
Poster: Proofs of Space

Stefan Dziembowski∗, Sebastian Faust†, Vladimir Kolmogorov‡, Krzysztof Pietrzak‡
∗University of Warsaw and Sapienza University of Rome, faculty †EPFL Lausanne, post-doc ‡IST Austria, faculty

Abstract—Proofs of work (PoW) have been suggested by
Dwork and Naor (Crypto’92) as protection to a shared resource.
The basic idea is to ask the service requestor to dedicate some
non-trivial amount of computational work to every request. The
original applications included prevention of spam and protection
against denial of service attacks. More recently, PoWs have been
used to prevent double spending in the Bitcoin digital currency
system.

In this work, we put forward an alternative concept for
PoWs – so-called proofs of space (PoS), where a service requestor
must dedicate a significant amount of disk space as opposed to
computation. We construct secure PoS schemes in the random
oracle model, using graphs with high ”pebbling complexity” and
Merkle hash-trees.

I. PROOFS OF WORK (POW).

Dwork and Naor [3] suggested ”proofs of work” (PoW) to
address the problem of junk emails (aka. Spam). The basic idea
is to require that an email be accompanied with some value
related to that email that is moderately hard to compute but
which can be verified very efficiently. Such a proof could for
example be a value σ such that the hash value H(Email, σ)
starts with t zeros. If we model the hash function H as a
random oracle, then the sender must compute an expected 2t

hashes until she finds such an σ.1 A useful property of this
PoW is that there is no speedup when one has to find many
proofs, i.e., finding s proofs requires s2t evaluations. The value
t should be chosen such that it is not much of a burden for
a party sending out a few emails per day (say, it takes 10
seconds to compute), but is expensive for a Spammer trying
to send millions of messages. Verification on the other hand
is extremely efficient, the receiver will accept σ as a PoW
for Email, if the hash H(Email, σ) starts with t zeros, i.e.,
it requires only one evaluation of the hash funciton. PoWs
have many applications, and are in particular used to prevent
double spending in the Bitcoin digital currency system which
has become widely popular by now.

Despite many great applications, the PoWs suffer from
certain drawbacks. Firstly, running the PoWs costs energy –
especially if they are used on a massive scale, like in the
Bitcoin system. Actually, for this reason the Bitcoin has even
been called by some an “environmental disaster”. Secondly,
they give advantage to users who use dedicated hardware, as
doing computation in hardware is always much more efficient
than in software. Therefore, the parameters in the PoW-based
schemes need to be chosen in such a way that a system

An extended version of this work appears in [5]. The first author was
supported by the WELCOME/2010-4/2 grant founded within the framework
of the EU Innovative Economy (National Cohesion Strategy) Operational
Programme.

1The hashed Email should also contain the receiver of the email, and maybe
also a timestamp, so that the sender has to search for a fresh σ for each
receiver, and also when resending the email at a later point in time.

is secure even against an adversary equipped with special-
purpose hardware. This may, in some cases, mean that the
computing effort spent by the honest (software-based) users
becomes high.

II. PROOFS OF SPACE (POS).

From a more abstract point of view, a proof of work is
simply a means of showing that one invested a non-trivial
amount of effort related to some statement. This general
principle also works with resources other than computation
like real money in micropayment systems or human attention
in CAPTCHAs. In this paper we put forward the concept
of proofs of space where the resource in question is the
disk space. Some computational work is needed only in the
initialization phase whose goal is to fill-in the disk space of
the user with some data. Later, the user can engage in the PoS
proofs using very small computation. This holds provided he
did not erase the data produced during the initialization. On the
other hand, if this data is not on his disk, then running the proof
requires substantial computational effort. As a consequence, an
adversary that wants to run s proofs efficiently needs to have
disk space that is s times larger than the disk space of the
honest users.

Our idea is motivated by an observation that for many users
using this system will be essentially “for free”, as anyway they
have too much disk space (a standard laptop comes with a 500
GB hard disk)2. This is in contrast with the computing power,
whose usage is associated with energy consumption even if
one contributes only the CPU time of processors that would
otherwise be idle. Moreover, in case of the PoS’s the to users
with “dedicated hardware” have no advantage compared to the
“software users”, as there is no such thing as “dedicated disk
space” for solving a particular problem. Another advantage is
that the disks can be reused for other applications — if a user
decides to stop using our PoS he can even sell his disks on the
second hand market. This is not true for the hardware used to
solve some of the PoW (e.g. the Bitcoin ones), which can be
used only for one purpose and is useless otherwise.

Our approach borrows ideas from [1], [2], [4], who suggest
to construct PoW using functions whose computation requires
accessing memory many times. This is motivated by the fact
that different memories typically do not differ much in terms of
the access time, which is in contrast with the computing speeds
of CPU’s that differ significantly. Hence, it is argued that this
type of a proof of work would be more fair in the sense that
having extremely fast CPUs does not help much, because the
running time is to a large extend determined by the number of
cache misses (which require ”slow” memory accesses). This
type of PoW can be seen as some kind of PoS, but it lacks

2This is, of course, not true for all the users. Therefore in some applications
it would make sense to give users a choice between using a PoS and a PoW.



several properties we expect from a PoS, most importantly,
the verifier needs to use the same amount of memory as the
prover. This is not a problem in the original application of
PoWs as here the space just needs to be larger than the cache
of a potential malicious prover3. When this approach is used as
a PoS, where the main resource dedicated is space, this is not
an option, as here we want the verifier to use a tiny fraction
of the space dedicated by the prover.

III. FORMALIZING PROOFS OF SPACE

In this work we consider interactive PoS between a single
prover P and a verifier V. As an illustrative application for such
an PoS, suppose that the verifier V is an organization that offers
a free email service. To prevent that someone registers a huge
number of fake-addresses for spamming, V might require users
to dedicate some nontrivial amount of disk space, say 100GB,
for every address registered. Occasionally, V will run a PoS to
verify that the user really dedicates this space. The simplest
solution would be for the verifier V to generate a random (and
thus incompressible) 100GB file F and send it to the prover
P during an initialization phase. Later, V can ask P to send
back some bits of F at random positions, making sure V stores
(at least a large fraction of) F . A slightly better solution is to
have V generate F using a pseudorandom function, in which
case V does not have to store the entire F , but just a short
PRF key. Unfortunately, with this solution, V still has to send
a huge 100GB file to P, which makes this approach pretty
much useless in practice.

We want a PoS where the computation, storage requirement
and communication complexity of the verifier V during initial-
ization and execution of the PoS is very small, in particular,
at most polylogarithmic in the storage requirement N of the
prover P and polynomial in some security parameter γ. In
order to achieve small communication complexity, we must
let the prover P generate a large file F locally during an
initialization phase, which takes some time I . Note that I must
be at least linear in N , our constructions will basically achieve
this lower bound. Later, P and V can run executions of the PoS
which will be very cheap for V, and also for P, assuming the
later has stored F .

Unfortunately, unlike in the trivial solution (where P sends
F to V), now there is no way we can force a potentially
cheating prover P̃ to store F in-between the initialization and
the execution of the PoS: P̃ can delete F after initialization,
and instead only store the (short) communication with V during
the initialization phase. Later, before an execution of the PoS,
P reconstructs F (in time I), runs the PoS, and deletes F once
it is done.

We will thus consider a security definition where one
requires that a cheating prover P̃ can only make V accept with
non-negligible probability if P̃ either uses N0 bits of storage
in-between executions of the PoS or if P̃ invests time T for
every execution. Here N0 ≤ N and T ≤ I are parameters,
and ideally we want them to be not much smaller than N

3The analysis of [1], [2], [4] takes into account the fact that a typical
processor has a small cache memory that can be accessed quickly, and hence
what counts is the number of times the processor needs to access the large
“non-cache” memory, called the “cash misses”

and I , respectively. Our actual security definition is more fine-
grained, and besides the storage N0 that P̃ uses in-between
initialization and execution, we also consider a bound N1 on
the total storage used by P̃ during execution (including N0, so
N1 ≥ N0).

IV. OUR CONSTRUCTIONS

We provide two constructions of the PoS’s with different
(and incomparable) parameters. Informally, our first construc-
tion proves an Ω(N/ logN) bound on the storage required by
a malicious prover. Moreover, no matter how much time he
is willing to spend during the execution of the protocol, he is
forced to use at least Ω(N/ logN) storage when executing the
protocol. Our second construction gives a stronger bound on
the storage. In particular, a successful malicious prover either
has to dedicate Θ(N) storage (i.e., almost as much as the N
stored by the honest prover) or otherwise it has to use Θ(N)
time with every execution of the PoS (after the initialization
is completed).

Our proofs use a standard technique for proving lower
bounds on the space complexity of computational problems,
called “pebbling”. Typically, the lower bounds shown using
this method are obtained via the pebbling games played on a
directed graph. During the game a player can place pebbles
on some vertices. The game starts with some pebbles already
on the graph. Informally, placing a pebble on a vertex v
corresponds to the fact that an algorithm keeps the label of
a vertex v in his memory. Removing a pebble from a vertex
corresponds therefore to deleting the vertex label from the
memory. A pebble can be placed on a vertex v only if the
vertices in-going to v have pebbles, which corresponds to the
fact that computing v’s label is possible only if the algorithm
keeps in his memory the labels of the in-going vertices (in
our case this will be achieved by defining the label of v to be
a hash of the labels of its in-going vertices). The goal of the
player is to pebble a certain vertex of the graph. This technique
was used in cryptography already before [4].

Acknowledgements: We would like to thank Moni Naor for
pointing out the problem with our previous construction of a
PoS.

REFERENCES

[1] Martı́n Abadi, Michael Burrows, and Ted Wobber. Moderately hard and
memory-bound functions. In NDSS 2003. The Internet Society, February
2003.

[2] Cynthia Dwork, Andrew Goldberg, and Moni Naor. On memory-bound
functions for fighting spam. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 426–444. Springer, August 2003.

[3] Cynthia Dwork and Moni Naor. Pricing via processing or combatting
junk mail. In Ernest F. Brickell, editor, CRYPTO’92, volume 740 of
LNCS, pages 139–147. Springer, August 1993.

[4] Cynthia Dwork, Moni Naor, and Hoeteck Wee. Pebbling and proofs of
work. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS,
pages 37–54. Springer, August 2005.

[5] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and
Krzysztof Pietrzak. Proofs of space. Cryptology ePrint Archive, Report
2013/796, 2013. http://eprint.iacr.org/.

2


