Poster: Maxwell: User-Driven Information Flow
Control for Android

Jun Yuan (Student)
Computer Science Department
Stony Brook University
Stony Brook, New York 11792
Email: junyuan@cs.stonybrook.edu

Abstract—Current mobile operating systems protect users’
privacy by enforcing access control policies on sensitive data
sources and sinks. However, many privacy goals are really
information flow problems. We present Maxwell, a system that
enables users to explicitly authorize information flows as part of
their normal interactions with applications. Our work extends
the ideas of user-driven access control and applies them to
information flow control. Our implementation uses TaintDroid
to enforce the user’s information flow control choices. Our
implementation represents information flow privileges using an
object-capability model which may be of independent interest.

I. INTRODUCTION

Modern operating systems use several different methods to
decide whether to give an application access to a privileged
resource. For example, systems may silently approve some
accesses, ask users to approve application permissions at
install time, or ask users to approve accesses at run-time[2].
Researchers have also proposed trusted user interfaces for
integrating permission granting actions into the user’s normal
workflow[4]. However, trusted user interfaces are not always
applicable and the other methods impose a trade-off between
usability and the precision of the policy that is enforced.

This poster proposes a new point in the design space.
We present Maxwell, a system that enables users to explicitly
authorize information flows as part of their normal interactions
with applications.

Maxwell advances the state of the art in three ways.

First, by enforcing information flow controls, Maxwell re-
duces the impact of granting access to privileged data sources,
such as a GPS receiver, or sinks, such as the network. For
example, in current systems users cannot give an app access
to the GPS and network without also giving it permission to
transmit their GPS location over the network. Consequently,
the operating system cannot silently grant an application
permission to the GPS and network — the user must approve
these accesses. If, on the other hand, the system enforces
an information flow policy that forbids GPS data from being
transmitted over the network, then the system can silently grant
applications access to the GPS without harming user privacy.
This improves usability with no sacrifice in privacy.

Second, Maxwell supports user-driven information flow
control, giving users fine-grained control over how their infor-
mation is used without imposing an undue usability burden.

Rob Johnson (Faculty)
Computer Science Department
Stony Brook University
Stony Brook, New York 11792
Email: rob@cs.stonybrook.edu

Like user-driven access control, user-driven information flow
control merges permission-granting into the user’s normal
workflow. For example, when a user clicks a button to share a
photo over the internet, the application simultaneously receives
the permissions needed to transmit camera data over the
network. This enables users to manage fine-grained permis-
sions with little cognitive load or distractions and without
succumbing to dialog fatigue.

User-driven information flow control can enable systems
to side-step many of the limitations of trusted user-interface
widgets. For example, a trusted user-interface widget for taking
photos should include a secure preview window. However,
moving the preview window into a separate, trusted process is
incompatible with photography applications that want to apply
custom filters to the camera preview image. With user-driven
information flow control, the OS can allow the application
to access the camera directly. The application can’t release
the photo over the internet, though, until the user invokes the
trusted user interface component for sharing photos.

Finally, Maxwell represents applications’ information flow
privileges using an object-capability design. Our system uses
a modified version of TaintDroid to enforce a default-deny
information flow policy: any data item that is tainted as coming
from any sensitive source is not allowed to be written to
any sensitive data sink. When a user activates a trusted user
interface component, the application is passed a Declassifier
object with a declassify method. The application can use
the Declassifier to obtain “declassified” references to objects,
which can then be written to sensitive sinks.

The object-capability design offers several advantages.
First, it separates the act of granting information-flow privilege
from the act of using it. This flexible approach supports a
wide variety of application designs — applications can obtain
additional user input, perform computation, data marshalling,
etc., before actually using the declassification capability.

This design also supports flexible information flow policies.
For example, a trusted user interface button can grant the ap-
plication a one-time-use declassifier object, whereas a trusted
toggle switch can give the application a declassifier that can be
called repeatedly until the user disables the privilege, at which
time the declassifier will be deactivated. Declassifiers can also
be tailored to specific sources and sinks, e.g. a photo sharing
button would pass the application a one-time declassifier that
will only declassify camera data so that it can be transmitted



over the network. The declassifier would reject an attempt to
declassify other types of data or to pass camera data to a
different type of sink.

Finally, declassifiers bring all the standard benefits of the
object-capability model. The application can control which
of its components can use declassifier capabilities, unlike
with an ambient-authority-based implementation. For example,
a benign application that embeds an aggressive advertising
library can choose whether to give the library code access
to declassifiers. It can also delegate restricted declassification
capabilities to its sub-components by implementing wrapper
declassifiers.

II. PROTOTYPE IMPLEMENTATION

We developed a Maxwell prototype for Android. Our
implementation uses TaintDroid to enforce information flow
policies. We have implemented a declassifier API and several
trusted widgets. This section describes the key design decisions
of our implementation.

First of all we extend TaintDroid to support fine-grained
source to sink flow control. TaintDroid implements an efficient
system-wide information flow tracking that tracks the source
of each byte of the data as it flows through the execution stacks
[1]. However, TaintDroid does not block private data at sinks,
rather it just identifies the data and logs a warning message.

o Taint tag extension. A taint tag is a 32 bit vector attached
to each variable. By default, only lower 16 bits have been
used for tracking different taint sources such as GPS and
contacts. We assign the upper 16 bits of taint tag to represent
different sinks(e.g., network).

e Sink checking. We modify the TaintDroid code at all the
sink points to check if the corresponding sink bit of taint
tags is cleared, otherwise an exception would be thrown to
block the data path.

o Declassifier API. We implement Declassifier interface in
the libcore.dalvik.system package for applications to create
a declassified copy of tainted data from the given policy.
Internally, Declassifier implements private helper routines
as Dalvik native code to clear taint bits. Declassifier is
the only class that can clear the taint bits so it is made
only package accessible. Only trusted classes in the same
package are allowed to use it. Declassifier API supports
a variety of policies which can be represent in a triple
(source, sink, mode) in which mode could be single-use,
unlimited or timed for different access semantics. Declas-
sifier object can keep the access control state(e.g., elapsed
time) to check against its policy. If its access control state
fails the policy checking(e.g., timer is up), the Declassifier
returns null to all untaint calls to assure the privilege is
revoked.

Declassifier is designed and implemented to represent the
capability of clearing taint bits. Applications can clear taint
bits of their data only when getting a hold of a Declassifier
instance. The only way for an application to access a De-
classifier object is to request a TrustedWidget object through
ResourceMonitor.

ResourceMonitor in Maxwell is a privileged final static
class that lies in the same package of Declassifier and exclu-
sively manages access to the capability (Declassifier). Unlike

RM in User-driven access control, our ResourceMonitor is
relieved from managing access control state which is shifted
to Declassifier. The ResourceMonitor exposes to applications
TrustedWidget instances tied with capabilities.

TrustedWidget is the implementation of trusted user in-
terface by extending android widget class and restricting
the access to the constructor and other unsafe methods of
the widget. A TrustedWidget is coupled with its policy and
capability granted by ResourceMonitor. We will walk through
how ResourceMonitor bridges between TrustedWidget and
Declassifier APIL.

e An application requests ResourceMonitor for a Trusted-
Widget object by providing a policy object in the form
of (source, sink, mode) and a callback object that defines
OnClickWithCap method.

e ResourceMonitor constructs a TrustedWidget instance
based on the parameters. The drawable of the TrustedWidget
object is rendered without ambiguity based on the policy so
that users understand what the information flow choice the
widget represents.

e ResourceMonitor constructs a Declassifier instance based
on the policy and registers the OnClickListener of the
TrustedWidget object to be using OnClickWithCap called
with the Declassifier instance.

e The TrustedWidget instance is returned to the application.
The application can now use the Declassifier to untaint the
data. If the access control state of the Declassifier is valid
to pass the policy check, Declassifier creates an declassified
copy of the user data from the given policy.

e The declassified copy of the data flows to the sink points
and only if the taint tag of the data passes the sink checking,
the data can leave the device.

III. PRELIMINARY RESULT AND FUTURE WORK

We have developed applications using trusted widgets of
Maxwell to test the policies with single use, unlimited and
timed modes respectively. The contrast test of regular widgets
versus trusted widgets indicates that the user data can be sent
over to the designated sink only with the user triggering the
trusted widgets and the given policies are loyally enforced.

Maxwell inherits two issues from TaintDroid tracking:
indirect control flow and native code of applications. Besides,
the object-capability model of Maxwell works based on the
assumption that the application code does not violate Joe-E
capability model [3] (e.g., no reflections). The improvements
on these limitations are in progress.

REFERENCES

[1] W. Enck, P. Gilbert, B. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N.
Sheth. Taintdroid: An information-flow tracking system for realtime
privacy monitoring on smartphones. In 9th USENIX Conference on
Operating Systems Design and Implementation, 2010.

[2] A. P. Felt, S. Egelman, M. Finifter, D. Akhawe, and D. Wagner. How
to ask for permission. In 7th USENIX Conference on Hot Topics in
Security, 2012.

[3] A. Mettler, D. Wagner, and T. Close. Joe-e: A security-oriented subset
of java. In Network and Distributed System Security Symposium, 2010.

[4] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang, and C. Cowan.
User-driven access control: Rethinking permission granting in modern
operating systems. In Proceedings of the 2012 IEEE Symposium on
Security and Privacy.



