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I. OVERVIEW

Quantitative information-flow models and analyses typi-
cally assume that secret information is static. But real-world
secrets evolve over time. Passwords, for example, should
be changed periodically. Cryptographic keys have periods
after which they must be retired. Memory offsets in address
space randomization techniques are periodically regenerated.
Medical diagnoses evolve, military convoys move, and mobile
phones travel with their owners. Leaking the current value of
these secrets is undesirable. But if information leaks about
how these secrets change, adversaries might also be able to
predict future secrets or infer past secrets. For example, an
adversary who learns how people choose their passwords might
have an advantage in guessing future passwords. Similarly, an
adversary who learns a trajectory can infer future locations.
So it is not just the current value of a secret that matters,
but also how the secret changes. Methods for quantifying
leakage and protecting secrets should, therefore, account for
these dynamics.

This work initiates the study of quantitative information
flow (henceforth, QIF) for dynamic secrets. First, we present
a core model of programs that compute with dynamic secrets.
We use probabilistic automata to model program execution.
These automata are interactive: they accept inputs and produce
outputs throughout execution. The output they produce is a
random function of the inputs. To capture the dynamics of
secrets, our model uses strategy functions to generate new
inputs based on the history of inputs and outputs. For example,
a strategy function might yield the GPS coordinates of a high-
security user as a function of time, and of the path the user
has taken so far.

Our model includes wait-adaptive adversaries, which are
adversaries that can observe execution of a system, waiting
until a point in time at which it appears profitable to attack.
For example, an attacker might delay attacking until collecting
enough observations of a GPS location to reach a high confi-
dence level about that location. Or an attacker might passively
observe application outputs to determine memory layout, and
once determined, inject shell code that accesses some secret.

Second, we propose an information-theoretic metric for
quantifying flow of dynamic secrets. Our metric can be used to
quantify leakage of the current value of the secret, of a secret
at a particular point in time, of the history of secrets, or even of
the strategy function that produces the secrets. We show how
to construct an optimal wait-adaptive adversary with respect to
the metric, and how to quantify that adversary’s expected gain,

as determined by a scenario-specific gain function . These
functions consider when, as a result of an attack, the adversary
might learn all, some, or no information about dynamic secrets.
We show that our metric generalizes previous metrics for
quantifying leakage of static secrets, including vulnerability ,
guessing entropy , and g-vulnerability . We also show how to
limit the power of the adversary, such that it cannot influence
inputs or delay attacks.

Finally, we put our model and metric to use by imple-
menting them in a probabilistic programming language and
conducting a series of experiments. Several conclusions can
be drawn from these experiments:

• Frequent change of a secret can increase leakage, even
though intuition might initially suggest that frequent
changes should decrease it. The increase occurs when
there is an underlying order that can be inferred and used
to guess future (or past) secrets.

• Wait-adaptive adversaries can derive significantly more
gain than adversaries who cannot adaptively choose when
to attack. So ignoring the adversary’s adaptivity (as in
prior work on static secrets) might lead one to conclude
secrets are safe when they really are not.

• A wait-adaptive adversary’s expected gain increases
monotonically with time, whereas a non-adaptive adver-
sary’s gain might not.

• Adversaries that are low adaptive, meaning they are ca-
pable of influencing their observations by providing low-
security inputs, can learn exponentially more information
than adversaries who cannot provide inputs.

Details about our experiments, our model, its relationship
to prior information approaches, and our implementation are
discussed in the full paper [1]. The extended version of the
work, published as a technical report [2], also includes a
discussion and the measurement of information flow relative
to a memory-limited adversaries and proofs of the various
claims of the conference paper. In the rest of this extended
abstract we briefly summarize the some of the experiments
that demonstrate the above conclusions.

II. EXPERIMENTS

Our experiments analyze several examples modeled by the
following basic scenario. Suppose an illicit-substance dealer is
locked in an ever-persistent game of hiding his stash from the
police. The simplest form of this example resembles password



guessing, replacing the password with the location of the stash
and authentication attempts with “stakeouts” in which police
observe a potential stash location for the presence of the stash.
After making observations the police will have a chance to
“raid” the stash, potentially succeeding. In the meantime the
stash location might change.

We consider several variations of this basic scenario, and
study how the variations affect the quantity of revealed in-
formation. In particular, we consider (1) the impact of low-
adaptivity on information leakage (i.e., how the adversary’s
ability to choose how to influence the system based on
observing its outputs affects how much information is leaked),
(2) the impact of wait-adaptivity (i.e., how the adversary’s
ability to wait for the best moment to attack changes the
expected information leakage), and (3) how and whether a
secret changes impacts the information leaked.

Low adaptivity. The power of the adversary to adaptively
provide inputs to the system based on the results of prior
observations has significant impact on the vulnerability of a
(non-moving) secret. In this experiment we modeled a hidden
stash’s location as a value drawn uniformly between 0 and 7.
The police observe whether the stash is east or west (greater
or lesser) than their chosen stakeout location (which is one of
eight possibilities). Any fixed ordering of the stakeout locations
results in complete knowledge of the secret. On the other hand,
adaptively, the police can perform binary search and determine
the stash in 3 stakeouts. This is demonstrated in Figure 1 which
plots the expected chance of a successful police raid (termed
their gain) after a varying number of stakeouts. The wide gray
lines represent all possible stakeout schedules of which one
is highlighted. The thin dark line is the adversary gain given
adaptive stakeout locations. The different between the two is
exponential.

Wait adaptivity. Wait adaptivity is the ability of the
adversary to determine adaptively when they will exploit a
system given their state of knowledge; they might choose to
wait if they expect to learn significantly more in the future. In
our next experiment, we have the same situation of a hidden
stash among 8 values but now it is randomly moved to one
the 8 locations change every 4 time steps. Additionally the
police stakeouts only learn whether the stash was at the exact
location of the stakeout (not whether the stash might be nearby,
as in the first experiment). In such examples the locations of
the stakeouts do not matter as long as they are distinct. The
order used here is sequential, wrapping around every 8 time
steps. The resulting expected chance of a successful raid after
a varying number of stakeouts is shown in Figure 2. The gray
line shows how much gain the police would derive were they
to choose the time of the raid before making observations.
It is seen there that their chances drop to 1 in 8 every
time the stash is relocated. On the other hand if the police
are adaptively deciding when to raid, their expected success
increases monotonically with time. The optimal behavior of the
police is to raid only when they successfully observe the stash
but otherwise continue observing. The monotonic increase in
chances of success is a general property of any scenario with
a wait-adaptive adversary.

Frequent change =? good. It is intuitive to think that
it is better to change the secret more often than less as in
the previous example. This is not always the case. In this
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Fig. 1. Non-adaptive and low-adaptive adversary gain.
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Fig. 2. Non-adaptive and wait-adaptive adversary gain.
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Fig. 3. Impact of varying change frequency.

experiment we modeled a situation where the stash changes in
one of many possible deterministic patterns (where a pattern is
a simply a permutation). The secret stash location is encoded
as a tuple, half of which is the identity of the movement pattern
which is never directly observed whereas the other half is
a value that is observed directly by the police 9 out of 10
times they make a stakeout. To precisely pinpoint the stash,
the police need to know both parts of the secret and they can
only learn the first by observing how the latter changes. As
such, the more often the secret evolves, the quicker the police
will learn permutation, and thus the (upcoming) location of
the stash. This is summarized in Figure 3 for varying rates of
stash change (the parameter r is the frequency of change).
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