootstrapping at a very fine granular-

ity. At every step of their CPU, they produce a proof with one

curve, and then they use their second curve to verify that proof

and translate it back into a proof on the first curve. Thus, each

CPU instruction requires two bootstrapped proof verifications,

whereas in this application, each Geppetto proof verification

covers 1.7M LLVM instructions.

7.4 Energy-Saving Circuits

As a targeted microbenchmark to evaluate the benefits of

energy-saving circuits (§2.3), in Figure 8, we compare a static

compile-time condition to a runtime condition. The left group

shows a static computation with a single matrix multiplication

and a static computation containing five multiplications that

takes proportionally longer. On the right, a single computa-

tion supports up to five multiplications, but is organized using

energy-saving circuits to make the one-multiplication case inex-

pensive. Using this circuit to compute one matrix multiply costs

68% more than the static version (rather than 5×), and costs a

negligible 1% in the five-multiply case.
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7.5 Compiler

Some previous verifiable computations systems do not include a

compiler [22, 52], while those that do [10, 16, 46] have typically

compiled small examples with less than 100 lines of C code. In

contrast, Geppetto’s compiler handles non-trivial cryptographic

libraries, with the largest clocking in at 4,159 SLOC [55] of

complex cryptographic code supporting elliptic curve opera-

tions, including pairing.

8 Related Work

Verifiable Computation As discussed in §1, many previous

systems for verifying outsourced computation make undesirable

assumptions about the computation or the prover(s). Recently

however, several lines of work have refined and implemented

protocols for verifiable computation that make at most crypto-

graphic assumptions [9, 46, 49, 52]. These systems offer dif-

ferent tradeoffs between generality, efficiency, interactivity, and

zero-knowledge, but they share a common goal of achieving

strong guarantees with practical efficiency.

However, these systems typically verify a single program at

a time, leading to performance issues for state shared across

computations (see §2.1.1). We compare and contrast alternate

techniques for handling state in §2.1.4.

As discussed in §5 and §7.3.1, Ben-Sasson et al. [9] instanti-

ate and implement suitable elliptic curves for unbounded boot-

strapping. Geppetto can leverage unbounded bootstrapping, but

it also supports bounded bootstrapping for better performance.

Ben-Sasson et al. bootstrap the verification of individual CPU

instructions using handwritten circuits, whereas Geppetto uses

compiled cryptographic libraries to bootstrap high-level opera-

tions (e.g., procedure calls) following our belief that C should

be compiled, not interpreted. Compilation plus bounded boot-

strapping can provide up to five orders of magnitude faster per-

formance, though both techniques sacrifice generality compared

with unbounded interpretation.

Interpreting CPU instructions means that Ben-Sasson et al.

natively avoid the redundancy of executing both branches of

an if-else branch in the source program, but the interpretation

circuit itself is repeated for every instruction and contains cir-

cuit elements that are not active for every instruction, and hence

could benefit from Geppetto’s energy-saving circuit’s ability to

power down unused portions of the CPU verifier. Similarly, pro-

grams interpreted in this framework can benefit from Geppetto’s

MultiQAP-based approach to state.

Commit-and-Prove To our knowledge, commit-and-prove

(CP) schemes are first mentioned by Kilian [37]. Canetti et

al. [18] define CP schemes in the UC model and realize such

schemes in the FZK-hybrid model. Escala and Groth [26] de-

sign CP schemes from Groth-Sahai proofs [34].

Zero Knowledge Several systems compile high-level func-

tions to zero-knowledge (ZK) proofs [1, 4, 42]. Compilers

from Almeida et al. [1] and Meiklejohn et al. [42] build on Σ-

protocols [24], while the work of Backes et al. [4] uses Groth-

Sahai ZK proofs [34]. For the subset of functionality these sys-

tems support, they are likely to outperform Geppetto at least for

the prover, but none offer the degree of efficient generality and

concise proofs that Geppetto provides.

9 Conclusions

Geppetto employs four independent but carefully intertwined

techniques: MultiQAPs, QAP-friendly cryptography, bounded

bootstrapping, and energy-saving circuits. We increase the ef-

ficiency of the prover by orders of magnitude, and we improve

the versatility of its proofs, e.g., by enabling the efficient veri-

fication of hidden computations. Geppetto’s scalable compiler

exposes this power and flexibility to developers, bringing veri-

fiable computation one step closer to practicality.
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