
Poster: Statistical coding scheme for the protection
of cryptographic systems against brute-force attack

Hyun-Ju Jo (Student) and Ji Won Yoon (Faculty)
Gradudate School of Information Security, Korea University, South Korea

Email: {hyunju870, jiwon yoon}@korea.ac.kr

Abstract—A new algorithm for secure communication, with
statistical encoders and decoders is introduced to protect cryp-
tographic algorithms from brute-force attacks. In our proposed
approach, even incorrect plain texts decrypted with wrong keys
can have semantically/synthetically fine meaning. That is, every
keys can be used as a key in cryptanalysis. Because of this,
malicious people cannot distinguish correct plain texts from many
incorrect plain texts.

I. INTRODUCTION

A brute-force attack is the simplest but still effective attack
for the cryptographic algorithms. An underlying assumption
of the brute-force attack is that the complete keyspace was
used to generate keys so longer key size is believed to be
able to provide higher security level. Barker and Roginsky’s
work shows the recommendation for transitioning the use of
cryptographic algorithms and key lengths [1] against modern
threats including brute-force attacks.

However, there are still some concerns in security although
the length of the key is increased to obtain such higher security
level because of two reasons. First, there are some reports that
a number of cryptographic systems have unfortunately been
cracked although they were originally thought to be impossible
to crack by the brute-force attack since the keys used in the
cryptographic algorithms are obtained from the pseudo random
number generator. The practical keyspace to search through
was found to be much smaller than theoretical one, because
there exist a lack of entropy in the pseudo random number
generators. For instance, Goldberg and Wagner discovered
the predictable Netscape seed in Secure Socket Layer (SSL)
encryption protocol with the poor pseudo random number
generators [2]. Similar flaws from such lack of entropy have
been discovered in several cryptographic algorithms: Debian
OpenSSL[3], RSA public key factoring[4] and The Elliptic
Curve Digital Signature Algorithm (ECDSA) in bitcoin [5].
Second, custom hardware attacks with graphic processing unit
(GPU) and field-programmable gate array (FPGA) have proven
their capability in the brute-force attack for some ciphers.

From this point of view, it may not help to increase the
security level by just enlarging the key size. Of course, we
can address this problem by using cryptographically secure
PRNG. However, in this paper, we propose a new solution to
implicitly resolve the problem by adopting a statistical coding
scheme to the cryptographic algorithms.

II. BACKGROUD: PROBABILISTIC LANGUAGE MODEL

In this study, we develop a statistical code based on proba-
bilistic language model, which is replacing a traditional ASCII

code. The probabilistic language model assigns a probability
to a sequence of m words/strings S, where each symbol in
the string belongs to an alphabet of words or characters.
For this model, we can define a random process s with a
sequence of random variables x0, x1, · · · , xm that have values
in a countable set A, called the state space. Each si is the
i-th discrete random variable which has one of N possible
values where N = card(A). The language model can be
explained in discrete-time process. The full joint posterior
given the k-order Markov process s with the Markov condition
is p(s1:m) =

∏m
i=1 p(si|s1:i−1) =

∏m
i=1 p(si|si−k:i−1) since

p(si|s1:i−1) = p(si|si−k:i−1). In general, the language models
use n-gram statistics, frequency tables of all previous sets of
n consecutive words. An n-gram model is interpreted as a
(n− 1)th order Markov chain.

III. PROPOSED APPROACH

Let C, Pcorrect, Kenc and Kdec be the cipher text,
correct plain texts, and its corresponding correct keys for
decryption and encryption where Kdec = Kenc for symmetric
cryptosystems. In common cryptosystems like AES, DES
and RSA, ones obtain syntactically meaningless plain texts
Pwrong if the incorrect decryption key Kwrong is used where
Kwrong ̸= Kdec. However, if Pwrong looks like a real plain
text both semantically and syntactically, then the security level
increases since brute-force attack cannot distinguish Pwrong

from Pcorrect. Thus our main idea is to make Pwrong to
look like a semantically and syntactically meaningful plain
texts with a statistical coding scheme rather than fixed ones
like ASCII code. The comparison of the schemes with a
simple example for both traditional approach and our proposed
approach are displayed in figure 1. As shown in this figure,
our proposed approach will generate semantically meaningful
plain texts (Pwrong=’school’) although Kwrong is used for
decryption while the decrypted plain texts (Pwrong=’!#d2@’)
are meaningless in the traditional approach. Therefore, al-
though malicous person performs to find plain texts by brute-
force, he or she cannot find actual plain texts Pcorrect since
Pcorrect cannot be distinguished from Pwrong or he/she cannot
determine whether Pcorrect is correct.

A. Statistical encoding and decoding schemes

Let p(X1 = w) be the frequency of the first letter of
sentences where w ∈ {a, b, , z}. Of course, w can have
several different forms (basically it can be any formats with
information.): 1) numbers like ’1’, 2) special characters like
’?’ and 3) words like ’paper’. For example, if we want to
encrypt the plain text ’the school’ in our proposed scheme and

(a) Traditional approach (b) Proposed approach

Fig. 1. Comparison of traditional cryptographic systems and proposed
approach with statistical coder

each character is encrypted into L bits, we find the location
of the first character ’t’ in the cumulated mass function,
Pr(t) = p(X1 = a) + · · · + p(X1 = t). Afterwards, we find
a set of corresponding L bits binary codes to decimal number
⌊Pr(t)×2L⌋. This is an encoding process for the first character
and the reverse operation is the decoding process since they
are symmetric.

Let’s look at the other characters. The r-th character
can also be encoded in a similar way. For instance, we
have the third character (r = 3) ’e’ of the example and it
can be encoded by considering a conditional mass function
p(X3 = e|X2 = h,X1 = t). The decoding algorithm for the
r-th character is also symmetric so we can do it by using
reverse operation. The decoding and decryption procedures
for the actual correct key are exactly identical to those for
any wrong keys. If a given cipher, C, is decrypted with a
wrong key, Kwrong, for Kwrong ̸= Kdec, we will obtain com-
pletely meaningless binary codes. However, the binary codes
are decoded into the plain text, Pwrong , by using statistical
decoder and then it can be a meaningful wrong and different
message. Our proposed approach stores the information about
probabilistic Markovian language model that represents the
above cumulative mass functions. The stored information is
open in public so therefore all people can access this anytime.

The next step is to construct the cumulative mass function
(CMF) via a training step with any materials or documents. For
instance, if we infer the language model and construct CMF
with ’Bible’, then we can build the CMF for the characters
of the Bible. If the scientific novel is used for the training,
then information about scientific novel can be used for the
CMF. This provides a surprisingly important benefit to us. The
wrong messages are automatically constructed and generated
in a style of Bible or Scientific novel.

IV. SIMULATION RESULTS

For the simulation, we have built five different cumulative
mass functions from five different sources obtained from
http://textfiles.com: 1) NASA documents, 2) Romeo & Juliet
Novel, 3) Public Key Cryptography document, 4) Bible and 5)
Classic music documents. After building the cumulative mass

functions we have encrypted a message ’deniable encryption’
with Kenc via our proposed approach. Afterwards, we decrypt
the ciphers with a correct key Kdec and two randomly chosen
different keys K

(1)
wrong and K

(2)
wrong. We confirmed that the

cipher is obviously decrypted to the actual message Pcorrect

when Kdec is used. Table I shows the decrypted messages
when incorrect keys are used. Surprisingly, we could also ob-
tain semantically meaningful incorrect messages with K

(1)
wrong

and K
(2)
wrong . Therefore, we can obtain a lot of semantically

meaningful incorrect plain texts with almost all keys through
whole key space so that malicious people cannot find the
underlying actual plain texts Pcorrect by using brute-force
attack. In addition, note that the decrypted messages are highly
related to the contents of the trained documents(sources) to
construct the cumulative mass functions.

TABLE I. DECRYPTED TEXTS WITH DIFFERENT KEYS AND
DATABASES: NASA (16KB), ROMEO & JULIET (247KB),

CRYPTOGRAPHY (340KB), BIBLE (4.9MB)

Dataset for DB K(1)
wrong ̸= Kdec K(2)

wrong ̸= Kdec ̸= K(1)
wrong

NASA ’the scout’s payload ac’ ’the spacecraft and the’
Romeo & Juliet ’what show the project’ ’scene iii. scene iii’
Cryptography ’the secret key signatu’ ’the probabilistic tech’

Bible ’and the children of th’ ’and the lord was not b’

V. CONCLUSION

A new statistical encoding and decoding system is in-
troduced in this paper to protect any cryptographic systems
from brute-force attack. The statistical model based on prob-
abilistic language model builds cumulative mass function
(CMF). Given statistical coding scheme with CMF, plain
texts decrypted with incorrect keys can be decoded to be
semantically or synthetically meaningful. Therefore, malicious
people cannot crack the ciphers by using brute-force attack
even in a cryptosystem with lower security level since decoded
incorrect plain texts cannot be distinguished from actual plain
texts.

ACKNOWLEDGMENT

This research was mainly supported by Basic Science
Research Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Science, ICT and
Future Planning (NRF-2013R1A1A1012797).

REFERENCES

[1] E. B. Barker and A. L. Roginsky, “Sp 800-131a. transitions: Recom-
mendation for transitioning the use of cryptographic algorithms and key
lengths,” Gaithersburg, MD, United States, Tech. Rep., 2011.

[2] I. Goldberg and D. Wagner, “Randomness and the netscape browser,”
Dr. Dobb’s Journal, vol. 21, no. 66, 1996.

[3] Debian Security Advisory, “DSA-1571-1 openssl –
predictable random number generator,” Availlable on
http://www.debian.org/security/2008/dsa-1571, 2008.

[4] A. K. Lenstra, J. P. Hughes, M. Augier, J. W. Bos, T. Kleinjung, and
C. Wachter, “Ron was wrong, Whit is right.” IACR Cryptology ePrint
Archive, vol. 2012, p. 64, 2012, informal publication.

[5] The Register, “Android bug batters Bitcoin wallets,” Availlable on
http://www.theregister.co.uk/2013/08/12/android bug batters bitcoin wallets/,
August 2013.

