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Abstract—In this poster, we study optimization based structural
data De-Anonymization (DA), including social data, mobility traces,
etc. We make a DA practice by presenting a novel single-phase cold
start Optimization based DA (ODA) algorithm followed by theoretical
and experimental analysis. Experimental resutls of ODA show that
about 77.7%− 83.3% of the users in Gowalla (0.2M users and 1M
edges) [5] are de-anonymizable, which implies optimization based
DA is implementable and powerful in practice. Furthermore, We
discuss the future research directions of this project.

I. INTRODUCTION AND SYSTEM MODEL

In this poster, we focus on the De-Anonymization (DA) attack
on anaonymized structural data, which could be social data,
e.g., Google+, and/or mobility data, e.g., the classical longitude-
latitude spatiotemporal traces [5], etc.

Data Model. We model the anonymized structural data by a
graph Ga = (V a, Ea), where V a is the user set and Ea is the
edge/relationship set. For i ∈ V a, its neighborhood is defined as
Na

i = {j|∃eai,j ∈ Ea} and we denote the cardinality of Na
i as

|Na
i |, i.e., the degree of i. The auxiliary data is also assumed to

be structural data modeled by a graph Gu = (V u, Eu), where V u

and Eu are the user set and edge/relationship set, respectively.
Similarly, the neighborhood of i ∈ V u is defined as Nu

i .
DA Attack. Given Ga and Gu, a DA attack can be defined

as a mapping: σ : V a → V u. The objective of a DA attack is to
successfully de-anonymize as many users in V a as possible.

II. OPTIMIZATION BASED DA PRACTICE

ODA Framework. We first define some useful structural fea-
tures for i ∈ V a or V u as follows. (i) Degree: For i ∈ V a (resp.,
V u), its degree feature fd(i) is its degree in Ga (resp., Gu).
(ii) Neighborhood: For i ∈ V a (resp., V u), its neighborhood
feature fn(i) is a β-dimensional vector (di1, d

i
2, · · · , diβ), where

dik (1 ≤ k ≤ β) is the k-th largest degree in {|Na
j ||j ∈ Na

i }
(resp., {|Nu

j ||j ∈ Nu
i }). In the case that |Na

i | < β (resp.,
|Nu

i | < β), we set di|Na
i |+1 = di|Na

i |+2 = · · · = diβ = ∆a

(resp., di|Nu
i |+1 = di|Nu

i |+2 = · · · = diβ = ∆u), where
∆a = max{|Na

i ||i ∈ V a} (resp., ∆u = max{|Nu
i ||i ∈ V u})

is the maximum degree of Ga (resp., Gu). (iii) Top-K reference
distance: For i ∈ V a (resp., V u), its Top-K reference distance
feature fK(i) is a K-dimensional vector (hi1, h

i
2, · · · , hiK), where

hik (1 ≤ k ≤ K) is the distance from i to the user with the
k-th largest degree in Ga (resp., Gu). Note that it is possible
hik = ∞ if the graph is not connected. (iv) Landmark reference
distance: Suppose V a

L = {v1, v2, · · · , vL|vk ∈ V a} is a set of
users that has been de-anonymized (evidently, V a

L = ∅ initially)
to Uu

L = {u1, u2, · · · , uL|uk ∈ V u} under some σ with σ(vk) =
uk (1 ≤ k ≤ L). Then, for i ∈ V a\V a

L (resp., V u\Uu
L), we define

its landmark reference distance feature fl(i) = (hi1, h
i
2, · · · , hiL),

where hik (1 ≤ k ≤ L) is the distance from i to vk ∈ V a
L (resp.,

uk ∈ Uu
L). (v) Sampling closeness centrality: For i ∈ V a (resp.,
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V u), we define the sampling closeness centrality feature fc(i)
to characterize its global topological property without inducing
too much computational overhead. Formally, we first randomly
sample a subset Sa of V a (resp., Su of V u) and then define
fc(i) =

∑
j∈Sa\{i}

1
h(i,j) (resp., fc(i) =

∑
j∈Su\{i}

1
h(i,j) ), where

h(i, j) is the distance from i to j.
According to the features defined for each user, we can

quantitatively measure the similarity between an anonymized user
i ∈ V a and a known user j ∈ V u. Let fd,c(i) = (fd(i), fc(i)).
Then, we define the structural similarity between i ∈ V a and
j ∈ V u as ϕ(i, j) = c1 ·s(fd,c(i), fd,c(j))+c2 ·s(fn(i), fn(j))+
c3 ·s(fK(i), fK(j))+c4 ·s(fl(i), fl(j)), where c1,2,3,4 ∈ [0, 1] are
constant values representing the weights and c1+c2+c3+c4 = 1,
and s(·, ·) is the Cosine similarity between two vectors.

Furthermore, given a DA scheme σ, we define the De-
anonymization Error (DE) on a user mapping (i, j) ∈ σ as
ψi,j = |fd(i) − fd(j)| + (1 − ϕ(i, j)) · |fd(i) − fd(j)|, and the
DE on σ as Ψσ =

∑
(i,j)∈σ

ψi,j .

Since a perfect DA tends to induce the least DE according to
graph theory [4], based on Ψσ , we give the framework of ODA
as shown in Fig. 1. In ODA, Λa ⊆ V a is the target DA set and
Λu ⊆ V u is the possible mapping set of Λa. GetTopDegree(X, y)
is a function to return y users with the largest degree values in
X , i.e., return {i|i has the Top-y degree in X}. C(i) ⊆ Λu is
the candidate mapping set for i ∈ Λa, which consists of the γ
most possible mappings of i in Λu. GetTopSimilarity(i,Λu, γ)
is a function to return γ users having the highest sim-
ilarity scores (ϕ(i, ·)) with i in Λu, i.e., return {j|j ∈
Λu, and j has the Top-γ ϕ(i, j) in Λu}.

From ODA, it de-anonymizes Ga iteratively. During each
iteration, ODA is trying to de-anonymize a subset of V a and
seeking the sub-DA scheme σ∗(Λa) which induces the least DE.
In Line 3, we initialize Λa and Λu (|Λa|, |Λu| ≤ α). In Line 4,
we compute a candidate mapping set C(i) for each i ∈ Λa. C(i)
consists the γ most similar users of i in Λu. Here, we define
C(·) mainly for reducing the computational complexity. In stead
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of trying every mapping from i to Λu, we only consider to map i
to some user in C(i). In Line 5, we find a DA scheme σ∗(Λa) on
Λa such that Ψσ∗(Λa) = min{Ψσ(Λa)|σ(Λa) ∈

∏
i∈Λa

(i× C(i))},

i.e., σ∗(Λa) causes the least DE. Furthermore, the consistent rule
and the pruning rule are applied to remove some unqualified DA
schemes in advance, which can speed up ODA. The consistent
rule makes any possible DA scheme σ(Λa) consistent, i.e., no
mapping confliction which is defined as the situation that two or
more anonymized users are mapped to the same known user. The
pruning rule is used to remove some DA schemes whose DE is
larger than the current known least DE. After obtaining σ∗(Λa),
we accept the mappings in σ∗(Λa) with similarities scores no less
than a threshold value θ (Lines 6-8). For the mappings that been
rejected, they will be re-considered in the following iterations
for possible better DAs. If no mapping can be accepted, we stop
ODA. Subsequently, we analyze the time and space complexities
of ODA in the following theorem (the proof is omitted due to
space limitation).

Theorem 1. (i) The space complexity of ODA is O(min{n2,m+
n}). (ii) Let γ be some constant value, α = Θ(log n), and Γ be
the average number of accepted mappings in each iteration of
ODA. Then, the time complexity of ODA is O(m + n log n +
nΘ(1) log γ+1/Γ) in the worst case.

Finally, we make some remarks on ODA as follows. (i)
ODA is a cold start algorithm, i.e., we do not need any priori
knowledge, e.g., the seed mapping information [1][2][3], to
bootstrap the DA process. Furthermore, unlike existing DA algo-
rithms [1][2][3] which consist of two phases, ODA is a single-
phase algorithm. Interestingly, ODA itself can act as a landmark
identification algorithm. From our experiment, ODA can de-
anonymize the 60-94 Top-degree users in Gowalla [5] perfectly.
In addition, ODA as a landmark identification algorithm is much
faster than that in [2] (with complexity of O(ndk−1) = O(nk),
where d is maximum degree of Ga/Gu and k is the number
of landmarks) and [3] (with complexity of k!, could be compu-
tationally infeasible for a PC when k ≥ 20). (ii) ODA is an
optimization based DA scheme, which is different from most
of existing heuristics based solutions [1][2][3]. In ODA, the
objective is to minimize a DE function. Furthermore, ODA has a
polynomial time complexity of O(m+n log n+nΘ(1) log γ+1/Γ)
in the worst case, which is computationally feasible. (iii) In
ODA, one implicit assumption is V a = V u. In practice, it is
possible that V a ̸= V u. In this case, if V a and V u are not
significantly different, ODA is also workable at the cost of some
performance degradation. One better solution could be estimating
the overlap between Ga and Gu first, and then apply ODA to the
overlap to achieve better performance. We take the estimation of
the overlap between Ga and Gu as one of the future works.

Experiments. We evaluate the performance of ODA on a real
world dataset: Gowalla [5]. Gowalla consists of two different
datasets. The first dataset is a spatiotemporal mobility trace
consisting of 6.44M check-ins generated by .2M users. The
second dataset is a social graph (1M edges) of the same .2M
users. Now, assume the mobility trace is anonymized. Since
the mobility trace does not have an explicit graph structure,
supposing the social graph is the ground truth, we apply the tech-
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Fig. 2. De-anonymize Gowalla.
nique in [5] on the mobility trace to construct four graphs with
different recalls and precisions, denoted by M1,M2,M3, and
M4, respectively (recall = true positive

true positive+false negative and precision =
true positive

true positive+false positive ). Particularly, the recall and precision of M1
are 0.6 and 0.865, of M2 are 0.72 and 0.83, of M3 are 0.75 and
0.78, and of M4 are 0.8 and 0.72, respectively.

As we mentioned earlier, ODA itself can work as a landmark
identification algorithm. Let V a

L = Uu
L = ∅. We run ODA

for Gowalla to identify landmarks as shown in Fig. 2 (a).
The results show that we can de-anonymize the first 60-94
users in Gowalla perfectly. Based on the identified landmarks,
we then employ ODA to de-anonymize Gowalla as shown in
Fig. 2 (b), where x-axis represents the accumulated percentage
of de-anonymized users and y-axis represents the accumulated
percentage of successfully de-anonymized users. From Fig. 2 (b),
we can see that the successful DA rate is higher for large-degree
users than that of small-degree users. The reason is that large-
degree users carry more structural information and thus be more
accurately de-anonymizable. In summary, the results show that
77.7%− 83.3% of the users in Gowalla can be de-anonymized,
which implies optimization based DA is implementable and
powerful in practice.

III. CONCLUSION AND FUTURE WORK

In this poster, we present a novel cold start single-phase
Optimization based DA (ODA) algorithm. We also analyze ODA
theoretically and experimentally.

The future work of this project can be conducted as follows.
(i) In this poster, we conduct an optimization based DA practice.
This motivates us to quantify the de-anonymizability of structural
data theoretically, which is also an open problem; (ii) Data
utility is another important concern. We propose to study how
to quantify the tradeoff between privacy and utility followed by
proposing privacy protection schemes with utility preservation;
and (iii) Finally, due to the importance of secure data publishing,
we propose to develop a secure data publishing platform in the
future, which is expected to be invulnerable to both semantics
based and structure based DA attacks.
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