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Abstract—While we have a good understanding of how cyber-
crime is perpetrated and the profits of the attackers, the harm
experienced by humans is less well understood, and reducing this
harm should be the ultimate goal of any security intervention.
This paper presents a strategy for quantifying the harm caused
by the cybercrime of typosquatting via the novel technique
of intent inference. Intent inference allows us to define a new
metric for quantifying harm to users, develop a new methodology
for identifying typosquatting domain names, and quantify the
harm caused by various typosquatting perpetrators. We find that
typosquatting costs the typical user 1.3 seconds per typosquatting
event over the alternative of receiving a browser error page,
and legitimate sites lose approximately 5% of their mistyped
traffic over the alternative of an unregistered typo. Although
on average perpetrators increase the time it takes a user to
find their intended site, many typosquatters actually improve the
latency between a typo and its correction, calling into question
the necessity of harsh penalties or legal intervention against this
flavor of cybercrime.

I. INTRODUCTION

Choosing whether or not to use a security feature is

fundamentally a tradeoff: will the cost, either monetarily

or in terms of decreased usability, outweigh the benefit of

being protected from harm due to a certain class of attack?

Security flaws and fixes are constantly being discovered and

implemented by researchers and practitioners alike. Oftentimes,

the benefits of these improvements are quantified by number of

bugs found, number of malicious programs detected on victims’

computers, or number of stolen credentials discovered on an

attacker’s drop site. While these are all worthwhile metrics,

the ultimate goal of cybersecurity efforts is to protect users

from harm: malicious software is no doubt a harm, but how

much meaningful impact does it have on a user’s daily life?

Lessening how much these attacks negatively impacts users’

lives should be front and center in evaluating any system that

claims to improve the system’s security.

The losses due to cybercrime are not always monetary in

nature. A stolen credit card can certainly lead to monetary

loss, but that is not the only damage caused, as the user loses

time updating saved card numbers or requesting a new card.

This time could have been spent doing something of the user’s

choosing, which is likely to be more edifying than talking

to a customer service representative. In fact, the suspected

astronomically low success rate of cybercrime [1] implies that

these losses of time are far more common than actual monetary

loss; thus, it is possible that this loss of time is the dominating

factor in any analysis of the true costs of cybercrime.

To enable meaningful improvements in cybersecurity, valid

metrics include not only how much more difficult a defender

has made the attackers’ success, but how much the negative

effects of these attacks harms legitimate users. To understand

this improvement, we must first understand how much harm

is coming to these users, not only as lost value but also as

wasted effort necessary to clean up after the attacks.

From a technical vantage point, observing direct losses

due to cybercrime is challenging: value extraction often does

not have tight temporal locality with any particular break in,

and it crosses multiple technical systems (HTTPS browsers,

cybercriminal credential caches, ATM networks) before the

value is extracted. Users’ lost time, however, is far more

observable: from a network vantage point, it is possible to see

when an activity has taken place. Time is a valuable resource,

and time stolen or wasted by dealing with a cyber attack is

a worthwhile metric which can easily be compared across

different types of cybercrime, different users, and different

platforms.

Although many types of cybercrime involve compromising

a user’s machine and installing malware to steal data, there

are other more venial crimes committed on the web, like

typosquatting. Typosquatting is the registration of Internet

domain names which are similar to those of established sites,

in the hopes that a user typing that site’s name makes a mistake

and visits the typo domain rather than their intended target.

Typosquatting has not been shown to be particularly harmful

from a malware infection standpoint: [2] found that the malware

incidence rate for typo sites was lower than for legitimate sites

in the Alexa top 1,000,000 site list. Nonetheless, typosquatting

certainly causing a modest amount of harm: a typosquatter,

knowing that its site’s visitor desires to visit a similarly

spelled domain name, instead presents ads, a competing site,

or sometimes even malware to its visitors. Like spam, this

practice also leads to investment in anti-typosquatting products

like defensive registration. Even though it is not a major

cybercrime, typosquatting has several properties that allow us

to precisely quantify the harm being done by the typosquatters:

it is observable at the network level; as typosquatting sites

often serve no purpose independent of their target, visiting one

signifies user intent to visit the targeted site; and finally, with

the correct vantage point one can pinpoint how much of each
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user’s time is wasted by typosquatters. We can also determine

the damage to website owners by understanding how many

potential visitors might not have visited their site because of

the confusion caused by the typosquatter’s domain.

Contributions

This paper presents a metric for, and empirical quantification

of, the harm caused to users due to typosquatting. In service of

that goal, we also present a new methodology for identifying

typosquatting domains which complements prior work.

User Harm Metric. We present a metric for quantifying

user harm in the form of lost time due to cybercrime. While lost

time is perhaps the most minor form of harm due to cybercrime,

it is certainly the most common and widespread. Not only is

it common, but with the correct measurement vantage point

and analysis, it can be precisely quantified for a population of

users while maintaining their privacy, and compare it to the

cost of additional defenses.

Quantification of Harm. Beyond describing and presenting

the metric for harm via lost time, we apply this metric to the

phenomenon of typosquatting. Even though it is a minor form of

cybercrime, typosquatting allows us to perform intent inference
– as typosquatting sites do not perform any advertisement for

their own misspelled domain name, visiting a typosquatting

site is a priori equivalent to intending to visit the site being

typosquatted upon. Thus, harm can be specifically quantified

by two metrics: time lost for users and visitors lost for site

operators. As visitors lost per site can have wildly varying

revenue loss implications for different sites, we choose to focus

on time lost as our main harm metric, and define the same

amount of lost time between different individuals as equivalent.

This equivalence also aids us in our goal of maintaining user

privacy: because any identifying factors about the user are

immaterial in the aggregate, we have no use for any personally

identifying information and thus user privacy is maintained.

Passive Detection of Typosquatting Domains. In service of

our previous contribution, we also created a new methodology

for detecting typosquatting domains which boasts fundamen-

tally higher accuracy than previous approaches. With a vantage

point at the network level, a combination of DNS and HTTP

traffic records allows us to examine all attempted visits to

similar hosts, and to use aggregate evidence that visits to a given

site are almost always followed by visits to a lexically similar

site, without the converse being true. This phenomenon implies

that the former site is typosquatting on the latter. To precisely

quantify this effect, we introduce a conditional probability
model for detecting typosquatting domains, which provides

a new metric for judging the accuracy of a typosquatting

detection: by identifying domains which mainly attract visitors

via direct type-in, have a high bounce rate (proportion of

visitors who leave the site soon after arriving), and are very

often followed by a visit to a more popular site with a similar

name, our methodology finds exactly those sites which fit

the commonly accepted definition of typosquatting, without

needing to worry about coincidentally similar domain names.

II. BACKGROUND

Traditionally, analyses of user harm are done at a macro

level, often by organizations with a vested interest in the results

of the analysis. Industry estimates of economic harm that

reach the hundreds of billions of dollars per year, very often

alongside a link to purchase some sort of anti spam product [3].

We cover more reasoned estimates in Section III, however

even those based on available macro-level data estimate the

losses to American consumers at $20 billion annually, no

small amount [4]. These macro level analyses are certainly

useful to determine how much investment should be placed

in cybersecurity efforts overall. However, to differentiate

among forms of harm or between different perpetrators, these

treatments are not sufficiently specific to be of practical use.

With a clear metric and a method of observing cybercrime

events, we can craft highly granular estimates of loss to users.

These metrics can allow us to focus cybercrime research not

only on what minimizes the technological impact (e.g. number

of malware installs or number of credentials stolen), but also

focus on what interventions will have the most positive impact

on users’ lives.

Most crimes cause harm in multiple ways: for instance, a

cybercriminal who steals $100 not only removed $100 from

a user’s account, the victim then needs to spend additional

time fixing whatever flaw the attacker used to gain access to

the user’s account so that the same attack does not happen

again. Let us call this the negative externality of an instance

of cybercrime. These can happen even when there is no direct

monetary damage, for instance when a user must clean up

adware or malware which didn’t successfully steal anything.

However, it is just as possible that the infection itself is benign

from the point of view of the user: if a keylogger steals no

credentials or an advertisement hijacker has its ads blocked by

an ad blocker, the user has not suffered any material loss.

Harm to victims is the natural counterpart to attackers’

successes: for instance, by sending spam, spammers waste

others’ time and resources without their consent; successful

keyloggers can steal users’ credentials and possibly money

out of their bank accounts, but they can also slow down the

victim computer or force the user to waste time cleaning up the

infection. Perhaps the purest form of cybercrime is vandalism:

harming or inconveniencing others for thrill or notoriety. On

the opposite end of the spectrum, the effect of state-sponsored

sabotage or espionage is incredibly difficult to detect, let alone

value. The “upside” to the attacker in these cases is difficult

to quantify, but the negative externalities suffered by Internet

bystanders is real, and decreasing it is a noble cause.

Investigating the advantage conferred to the attacker can

be particularly fruitful, and can lead to effective interventions

which decrease how lucrative a given form of cybercrime

is. However, cybercrime is very rarely if ever a zero sum

game where the cybercriminal’s gain is exactly equal to the

user’s loss. Cybercrime is perpetrated for different attacker

motivations, whether vandalism, economics, or espionage. Fully

understanding these motives, especially with respect to the
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monetarily motivated cybercriminal, can elucidate new methods

to protect users, not by exploiting new technical mechanisms,

but by decreasing how lucrative the attack is through other

means, like filtering credit card transactions to stem the flow of

spam [5]. In the same way, we aim to elucidate new methods

for effective defense through a holistic understanding of the

specific harms caused by cybercrime.

III. RELATED WORK

Related work generally falls into one of two categories: work

meant to quantify user harm and work specifically looking at

the phenomenon of typosquatting.

A. Quantifying User Harm

While estimating the loss to end users experiencing ty-

posquatting is a fairly new topic, the cost due to other malicious

activities is well studied. Users’ money loss due to spam [4],

[6], Nigerian scams [7], fake online pharmacies [8], fake anti-

virus software [9] and general phishing activities [10] have

been analyzed. Not only can attackers steal currency, they can

also steal CPU cycles: Huang et al. show how bot owners use

victim machines to mine bitcoin for profit [11]. Lost capital and

computing resources works well for quantifying user harm in

these instances, but are not applicable as metrics for quantifying

typosquatting’s harm because the main harm is lost website

visitors (when a user gives up or believes erroneously that they

have arrived at their intended destination) and lost time.

More generally, tangible harm to users is notoriously difficult

to estimate: financial harm to end users may be marginal

due to the incredibly low success rate of cybercrime [1],

or overinflated due to the difficulty of conducting accurate

surveys [12]. Research on attack mitigation and remediation

implicitly focuses on the harm to users in lost time, for instance

when investigating the difficulty of cleaning up web server

compromises [13]. Having a better understanding of malware

infection events and their negative externalities [14] or their

epidemiological precursors [15] has given defenders a better

view of how harm is experienced by different populations of

users.

B. Understanding and Detecting Typosquatting Activities.

In 2003, Edelman first investigated typosquatting [16]. Since

then, many approaches were proposed to detect typosquatting

activities. Wang et al. designed a system called Strider Typo-

Patrol to protect branded domains by monitoring neighboring

domains with typos [17]. Similar approaches have been

proposed by Banerjee et al. [18], Linari et al. [19] and Chen

et al. [20] which all select popular domains and detect their

typosquatting counterparts with small lexical distance. Recent

work has broadened the investigation of typosquatting: Szurdi

et al. [2] investigate typosquatting among less popular sites,

Agten et al. [21] study a pool of typosquatting targets over

time to look at the dynamics of the phenomenon, and yet

others have investigated typosquatting using homophones [22]

or bit flips in DNS requests [23]. To complement these efforts,

we introduce the intent inference technique which leverages

passive data collection to discover typos without requiring

a similarity metric for bootstrapping the list of domains to

consider.

More generally, intent inference with respect to domain

registration within new top level domains has also been

studied [24], showing that defensive registration within new

top level domains is extensive, and very few of the domains

host potentially legitimate content.

Along with the efforts spent detecting this threat, other

research has focused on understanding typosquatters’ strategy

and measuring the damage posed by them. Moore et al.

explored their monetization methods and found out that most

of them rely on pay-per-click advertisements [25]. Furthermore,

the Internet marketing consultancy Fairwinds Partners shows

that typosquatting costs brand owners massively [26], but does

not investigate end users’ costs.

IV. DATA SOURCES

This study makes extensive use of both active and passive

measurements. Passive measurements are aggregated from two

organizations with complementary vantage points, and active

measurements are taken to expand the intelligence available

about the suspected typosquatting domains and their targets.

A. Passive Sources

To conduct this study, we collect passive web browsing

information from two data sources. The first data source is a

set of http and DNS requests for non-existent domains collected

at a passive tap on a large public U.S. university’s network

as part of their network security infrastructure. The HTTP

portion of this dataset was anonymized pre-analysis to only

include a salted hash of source IP address. DNS requests were

collected between the local recursive resolver and the Internet

so individual clients’ identities are not divulged, and prior to

analysis they were filtered to only include “non-existent domain”

results. We refer to this dataset as the TAP dataset. Volume

statistics regarding the TAP dataset appear in Table I, and the

columns are defined as follows: “hosts” refers to the number of

unique clients observed in the dataset, “events” includes the raw

number of individual HTTP or DNS requests recorded, “visits”

includes the number of groups of HTTP requests for HTML

files partitioned by five seconds of no traffic to approximate the

number of user actions, and “domains” includes the number

of unique fully qualified domain names visited or requested.

While this dataset does not include any HTTPS data, during

prior active measurement efforts [2] we observed that very

few typosquatting websites are available via HTTPS, and thus

we expect that their effect on the overall phenomenon will be

minimal.

Network operations does not filter this traffic in any way

between the university and the Internet. Because of the pre-

analysis anonymization of the data, the Institutional Review

Board determined this research to not be human subjects

research due to its lack of personally identifying information

and purely passive collection.
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Dataset Duration Hosts Events Visits Domains

PROXY 31 days 1.8M 7.39B 78.4M 0.58M
TAP(HTTP) 436 days 468K 7.88B 0.14B 7.8M
TAP(DNS) 219 days 1.3M 2.62B 0.13B 46.4M

TABLE I
VOLUME FOR PASSIVE DATASETS.

The second dataset is a one-month collection of logs of

HTTP/HTTPS communications between internal machines at a

technology services enterprise and external web sites. The logs

are aggregated from proxies deployed at enterprise borders

and requests for any non-existent domains are not included.

Branches of this enterprise are set up on several continents

and therefore this dataset provides us with global view on

typosquatting events. While hundreds of fields are presented

in each log, our analysis only uses timestamp, source address,

destination URL, destination IP, referrer, and HTTP result

code. This dataset is leveraged to calculate the conditional

probability threshold (see Section VI) and measure user harm.

A subset containing timestamp, anonymized source address,

and destination domain (exclusive of domains internal to the

corporation) was used for the first task. For the latter task,

our analysis code is exported to the enterprise and run on one

of its internal servers. Only the statistical result is returned

and no personally identifiable information is revealed in this

process. We refer to this dataset as the PROXY dataset and

show volume statistics in Table I.

B. Active Sources

The final dataset is an active web scrape of all domains in the

suspected typo or suspected target sets, totaling 13.5K domains.

This crawl uses a javascript-aware crawling mechanism that

allows recording of redirections through multiple intermediary

sites and final rendered web pages, including any javascript

based redirection attempts. Using a simplified version of the

methodology from [27], this dataset allows us to differentiate

between user site interaction and automated redirection, as well

as allow us to collect page content for clustering purposes.

V. METHODOLOGY

To achieve the ultimate goal of characterizing user harm,

we must achieve three separate sub goals: first, we must

collect a set of typosquatting domains in use. Second, we

must define a metric to quantify how much time is wasted by

each typosquatting domain or each registered domain. Finally,

we characterize both the overall harmful effect of typosquatting

as well as the effect contributed by different aspects of both

user activity and typosquatter behavior. An overview of our

methodology is shown in Figure 1.

A. Passive Typosquatting Detection

Previous treatments of typosquatting (see Section III-B)

have detected typosquatting domains largely through active

investigation: by lexically comparing popular site domain

names with all registered domains, one can find millions of

1 Passive
Collection

HTTP/DNSHTTP

2 Prospective 
Typo Pair Extraction

3 Apply Conditional
Probability Model

4 Clustering

5 Harm
Metric

6

7

Passive
Typo
DetectorHarm

Estimation

Collection

Proxy TAP

domain1, domain2;
domain1, domain3;
domain4, domain5;   

Web
Whois
DNS

P(a|b)

Adversariali l

Cooperative

Unregistered

domain1, domain2, 0.35;
domain1, domain3, 0.45;
domain4, domain5, 0.95;   

Fig. 1. Methodology overview.
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potential typosquatting domains. However, without actively

visiting these sites and characterizing the content presented,

one cannot infer the true intent of the registrant. In many cases,

further investigation shows a large portion of those sites are

indeed sites with little unique content that are likely set up

only to maximize economic return on user typos. However,

active measurement by third parties cannot determine ground

truth about these sites’ typo status: for instance, without prior

knowledge about its legitimacy, one might mistake nhl.com
as a typo for nfl.com, as both sites offer content related to

sports.

Although actively collecting site content and comparing sites

with lexical similarity can detect typosquatting, there are two

main shortcomings: the lexical model based on edit distance

might not capture all user typos, and it cannot capture typos

which are not yet registered. Due to computational constraints,

we focus mainly on the second weakness. Typos of domains

which are not yet registered are key to our analysis: while

an analysis which sums up the amount of time wasted by

visiting typosquatting sites would be able to characterize the

extent of the problem, it would be unnecessarily pessimistic. A

proper analysis must compare the time wasted by typosquatters

to the time wasted by viewing a “website unavailable” error

page in the browser: the overall time wasted by typosquatting

is the difference between time lost to seeing the error page

and time lost due to seeing the typosquatter’s page, as the

typo would happen either way. In fact, it is altogether possible

that typosquatting as committed by at least some subset of

the transgressors is a net positive for users: they may arrive

at their intended destination more quickly after viewing the

typosquatter’s page compared to the browser error page.

The core of our typosquatting detection algorithm is passive

detection of possible typosquatting events.h Through observing

user activity at the http and dns request level, we are able to

seed a list of typo domain and target domain pairs without

actively inspecting their content (which is useful in the case

of unregistered domains, as they have no content). While we

validate our methodology using active techniques like web

scraping and manual inspection, the combination of passive

detection of typo pairs and the conditional probability model

provides us with an orthogonal metric which measures the core

facet of typosquatting: the fact that visits to lexically similar

sites were unintended by the user, and thus were likely the

result of a typo.

1) Conditional Probability Model: To bootstrap passive

typosquatting detection, we search our datasets for all events

that indicate directly typing a domain into the browser’s URL

bar: either a load of the root resource, or a DNS lookup that

results in an “non existent domain” response. We only search

for non existent domains in the DNS dataset because loads for

existent domains will be served by higher fidelity HTTP level

data. HTTP data is better for this purpose because requests are

visible at the individual client level rather than the level of the

recursive resolver, and do not suffer as much due to caching.

Although negative results are also cached by recursive DNS

resolvers, we expect that typos for all but the most popular

sites will not be served by the negative result cache.

Once we have the list of candidate type-in events, we

transform this set into all pairs of domains with a Damerau-

Levenshtein edit distance of one which might have been

performed by the same user within a reasonable amount

of time, such that they are likely causally related. Our key

insight to passively detect typosquatting is that the conditional

probability of visiting the target domain will be much higher

for typosquatting domains than for unrelated domains which

just happen to have a small edit distance between them. That is,

when a user visits a typosquatting domain, even if that domain

does succeed in diverting the user to a different page, the intent

to visit the target page still exists, and thus in the aggregate the

chance that a user will eventually find their true intended site

will be higher after a visit to a typo site than to an unrelated

site. We validate our methodology by sampling a subset of site

pairs at different conditional probability levels, and choose a

conditional probability cutoff at sufficiently high accuracy (see

Section VI-A1). We show the overall accuracy results of using

our conditional probability model in Section VI-A2.

One challenge here is choosing some reasonable bound

for the distance in time between two site visit events. For

choosing the ideal time window to reflect true typo instances,

we use an optimization scheme. We first parse our logs to

extract all possible typos that occurred within 90 seconds

and divide them into N=9 ten-second bins. For each bin, we

cumulatively calculate its accuracy Ak, for up to the kth bin

under consideration. An inherent constraint of our scheme

requires the aggregation of all items in previous bins that

occurred before the kth bin. The optimization of the time

window is based on the samples Si in each bin, the fidelity

ai, which is the percentage of HTTP based typos in a bin and

the overall loss in accuracy Li as a cost of including that bin.

Equation 1 below elaborates our accuracy calculation.

Ak =
k∑

i=1

aiSi

N∑
j=1

Sj

− Li (1)

We evaluate the accuracy of each of the 9 bins and find

an optimal cutoff between the third and the fourth bin at

approximately 33 seconds. This is defined as our optimal time

window for observing both HTTP and NX domain based typos.

B. Harm Inference

We define harm in this case as a combination of time lost

when attempting to visit the intended site, and visitors lost

due to not reaching their intended site. Again, while trivial in

comparison to monetary losses due to an instance of fraud or

data loss due to vandalism, this form of loss is likely the most

common among all cybercrime losses, and when summed up

could cause substantial loss of time (in the case of lost time

due to typos) or new visitors/customers (in the case of intended

visitors who never visit the site they attempted to visit).

Choosing a specific definition for harm is fundamentally

difficult: harm could just as easily be a number of seconds
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lost, an interruption, or even the installation of malware or the

loss of a password to a phishing site. We disregard the latter

two as prior work has found only a vanishingly small amount

of malice in the typosquatting ecosystem, less in fact than in

the Alexa top million sites themselves [2]. Because our model

focuses only on typo events, all users will be experiencing an

interruption, and the time lost will be the difference in how

many additional seconds of delay the user experiences between

visiting the typo site and visiting their intended site. Although

a raw number of seconds is easy to compare between two users,

the cognitive load of that interruption, or its context, might

not be the same between two different sites or two different

users, or two different events: for instance, a lost second shortly

before a paper deadline might be worth far more to a user than

a lost second shortly after the deadline. To standardize our

analysis, we assume that different seconds at different times

or among different users are all equally valuable.

After using the conditional probability model to detect

typosquatting domains, we can use the same set of visit pairs

to quantify harm to site visitors and site operators. For lost

time due to typosquatting, in essence we are comparing two

distributions: the delay distribution of all typo pairs where

the initial domain is registered by a typosquatter, and the

distribution of all visit pairs where the initial visit was a “non-

existent domain” DNS response.

C. Typo Event Characterization

Overall, a typo event can have one of a few different general

classes, which we enumerate here. A visualization of typo

events and their possible outcomes appears in Figure 2.

1) Adversarial registration. This is the activity most com-

monly thought of as “typosquatting:” registration of a

lexically similar domain by an unaffiliated party which

does not link directly to the target domain. In many

cases, these sites are full of ads, and could advertise

a competing service similar to the target domain’s. In

some cases, these will host malware.

2) Cooperative/defensive registration. This activity exists

where a brandholder or an entity operating on its

behalf registers a domain, and redirects users to their

(presumably) intended target domain.

3) Unregistered. Mistyped domains can also simply not

yet be registered. When DNS is not tampered with by

service providers, attempting to visit these sites in modern

browsers results in a “web page not available”/“server

not found” error message from the browser. It is then

the user’s responsibility to interpret this generic message

and find the domain they were attempting to visit.

4) Unrelated visit. Correlated loads may also simply be

spurious false positives. We describe our methodology

to detect spurious correlations during the evaluation of

passive typo detection (Section VI-A2).

When characterizing these different types of typosquatting

events, our main metrics are time lost and visits lost. For

the “unregistered” type of typo event, all events should be

the same - no matter which unregistered domain a user types

in, the error page will look exactly the same. Likewise, for

cooperative registration, the user might see an error page

or be immediately redirected to the domain they wish to

visit. Adversarial registration, however, will be affected by

the content of the page: while a page full of generic ads may

signal to a user that they have not found their desired page, a

lookalike or competitor page advertising a similar service might

greatly increase the time spent finding the intended page or the

chance the user gives up without visiting their intended site.

Characterizing this distribution will both allow us to present an

accurate overall estimate for the harm caused by typosquatting,

as well as single out different entities contributing to the harm

caused by the phenomenon.

Furthermore, for each typo event which does not cause a

visit loss, there are several avenues through which the user can

find their desired site:

1) Redirection: perhaps the most simple, the lexically

similar site can automatically redirect the user to their

intended destination. Redirects using HTTP return codes

can be followed in our analysis using the Location:
header to confirm the redirection, and javascript based

redirections can be followed using the Referer: header.

We rely on our web scrape to detect javascript redirects

because our vantage point in the network cannot dif-

ferentiate between an automated redirection (which our

scraper will follow) and user-initiated navigation (which

our scraper will not cause).

2) Direct navigation: the user might find the site via

correcting their mistake directly in the URL bar, which

can be determined via the lack of a Location: header

or Referer: header.

3) Search engine: the user can also search for the site on

a search engine to verify correct spelling. While major

search engines are now using HTTPS to secure their

traffic, the Referer: header is still set to the domain

of the referring site for Google and Bing, which account

for the vast majority of all search traffic.

4) Other navigation: beyond search engines, users can

still find the site through other means: either by clicking

through links directly on the typo site they visit, or

referring to some other non-search engine reference page.

Combining the HTTP request headers in our passive datasets

and intelligence from the scraping dataset, we can identify

which of these modalities the user used to find their intended

web site, and furthermore we can determine how much each

mode affects the overall time delay. As each of these implies

a user successfully finding their intended site, visitor loss rate

is not relevant for this analysis.

D. Typosquatter Characterization

Within the class of adversarial registrations, there are several

different perpetrators, all attempting to maximize their own

revenue via their investment in typo domains. Our hypothesis

is that properties of the typo site will influence the visit loss

rate and the time delay distribution. For much of this analysis,

we follow the general methodology of Levchenko et al. [5].
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Fig. 2. Typosquatting event visualization. When a user mistypes their desired domain, one of many different events may happen. In the optimistic case the user
is redirected to the correct site. Otherwise, the user will be redirected to several different types of sites, and has various options for finding their intended site.

Our simplifying assumption is that, if we can infer common

operation via clustering of site properties (page structure, whois

information, or infrastructure like DNS or HTTP hosting), all

sites run by the same entity will contribute similarly to delay

and visitor loss.

VI. RESULTS

Our results are split into three main sections: how many

registered typo domains were detected; the time loss and visitor

loss metrics we use to quantify harm; and a characterization

of the different typosquatting operations by active and passive

measurements, as well as their individual effect on the loss

metrics.

A. Passive Detection

Overall, we consider loads or attempted loads of the root

resource for 36.7M unique fully qualified domain names. We

include requests for nonexistent domains as attempts to load

the root resource of said domain. Detailed data regarding these

loads is seen in Table I, however this value is lower because

of the data sanitization tasks outlined in Section VI-B. Using

records of the form (domain, anonymous user id, timestamp),
we generate pairs of domains (d1, d2) such that each load was

performed by an individual user within 33 seconds of each

other, and the Damerau-Levenshtein edit distance between the

two domains is one. After this filtering step, we arrived at

61,274 unique pairs of domains.

1) Pair filtering: While many of these pairs of correlated,

domains like nhl.com and nfl.com, for which one is

unlikely to be a typo of another even though they are lexically

similar, will no doubt show up in this dataset. Thus, we apply

the conditional probability model as described in Section V-A1.

Figure 3 presents the distribution of conditional probabilities as

such: for all pairs of prospective typos, we graph the probability

that a user visits the latter domain after visiting the former.

Domain pairs like the aforementioned sports league domains

are unlikely to be correlated: in our dataset, a request for

nhl.com is only followed by a load of nfl.com .08% of

the time, and the reverse rate is even lower, below 0.01%.

However, visits to the site eba.com are followed by visits
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Fig. 3. Conditional probability distribution for user intent modeling.

to ebay.com 90% of the time. Thus, visits to eba.com are

likely to be typos.1

To evaluate the accuracy of the conditional probability model,

we manually inspect a random sample of the typo pairs using

a methodology similar to that in [2]. We segment the data

into ten bins and manually inspect 20 samples from each bin.

As shown in Figure 4, there is a distinct drop in accuracy

at 20% probability, which we set as our threshold for typo

detection. Because the volume in the high accuracy bin at 90%

or above holds the lion’s share of all prospective typos, the

overall accuracy at our chosen threshold is 86.5%.
2) Evaluation: Before using our passive typosquatting

detection approach to quantify harm, we must first validate the

approach itself. Here, we compare the results of our algorithm

with that of prior work which takes an active approach to

identifying typosquatting.

Obviously, passive detection will detect a much lower

absolute number of domains than previous approaches: methods

relying on zone file inspection will see all domains registered

in a given DNS zone and can use a set of all small edit distance

domain pairs as prospective typos. However, just as obviously,

1eba.com was the highest non-zero probability adversarial registration in
our dataset, however upon manual inspection it appears to be unrelated to the
target site. We discuss this effect in Section VII-C.

141141



P
er

ce
nt

ag
e 

A
cc

ur
ac

y

Bins
 (0, 0.1] (0.1, 0.2] (0.2, 0.3] (0.3, 0.4] (0.4, 0.5] (0.5, 0.6] (0.6, 0.7] (0.7, 0.8] (0.8, 0.9] (0.9, 1]  

0

0.2

0.4

0.6

0.8

1

Fig. 4. Sampled typo accuracy per conditional probability threshold.

active detection cannot detect how many mistypes happen on

non-existent domains, nor can they see how common they are

or how much time delay happens between the typo lookup

and the intended site lookup. Active detection also cannot find

domains outside of the given zone, as the zone file for other

top level domains are not shared with researchers; they would

need to resort to active crawling of the domain name space

for all possible edits. In fact, we find that 5% of all typos

perpetrated by users were outside of the same TLD.

Furthermore, at high conditional probability thresholds, the

accuracy of the passive detection method is 95%, compared

to the accuracy of prior work like [2] which achieves 86%

accuracy for random typo samples. The conditional probability

model allows a typo detection or defense mechanism to tune a

confidence variable based on how often loading a prospective

domain correlates with a given target. Also, as this method is

complementary to prior work, combining the approaches could

improve both coverage and accuracy.

B. Data Sanitization

Beyond the conditional probability model of user behavior,

we performed several other data cleaning tasks to arrive

at a more accurate estimate of the underlying phenomenon.

Several classes of web requests can fit our filters correctly, but

are actually artifacts of phenomena besides users mistyping

domains. Here we list the heuristics we used to remove those

requests from our dataset.

We preprocessed the initial set of typo pairs to remove out

a fair amount of false positives in the data. A majority of

these instances were domains having an edit distance of 1 in

the subdomain. A common occurrence in the dataset was the

www subdomain followed by a redirection to a ww1 subdomain.

For instances of domain pairs that had two words such as

hello-world.com followed by helloworld.com would

appear as a typo pair although the additional - was not a result

of user mistyping but rather a user misunderstanding. To cater

these situations, we excluded all typos that had an edit distance

of 1 as a result of a different digits in the subdomain or a

difference of a hyphen in the typo and target domain strings.

Another efficient heuristic that we applied aimed to filter

out pairs that had subdomains differing by letters with small

alphabetic distances between each other. This eliminated

instances such as a.example.com followed by a request to

b.example.com. As a result of applying these heuristics,

the number of true typos went considerably up to 63% of typo

pairs having a conditional probability of 1.

As our DNS logs lacked user level granularity, we also filter

out extremely popular sites as we cannot be confident that

the DNS requester and the HTTP requester are one in the

same. Because in our dataset a “non-existent domain” result

could have been elicited by any user, pairs consisting of a non-

existent domain and a sufficiently popular domain, we cannot

be sure that the same user elicited both of those requests,

e.g. because a third party loaded the popular site before the

user who mistyped their target. Thus, choose a threshold for

domain popularity and discard all pairs for which we cannot

be suitably sure that both events in the pair come from the

same user. The popularity metric was defined as the number

of times different users requested the same domain within our

optimized time window. To evaluate domain popularity we

used a representative subset of our HTTP logs. Using that

subset to evaluate popularity, we only considered unregistered

domain typos for which their respective targeted domains had a

20% or lesser chance of appearing twice within our optimized

time window. In other words, because a DNS request for an

unregistered typo could be generated by any user within our

user base, we only include those for which there is a 80% or

greater chance that there was only one visitor to that domain

within the next 33 seconds.

As a part of the sanitization process we were able to

classify defensive domain registrations in the “other navigation”

category of cooperative registrations in Table III. This also

provides an explanation for a subset of our cooperative typos

incurring larger delays than a normal automatic redirection. In

the case of defensive registrations, the landing page contained

a message of an “Invalid URL” that caused the user to either

retype the domain or follow a link on that website. The

most mistyped subdomains were wordpress, tumblr, and

blogspot URLs, that were either nonexistent blogs or benign

pages the user did not intend to visit. As these domains were

registered with the same registrar as their target domains,

we classified them as cooperative registrations as opposed

to adversarial.

C. Quantifying Harm

User time loss is the first metric we quantify. Harm cannot

be evaluated in a vacuum: the lost time due to a typosquatter’s

activities should be compared against alternatives like the

domain being cooperatively registered or unregistered. In

Table II, we quantify the proportion of each class; in Figure 5

we also present the cumulative distribution of delay incurred

by events in each class.

In the aggregate, we can describe the time lost due to typos

in the absolute, as well as relative to what could have happened

otherwise. Among all three classes of typos, users at the

TAP location lost 1,205,060 seconds, or just under two weeks
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Domain class Cooperative Adversarial Unregistered

Unique domains 2.4K 11.1K 20.9K
Unique visits 40.7K 40.4K 67.4K
Average delay (s) 2.87 9.58 10.38
Average loss (%) 3.30 16.81 11.53

TABLE II
DOMAIN VOLUME, VISIT VOLUME, AND HARM BY DOMAIN CLASS.

of time. Of course, this is not the effect of typosquatting, but

simply the overall effect of mistyping domains. To compute the

actual harm caused by typosquatters, we can form two different

estimates: one where we compare the delay experienced due to

adversarial registration to the delay caused by a domain being

unregistered, and another where we compare the adversarial

delay with the cooperative delay. These, respectively, form the

lower bound on time lost where the defender spent no extra

resources on otherwise unregistered domains, and an upper

bound on time lost where the defender registers all possible

typos that users ever type. Computing these bounds, we see that

the lower bound is approximately −8.98 hour and the upper

bound is approximately 75 hours. A negative value for the lower

bound provides us with the insight that on average, adversarial

domains actually help users reach their intended websites faster

than if that domain is left unregistered. This is certainly not the

expected result, but hardly a surprising one: because the dataset

is so large, less than nine hours difference between one effect

and another is so low as to be roughly equivalent, leading us

to hypothesize that in the common case, users correct their

error in roughly the same amount of time whether they see a

“server unavailable” error message or unexpected content.

However, in the upper bound case where those domains

had all been registered by the average cooperative entity, the

adversarial registrants would have caused 75 hours of delay

throughout the course of our dataset. Even though this is a

sizeable loss summed over a few seconds here or a few seconds

there, one should consider it in the context of all web usage.

As we do not have an accurate estimate of the time spent

using the web on this network, we instead create a very rough

estimate from facts about the campus and U.S. web use. With

a very conservative estimate of an average of 10,000 people

(less than one third of total enrollment and academic staff)

on campus on a typical day using the web for .7 hours per

day (half of the U.S. average of 1.40 hours per day [28]), this

factors out to 175 man-years of web use over the course of our

full fidelity dataset (219 days). Using even the upper bound on

time wasted by typosquatting, this factors out to 4.22 seconds

wasted due to typosquatting per 24 hours of web use. Although

this is an infinitesimal figure, it will hopefully be of value

when performing comparative analyses with other forms of

cybercrime.

1) Characterizing Harm: Within each domain class, four

methods for arriving at the intended site are possible: being

redirected automatically by the web server or page code,

performing a search for the intended domain via a search

engine, directly correcting or re-typing the domain into the
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Discovery Method Redirect Search Typein Browse

Cooperative 38712 N/A N/A 2045
Adversarial N/A 1797 38403 243
Unregistered N/A 11604 54760 1088

TABLE III
DISCOVERY METHOD BY DOMAIN CLASS (IN NUMBER OF VISITS).

URL bar, or browsing to the intended page. The proportions of

each discovery method are shown in Table III; the distribution

of delays associated with each discovery method is shown in

Figure 6.

Even before splitting the adversarial registrations into differ-

ent classes, the overall delay caused by either unregistered visits

or visits to adversarial registrations is greater than cooperative

registrations: that is, defenders can save their visitors time

by registering popular typos and forwarding their visitors to

the correct domain name. However, in the absence of this

defense, we actually find that the overall delay caused by

adversarial registrations is less than that when a visitor types

in an unregistered typo. This evidence is a first hint that the

phenomenon of adversarial typosquatting taken as a whole

actually saves users time rather than wasting their time.

Discovery method has a significant effect on the delay

between visiting a typo and finding the resulting site. However,

other factors can also influence the amount of time it takes

a user to find their intended site. In Figure 7, we partition

the data between “mobile” users (on tablets and phones) and

“traditional” users on non-mobile devices within the TAP dataset.

To perform the partition, we consider an event as mobile if

the string “Android,” “iPad,” or “iPhone” exists in the HTTP

request’s User-Agent string (which covers most modern mobile

devices); anything else is considered a “traditional” browser. For

finding typos by correcting a typo in the address bar (right side

subfigure), we see a minimal difference between the four modal-

ities split up by mobile/traditional and unregistered/adversarial

domains. When searching, however, unregistered domains are

uniformly easier to correct with a search, likely an effect caused

by pre-resolution which we discuss in Section VI-G1. The

traditional laptop and desktop computing environments where
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Fig. 6. Cumulative distribution of visit delay by discovery method.

user actions like navigating to the address bar or typing on

the keyboard are measurably faster in each modality, however

there is only a slight edge when manually correcting a typo.

D. PROXY Dataset Measurements

To validate our approach on the TAP dataset, we repeated

our analysis for the PROXY dataset. This population had a

nearly distinct set of typos–of the 5,722 registered domain

pairs present in the PROXY dataset, only 300 overlapped with

the TAP dataset. That this network is only meant to be used

for work purposes (and not recreational uses e.g. by students

in dorms or between classes) can partly explain the sparsity of

this overlap. Furthermore, the PROXY dataset was collected

from a corporation with a global presence, and the TAP dataset

includes only users at a large public university on the East

coast in the United States. Even so, Figure 8 mirrors the effect

seen in Figure 6 for the TAP dataset (and likewise for the

more generic domain class Figures 9 and 5), showing that the

distinct delay characteristics of the different discovery methods

outweigh any effect caused by current task or user population.

E. Malicious Typosquatting Domains

To determine what proportion of adversarially registered

domains were suspected of malicious intent, we used the

VirusTotal and Google Safe Browsing scanners to test whether

any of these domains were blacklisted. Among all 11.1K

adversarial domains seen in the dataset, 33 were listed on

VirusTotal (with 3 or more detections) and 9 on Google Safe

Browsing (all listed as malware), either indicating low detection

rate, or low incidence of actionable malice on typosquatters.

This finding agrees with the results of [2] which actually found

that domains in the Alexa top 1,000,000 were more likely to

be marked malicious than detected typo domains.

F. Typo Characterization

Beyond focusing on the content of the sites, we can also

characterize the typos people make. First among these questions

is whether the most popular sites receive the most typos, or

do less popular sites also receive typos? To investigate, we

graph the Alexa rank of the target domain against the number
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of visits in Figure 10. Perhaps unsurprising, the lion’s share

of typos happen on the 100,000 most popular sites. However,

there is a distinct long tail effect, with a full 15% of all typos

targeting sites with rank below 1,000,000.

Drilling down to local popularity, we gauge site popularity

based on the number of visits to the site from the local campus

population. In Figure 11, we see that while the most popular

sites are subject to a moderate amount of typos, it is the middle
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Fig. 11. Number of typo visits by target site’s local popularity.

of the overall popularity distribution that sees most typos (there

are, of course, far more sites in the 100,000 visit range than

in the 100,000,000 visit range).

We can also investigate whether longer domain names are

more likely to be mistyped, as shown in Figure 12. This figure

shows a smooth peak around length 12, in line with Alexa’s

top 100,000 having an average length of 13 and the entire

1,000,000 having an average length of 15. The outlier at length

20 is ratemyprofessors.com, no doubt a popular site

on a college campus. Furthermore, the most popular typo is
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ratemyprofessor.com, which is not only an edit distance

one typo, but also a very reasonable semantic mistake.

Finally, we can also inspect typos by their site category,

as determined via urlblacklist.com. Search engines are

higher than one might expect here as a typo, even if they are

one of the most useful tools online. Our hypothesis here is

that users in search of a given site will first manually type in

the name of the search engine directly to the URL bar, then

search for the URL in the search engine, and then finally go to

the search result. Not only does this boost the number of visits
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Count Registrar name

1080 GODADDY.COM LLC
666 ENOM INC.
603 FABULOUS.COM PTY LTD.
561 .CO Internet S.A.S.
435 NETWORK SOLUTIONS LLC.
393 TUCOWS DOMAINS INC.
374 PDR LTD. D/B/A PUBLICDOMAINREGISTRY.COM
357 INTERNET.BS CORP.
338 NAMEKING.COM INC.
336 Public Interest Registry

TABLE IV
TOP TEN REGISTRIES FOR ADVERSARIAL TYPO DOMAIN NAMES.

to the search engine, typo correction provided by the search

engine prevents many other typos that might have happened

during the search query.

G. Typosquatter Characterization

Not all typosquatters cause the same effects: here we explore

the different typo page clusters and their effect on visit delay. In

this section we focus on adversarial registrations to detect and

characterize individual organizations perpetrating typosquatting.

1) Infrastructure Clustering: First, we cluster the adversarial

typosquatting based on network features like WHOIS registrant,

DNS provider, and hosting provider.

Delay clustering. One interesting phenomenon to discuss

here is the large proportion of incredibly quick corrections

for unregistered domains as seen in Figure 6: 30% of users

find their destination domain via correcting their typo within

five seconds. A reasonable explanation exists however: modern

browsers pre-resolve domain names as they are typed by end

users, thus a user who types example.com slowly enough

will cause their browser to attempt to look up example.co
to speed up the eventual page visit.2 As shown in Table IV,

the .co registrar is among the most popular registrars for

registered typos, and its presence in Figure 14 (as the outlier

in the upper left hand corner) shows that it is likely that these

domains are being looked up as part of pre-resolution of .com
domain names rather than as actual user typos.

As shown in Figure 6, it seems unreasonable to expect that

over 40% of all users who correct an unregistered domain

typo via search do so in under five seconds. Closer inspection

of browser operation provides a clue here: the address bar in

modern browsers provides both address entry and search engine

functionality. The browser cannot a priori tell the difference

between someone searching for a string with no spaces or

simply entering a host name. Thus, for example, if a user

types a domain name with a nonexistent TLD, the browser can

default to searching for the desired domain. Because modern

search engines provide spelling correction, the correct domain

is likely to be the first result on the search engine results page,

only a click or tap away.

Beyond domain registrar information from whois, we can

also inspect the name server responsible for resolving the typo

2This effect, along with its privacy implications, is investigated in [29].
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Fig. 14. Scatterplot of average typo discovery delay and number of typos,
grouped by domain registry.
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Fig. 15. Scatter plot of average typo discovery delay and number of typos,
grouped by DNS provider.

domains; the top ten DNS providers are listed in Table V

and a scatter plot of number domains and average delay

is presented in 15. While there are no distinct trends to

point out here, the heavy hitters are all well known domain

parking providers; as the monetization and hosting mechanisms

involved in domain parking are fundamentally very similar to

those used in typosquatting, this is an unsurprising result.

One interesting point to notice is that, if these clusters

represent different typosquatters, all perpetrators whose average

delay is below 10.38 seconds are actually helping the user save

time by getting them to their destination faster. Because the

difference between the average delay due to typosquatting and

the average delay due to a browser error page is so small,

it is not hard for typosquatters to actually improve over that

average.

Success clustering. Just as different typosquatters cause

users to take more or less time to find their intended destination,

so do different typosquatters cause a varying amount of harm to

the intended destinations: Figures 16 and 17 plot the intended

site discovery rate against the quantity of visits grouped by

registrar or DNS provider cluster. Note that due to our 20%

threshold on the conditional probability model, there is a hard

cutoff on loss rate. While there are no pronounced effects
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Fig. 16. Scatterplot of average typo discovery success and number of typos,
grouped by registrar.
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Fig. 17. Scatterplot of average typo discovery success and number of typos,
grouped by DNS provider.

here, we can see that a healthy amount of clusters (including

some with high volume) average a success rate above that

of unregistered domains, showing that not only can some

typosquatters lead their visitors to their intended destination

faster, they also have a higher success rate.

Count Nameserver

757 dsredirection.com
671 above.com
593 domaincontrol.com
466 parkingcrew.net
453 internettraffic.com
439 sedoparking.com
351 dnsnameserver.org
301 hastydns.com
272 rookdns.com
215 parklogic.com

TABLE V
TOP TEN NAMESERVERS (AGGREGATED BY REGISTERED DOMAIN) FOR

ADVERSARIAL TYPO DOMAIN NAMES.

VII. DISCUSSION

A. Limitations

Note that the passive dataset only has HTTP data, and no

HTTPS data. When correlating pairs of typo and target domains,

any target domains which are visited directly via their HTTPS

URL will be invisible to our collection apparatus. Thus, we will

miss some successful typo corrections and slightly under-count

the successful discovery rate for target sites which are found

in this manner, and the delay from this typo event will not be

factored into the average delay.

As stated earlier, a strength of this approach is that it could be

used for typos which differ by more than Damerau-Levenshtein

distance one. However, the volume of traffic we inspected made

it infeasible to search for typos which differ by more than one

character.

Because the conditional probability model allows the detec-

tion of typos based on user intent rather than active inspection

of the sites in question, the coverage of all typos will be far less

than an exhaustive, active methodology. In addition, our offline

methodology requires inspecting a massive amount of user

traffic. While these are weaknesses in using the conditional

probability model as an online typo detection approach, the

additional data regarding user harm would not be available

without passive data, and would not enable analysis of the

negative externalities of this form of cybercrime.

B. Revenues and Negative Externalities

To estimate the negative externality ratio for typosquatting,

we must convert our time and visit loss into dollars and

cents, as well as make estimates for the costs and revenues

of typosquatters. Here we use reports of online advertisement

prices and revenue from Johnston [30], [31] as very rough

estimates of costs and revenues for site visits and ad clicks.

For visit gains and losses, “cost per click” advertising can

be used as a proxy for the value of a visit which is “successful,”

and “cost per impression” advertising can be used as a proxy

for an unsuccessful visit i.e. a visit to a typosquatter’s site

that does not cause a visit to the intended site. Thus, we

can estimate the value of the revenue to the typosquatter as

rcα + ri(1 − α) where rc is the revenue per click, ri is the

revenue per impression, and α is the visit loss rate.

We can estimate that visit loss is zero-sum: visitors who

wish to perform a given action should be “worth” equivalent

revenue whether they end up at the legitimate site or the

typosquatter’s site. Thus, loss to the intended site owner is ccα
(the cost per click times the visitor loss rate), as this would

be the cost to the owner to otherwise attract the lost visitors.

Note here that cc is the cost per click to the advertiser rather

than rc, which is the revenue to the publisher (the ad broker

retains the spread between these two values); we make the

estimate of a 50/50 split in the case of both cc and ci again

based on [30], [31]. We ignore any negative effect of visit

delay on the revenues of the site owner. Using our average

net visit loss rate of 5.28%, for every thousand typos which

end up at an adversarial typosquatter’s site, the intended site
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owner loses $48.58 and nets the typosquatter $2.70. Note that

this is the marginal loss for the intended site and marginal

revenue for the typosquatter: we ignore the fixed costs of

the typosquatter including domain registration and hosting, as

well as any difference in the marginal costs incurred (or not

incurred) due to computational resources used for each visit.

Considering only the values due to visit loss or gain, the

negative externality ratio would be 18:1, in line with the

estimates for non-violent crime [4]. However, the time loss is

also significant: for every 24 hours spent browsing the Internet,

a user loses 4.22 seconds to typosquatting. Because statistics

for web use are readily available, we focus on the United States

for these computations. An Internet user who browses the web

for 1.40 hours a day five days a week would lose 64 seconds

to typosquatting per year; using the median hourly wage of

$16.87 in the United States as a proxy for the value of this

user’s time [32], we arrive at a per capita loss of $.29 due to

lost time.

We can also estimate the externality ratio of the defenders

(who purchase domains to prevent typosquatters from doing the

same) and the attackers (who also have to purchase domains

to ply their craft). In our entire traffic trace, we see 11.1K

adversarial domains and 2.4K cooperative domains. Assuming

that the cost of of domain registration is roughly equivalent

for different registrars, the ratio between attacker effort and

defender effort is 4.62:1, far lower than nonviolent crime.

This effect implies that typosquatting is likely here to stay: if

the profits from typosquatting are sufficient (and, unless this

investment was largely undertaken with speculation in mind,

we can assume it is), then the 2.5K unregistered domains

experiencing typo traffic in our dataset indicate that there is

certainly sufficient fertile ground upon which to perpetrate

yet more typosquatting, without even accounting for newly

popular domains for which typos have not yet been registered.

Although this analysis neglects the registrations which were not

visible in our dataset, it does serve as a metric for the amount

of successful effort each party has put in to perpetrating or

defending against typosquatting.

Due to the numerous “fudge factors” in each estimate, these

numbers should be taken with a healthy dose of caution.

However, the final negative externality ratio is approximately

18:1 (the lost time does not significantly effect the calculation),

showing that typosquatting is far less societally damaging than

spam based on Rao’s estimate of 100:1 [4] and in line with other

nonviolent crime. Dealing in absolute values, the USC “How

Much Media” estimates that approximately 160 billion hours

are used annually browsing and searching the web [28]: thus,

typosquatting wastes 262 man-years of time, or $38 million in

lost “productivity” using the median hourly wage cited above.

Although as a headline value that certainly appears large, in

the context of a gross domestic product approaching 17 trillion

dollars, this value is vanishingly small. In addition, this is

using the upper bound for typosquatting, which presupposes

that defenders would register every typo in our dataset, which

is somewhat unrealistic. In the case where site owners do

not perform defensive registration, there would actually be a

savings of 31 man years of time, which likewise corresponds to

over $4.5 million in gained “productivity.” As these estimates

come down on either side of helpful or harmful, perhaps it is

best to consider typosquatting squarely in a gray area with no

clear-cut benefit or harm to society.

This analysis can also guide site owners in a proper course

of action. Because the loss rate and delay for users arriving at

a given site after mistyping it is roughly equivalent between an

unregistered domain and a typosquatting domain, site owners

should not register typos because they fear typosquatters

will further delay or steal their visitors. The upper bound

implies that one can decrease delay and loss of visitors with

defensive registrations; however, these defensive registrations

are effectively defending against the act of mistyping, rather

than the act of typosquatting.

C. Future Work

Extensions to our methodology and analysis could further

explore typosquatting via the conditional probability model

and harm inference. Chief among them is generalizing typo

detection so that it does not rely on Damerau-Levenshtein

edit distance. In theory, the conditional probability model

should be able to find all typos, not just those with small edit

distance. We attempted to apply the conditional probability

model to all root document loads instead of just those with

a small edit distance, but the accuracy metric (as described

in Section VI-A1 for the short edit distance version) was

unacceptably low, and the runtime was far larger. To improve

this approach, we might include heuristics for detection from

other typosquatting work, or incorporate the information used

for clustering (Section VI-G) during the detection step rather

than only at the pair clustering step.

While passive typo detection can infer visitor intent, it cannot

detect site operator intent: as in the eba.com/ebay.com
example, not all common typos are obviously typosquatters

monetizing someone else’s brand, even if they benefit from

it. Because of this, intent inference should not necessarily be

used as a method to block typo domains, but rather could be

used as a typo suggestion similar to the approach taken by

search engines do when they detect typos. Future work could

perform more extensive analysis of the bounce rate from these

domains, or the content (or lack thereof) of the pages being

hosted to build a more confident gauge of the owner’s intent.

Fully quantifying the negative externalities of cybercrime can

show defenders a better picture of how harmful these activities

are to the Internet’s human users. However, a comparative

treatment would be even more useful. The user harm metric

of lost time could be extended to other forms of cybercrime

like spam, fake antivirus, or ransomware. The latter two scams

have direct financial components, but the time spent performing

remediation is a significant component of the loss incurred.

Identifying and removing malware can be a frustrating and time

consuming process: more complex intent inference, perhaps

aided by a search engine query stream, could enable quantifying

the human component of harm caused by malware.
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User harm and passive DNS observation can also be com-

bined to quantify the effects of recursive resolvers performing

NXDomain wildcarding. NXDomain wildcarding is the practice

of operating a recursive name server and returning a result

for domains which would normally have none; the entity

controlling that server can then serve ads based on the user’s

typo [33]. While this activity is certainly a compromise of the

integrity of the DNS system, its effect on users is unclear: on

one hand, users who see a page of ads and search results might

be able to find their intended destination more quickly than a

user who sees a browser error page. On the other hand, the page

of ads and possibly competing search results might decrease

(or, possibly, increase) visitor loss for the intended destination

site. Recall from Figure 6 that unregistered domains have a

high rate of intended site discovery below 5 seconds possibly

because of browser URL bar search behavior: if this effect

extends to wildcarding “search” sites, these sites’ questionable

behavior could actually be a net win for the user. Verifying

this circumstantial evidence would show that while NXDomain

wildcarding is hostile toward the integrity of the DNS, it might

not be hostile to user experience.

VIII. CONCLUSION

This paper’s ultimate goal is to characterize harm to users,

and uses the time wasted by typosquatting to quantify the

harm caused by an individual flavor of cybercrime. While

overall typosquatting’s negative externalities add up to 262

man-years of time lost in the United States per year, its

externality ratio is much lower than spam’s and is in line

with other forms of nonviolent crime. When compared against

the alternative of an unregistered domain’s error page, the

harm caused by typosquatting overall is no longer as clear cut,

as some perpetrators actually help users achieve their goals

more quickly than others. More generally, we show that it is

possible to precisely quantify the harm to users via one strain of

cybercrime, a measurement which should allow researchers and

practitioners to efficiently allocate their effort when deciding

which cybercriminal enterprises to combat.

IX. ACKNOWLEDGEMENTS

We thank the anonymous reviewers and our shepherd

Nicolas Cristin for their thoughtful comments and assistance

in improving the paper. We also thank our data partners,

including George Mason University, and those who assisted in

the collection and anlysis of the data, including Damon McCoy,

Angelos Stavrou, and Chaitanya Yavvari. This work was made

possible by National Science Foundation grant CNS 1351058.

REFERENCES
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