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Abstract—Program bugs widely exist and render software
faulty and vulnerable. Existing systems for surviving software
failures and attacks are mostly like chemotherapy, a cancer ther-
apy that causes severe adverse side effects because of imprecise
treatments. We propose Software Targeted Therapy, a new model
for surviving software failures and attacks due to program bugs,
that characterizes cancer-cells-like program elements concisely
at diagnosis and then applies treatments to them precisely at
software execution with minimal overhead. As a case study,
we apply Software Targeted Therapy to addressing heap buffer
overflows, one of the most dangerous software vulnerabilities,
and implement HeapTherapy. To our knowledge, HeapTherapy is
the first efficient design that prevents memory corruption caused
by buffer overflows without disrupting software execution (e.g.,
bounds checking can only prevent corruption). The slowdown
averages 6% on SPEC CPU2006 when HeapTherapy treats up
to 10 heap buffer overflow bugs simultaneously.

I. INTRODUCTION

Bill Gates said ”Microsoft products are generally bug free,”
while in practice both their operating systems and service
programs contain a large number of bugs. Program bugs are
one of the main reasons of software failures, which degrade
the reliability and availability of services and lead to potential
denial-of-service attacks.

Moreover, with the wide deployment of some defense
techniques especially randomizations, such as ASLR and
random canaries, the attacker resorts to means of obtaining
critical information through brute-force or other more effective
attacks through repetitively exploiting specific vulnerabilities.
For example, BROP (Blind ROP) [1] introduces a generic
stack reading attacking technique, which guesses the value of
a single byte of needed information (canaries, saved frame
pointers and return addresses) at each buffer overflow attack
and detects a hit of the correct value if the victim service does
not crash. Such attacking technique is very effective, for it only
needs 128 tries on average to leak one byte of information.
Thus, a successful return oriented programming attack can be
constructed based on the gathered information after crashing
the victim service thousands of times.

Therefore, systems that can respond automatically upon an
attack or software failure and prevent both denial-of-service
attacks and repetitive exploitations of a vulnerability as used in
brute-force and BROP attacks are demanded. Many approaches
have been proposed to survive software failures and attacks.
N-version and N-variant systems leverage software diversity
to survive failures [2]. They rely on synchronization between
redundant executions, and thus incur high overhead throughout
the life cycle of the system. Rx system adjusts the program

execution environment when a failure occurs [3]. It lacks pre-
cise information guiding such adjustments; instead, it follows
some intuition-based rules to try various adjustments until
one works. The trial-and-error approach may experience many
failures before a success. Some systems generate signatures of
user requests that ever caused failures, in order to filter out
those abnormal requests at new runs [4], [5]; they have false
positives and become less effective when handling requests
containing polymorphic malicious code. Some systems disrupt
the development of a failure by forcing a function return or
returning crafted bytes for overrun read; they share the limita-
tion of semantic deviation [6], [7]. The common limitation of
most prior work is the lack of preciseness.

We approach from a medical perspective by regarding
software as human body, and treat software failures and attacks
like treating cancers. Prior work is like chemotherapies for
cancer treatments, which act by killing all cells that divide
rapidly, one of the main properties of most cancer cells as well
some normal cells, and thus cause severe side-effects. Given
a bug, prior work also applies enhancements to irrelevant
program parts.
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Fig. 1. The life cycle of the detection, diagnosis, and recovery process with
Targeted Therapy.

As a contrast to chemotherapy, Targeted Therapy for cancer
treatments is a type of more effective medication that blocks
the growth of cancer cells precisely. Learning from the spirit
of Targeted Therapy, we propose an approach named Software
Targeted Therapy. As shown in Figure 1, upon the detection of
a program bug, the diagnosis characterizes program elements
that may be affected by the bug, which we call pathogen
elements. At the recovered execution those pathogen program
elements are identified efficiently based on the diagnosis result,
and enhancements are applied to them precisely. The program
execution then is immune from the bug.



II. DESCRIPTION METHOD OF PROGRAM ELEMENTS

The uniqueness of Software Targeted Therapy is that (1) its
diagnosis is able to describe the pathogen program elements
concisely at diagnosis and (2) its execution can identify
pathogens precisely and efficiently.

We present a description method that characterizes con-
cisely and identifies program elements efficiently. It involves
two challenges. First, a program element, such as a buffer, a
function call, a thread and a variable, contains a variety of
information, e.g., the address, the call path and the calling
context; however, it is difficult to identify the piece of infor-
mation that can be reproduced between program executions.
For example, the memory address of a variable varies due to
ASLR. Second, the program execution should be able to make
use of the description result efficiently.

Definition 2.1: A sketchy control flow path of a program
location is a tuple consisting of the location’s calling context
and intra-procedural control flow path. In the rest of the paper,
we refer to it as a sketchy path unless stated otherwise.

A simple example of intuition is that when debugging a
failure, such as a segmentational fault due to a double free
bug, instead of attributing the failure to the current function,
we routinely first obtain the calling context as a start point.
This inspires us to approach a software failure caused by a
bug from a control flow perspective. More importantly, calling
context information usually can be reproduced, for example,
the calling context of memcpy that overruns a buffer. Similarly,
take the data race bug as an example, the intra-procedural path
in the function containing the data access is critical and usually
can be reproduced between executions. So we use the sketchy
control flow path of a program element consisting of the calling
context and the intra-procedural path as the description target.
At diagnosis, the sketchy paths of pathogen program elements
are identified through logging or replay.

In order to obtain the calling context at execution, stack
walking is straightforward but too inefficient for continuous
calling context retrieval. Another approach is to build a dy-
namic calling context tree where each node in the tree repre-
sents a unique context. It incurs times of slowdown, though.
A few calling context encoding techniques, which represent
a calling context using very few, typically one, integers, have
been proposed to track calling contexts continuously with very
low overhead (≤ 3%) [8], [9]. While the techniques have
been used in profiling, test coverage, and anomaly detection,
we propose to use the calling context encoding technique in
our description method for the purpose of surviving software
failures and attacks.

Ball and Larus proposed an efficient algorithm (referred to
as the BL algorithm) to encode intra-procedural paths [10].
The algorithm instruments the program by assigning simple
arithmetic operations along the edges of the control flow graph.
By executing the arithmetic operations progressively with the
function execution, each of the control flows obtains a unique
integer encoding. The BL algorithm is used in our description
method to encode the intra-procedural path.

Each sketchy path of a pathogen program element is
encoded into one or very few integers. We perform a two-tier
matching of sketchy paths at execution to identify pathogens.

At execution, a continual calling context encoding is per-
formed, so that the encoding value of the current calling
context is always available. Only when the current calling
context matches the calling context of a pathogen sketchy path,
do we perform intra-procedural path encoding and compare
it against the pathogen’s intra-procedural path to finally de-
termine whether current sketchy path is a pathogen one; if
so, a pathogen program element is identified and proper treat-
ments are applied. The two-tier encoding improves scalability,
because the overhead due to intra-procedural path encoding
is localized. Moreover, for some bugs, e.g., the double free
bug, the intra-procedural path is irrelevant, and hence only the
calling context information needs encoding.

III. EVALUATION RESULTS

We have applied Software Targeted Therapy to building
HeapTherapy, which hardens software automatically upon de-
tection of heap buffer overflow attack. Unlike bounds checking
and many other buffer overflow countermeasures, which usu-
ally stop the program execution upon overrun, HeapTherapy
allows the program execution to continue without the risk of
memory corruption. It incurs an average of 6% slowdown and
8% memory overhead when effectively defending against up to
10 vulnerabilities simultaneously. Software Targeted Therapy
can also be potentially applied to addressing many other bugs
and vulnerabilities, such as stack buffer overflows, dangling
pointers, and data races.
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