
Poster: Design and Automatic Evaluation of Control Flow Obfuscators in a
Dynamic Attack Context

Geoffroy Gueguen

PhD Student, CIDRE Research Group,
SUPELEC/Inria/IRISA (France)
geoffroy.gueguen@gmail.com

Sébastien Josse
DGA (French Ministry of Defense)
sebastien.josse@polytechnique.edu

Ludovic Mé
 Professor, CIDRE Research Group,

SUPELEC/Inria/IRISA (France)
ludovic.me@supelec.fr

Software protection against reverse engineering
has become a subject of interest for security
researchers. Obfuscation transformations are designed
to increase the cost of information extraction, through
data flow and/or control flow transformations.

When designing a protection method, you have to
pay attention to both its correctness, its impact on the
program performances and its resilience against static
and dynamic analysis tools1 commonly used by
attackers. You will find in the literature many
techniques for hiding both data and control flow,
along with evidence of their resilience against static
analysis. Experience shows that many of them do not
provide acceptable security when assessed by analysts
in the real world, using a conjunction of static and
dynamic analysis tools.

We address this problem by proposing:
• A candidate algorithm, designed to be resilient

against both static and dynamic attacks.
• A realistic evaluation of its resilience, through

the use of an automatic deobfuscation tool, using
a conjunction of static and dynamic analyses.

1. Control flow obfuscation

To be resilient in both static and dynamic attacks
contexts, an obfuscation transformation has first to be
resilient against static analysis algorithms. We build a
new obfuscation transformation upon an existing
control flow transformation, proved to be resilient in
a static attack context.

1.1. Control Flow Flattening (CFF)

The goal of the Control Flow Flattening

obfuscation [CT02] method is to force an adversary to
perform global analysis to understand local control
flow transfers. Both forward and backward analyses

1 Among these tools, you will find some static disassembler,
debugger, system level diagnostic tools, binary instrumentation
tools, but also some more specialized tools using hybrid static /
dynamic methods.

are obstructed. However the CFF protection
mechanism alone can be inversed, by applying
suitable static optimization passes [UDM05]. To
thwart such attack methods, it is required to
strengthen the CFF mechanism by embedding a
“difficult problem” in the compilation process to
thwart static analyses such as constants or ranges
propagation, etc.

1.2. Strengthened Control Flow Flattening (SCFF)

In [CP10], a protection scheme (figure 1) is
proposed to strengthen the CFF obfuscation
transformation, by using a cryptographic hash
function. This protection scheme is designed to
obstruct flow-sensitive static analyses, which rely on
accurate control flow information.

switch (p)

q = p

p = F(q)
p = B3(q)p = B2(q)p = B1(q)

p = p0

Dispatch

block

Default

block

Figure 1: Strengthened CFF

The initial value (p=p0) is used by a dispatcher block
to synchronize the execution of the basic blocks. Each
basic block ends with a call to the B function. A
default block is executed per default in the switch-
case loop. This default block updates the state p
variable with a call to the hash function F.

This protection scheme is proved to be statically
secure under the assumption that the initial value
setting, which is done by opaque predicates
concatenation, remains secret.

If such an assumption is valid in a static attack
context, it does not hold in a dynamic attack context.
Indeed, by tracing the execution flow of the program,
an attacker is able to get both the truth value of the
opaque predicates vector and to obtain the effective
ordering of basic blocks. By this way, a dynamic

abstract interpreter is able to recover easily most of
the control flow information.

1.3. Parallel Control Flow Flattening (PCFF)

To overcome this limitation, we propose the
following key idea: to fork each basic block as
independent processes (figure 2). The main process
enters a debugging loop after having created its child
processes. When it receives a signal from one of the
processes, it updates the state of all of them. Each
process embeds control instructions and executes a
switch loop, which ends with a call to the B function.

Figure 2: Parallel CFF

A dynamic abstract interpreter cannot guess the

order of the basic block execution, because each of
them is executing simultaneously / concurrently.
Moreover, current dynamic analysis tools are not
adapted to trace simultaneously in a coherent way
several parallel processes exchanging signals and
data.

2. Evaluation

A common way to implement obfuscation
transformation is to specialize an existing compilation
chain, by adding some obfuscation passes in the
compilation stages. This is done in the same way as
optimization passes are added, by working on one of
the intermediate representations of the program being
compiled.

We have used the LLVM [LA04] compilation
framework to implement the CFF, ECFF and Parallel
CFF (PCFF) obfuscation transformations.

2.1. Dynamic Abstract Interpreter: towards a
more realistic model of the attacker

A current trend in reverse analysis is to try to
undo obfuscation transformations, by using binary
rewriting tools, which can be seen as specialized
compilation chains, using binary front-ends instead of
source languages front-ends. Abstract interpreters
provide an interesting way to model such an attacker.

Deobfuscation passes must be representative of
the many methods used by an attacker, either static

(partial evaluation, slicing, symbolic execution) or
dynamic (tracing, concolic execution). Observable
dynamic semantics are used to specify dynamic
abstract domains [Jos09]. Let us call Dynamic
Abstract Interpreter an abstract interpreter using
dynamic analysis.

2.2. Preliminary results and future work

We have used the normalization module of
VxStripper [Jos14] to implement a dynamic abstract
interpreter. This tool is based on the dynamic binary
translator engine of QEMU [Bel05] and on the LLVM
compilation chain.

QEMU DBT

extension

Obfuscated

program

LLVM trace
LLVM

Pass Manager
LLVM program

Deobfuscated

program

Dynamic Binary

Translation (DBT)
Deobfuscation passes

Program rebuilding

Figure 3: Normalization module

Well-chosen optimizations used in conjunction

with the partial evaluation induced by the dynamic
translation of target binary code to its LLVM
representation are sufficient to recover automatically
the control flow when hidden by CFF and ECFF
obfuscation passes. In the contrary, as there is no
dynamic abstract interpreter able to handle
simultaneously several processes contexts to date,
PCFF cannot be defeat currently. As a future work,
we will investigate this challenge.

3. References

[Bel05] F. Bellard, “QEMU, a Fast and Portable Dynamic
Translator”, in Proceedings of the USENIX Annual Technical
Conference, FREENIX Track, 2005, pp. 41-46, 2005.

[CP10] J. Cappaert and B. Preneel, “A general model for hiding
control flow”, in Proceedings of the tenth annual ACM workshop
on Digital rights management, 2010, pp. 35-42.

[CT02] C. Collberg, C. Thomborson, “Watermarking, Tamper-
Proofing, and Obfuscation - Tools for Software Protection,
Software Engineering”, in IEEE Transactions on Software
Engineering, vol. 28, pp. 735-746, 2002.

[Jos09] S. Josse, “Dynamic analysis and detection of viral code in a
cryptographic context”, PhD Dissertation, Ecole polytechnique,
2009.

[Jos14] S. Josse, “Malware Dynamic Recompilation”, in IEEE
Proceedings of the 47th HICSS Conference, 2014.

[LA04] C. Lattner and V. Adve, “LLVM: a compilation framework
for lifelong program analysis & transformation”, in International
Symposium on Code Generation and Optimization, pp. 75--86,
2004.

[UDM05] S. K. Udupa, S. K. Debray, M. Madou, “Deobfuscation:
Reverse Engineering Obfuscated Code”, in Proceedings of the 12th
Working Conference on reverse Engineering, pp. 45-54, 2005.

