
Poster: The Case for Provenance as a First Class
Citizen in the Linux Kernel

Adam Bates, Kevin R. B. Butler
Department of Computer and Information Science

University of Oregon, Eugene, OR
{amb, butler}@cs.uoregon.edu

Thomas Moyer
Lincoln Laboratory

Massachusetts Institute of Technology, Lexington, MA
thomas.moyer@ll.mit.edu

I. WHERE ARE ALL THE PROVENANCE MONITORS?

Provenance is a well-known concept in the art world, but is
relatively new to computer science. The idea is that a system
can gather and report metadata that describes the history of
each object being processed. This allows system users to track,
and understand, how a piece of data came to exist in its
current state on the system. While the gathering of provenance
metadata is something that is done by each provenance-aware
system, these systems operate under very different provenance
models and assumptions; provenance-aware systems can mon-
itor and record application behavior, filesystem events, or even
network activity. As a result, the community has yet to reach a
consensus on how to best prototype new provenance proposals,
leading to redundant efforts, slower development, and a lack
of independent evaluation.

Exacerbating this problem is that, due to a lack of bet-
ter alternatives, researchers often choose to implement their
provenance-aware systems by overloading other system com-
ponents, such as the Linux Security Module Framework (LSM)
or Virtual File System Layer (VFS). The reason for this is that
provenance monitors require similar guarantees to those pro-
vided by security reference monitors [2]; they need assurances
of complete observation of system events, which is a subset of
the complete mediation requirement that the LSM Framework
seeks to provide. Unfortunately, this introduces further security
and interoperability problems; in order to enable provenance-
aware systems, users currently need to disable their MAC
policy (e.g., SELinux [9]) or sacrifice other critical system
functionality.

These issues point to a pressing need for a dedicated
platform for provenance development. We present the design
of the first generalized framework for the development of
automated, whole-system provenance collection on the Linux
operating system. Our provenance framework was designed
with consideration for a variety of automated provenance
systems that have been proposed in the literature, including
Lineage FS [1], Hi-Fi [8], PASS [7], SNooPy [10], and QUIRE
[5], among others [3], [4], [6]. The framework is designed in
such a way to allow for experimentation with new provenance
collection mechanisms.

II. LINUX PROVENANCE MODULES

We present the Linux Provenance Module Framework
(LPM), enabling the development of provenance monitors in
the Linux operating system. Figure 1 shows that LPM forms

VFS

security layer

userspace

system calls

kernelspace

kernel
objects

sshd vim

provenance
layer

Fig. 1: The LPM Framework runs parallel to the LSM Frame-
work, observing system activity without interfering with the
work of the security monitor.

Proposal Layer A
pp

lic
at

io
n

Co
nt

ex
t?

Fi
le

Sy
st

em
?

IP
C?

M
em

or
y?

N
et

wo
rk

?

Pr
oc

es
se

s?

HI-FI Kernel (LSM) 3 3 3 3 3

Lineage Kernel 3 3 3 3

PASS Kernel (VFS) Optional 3 3 3 3

QUIRE Platform 3

REDUX Application 3

SNooPy Application 3

SProv Application 3

Trio Application 3

Fig. 2: Past proposals for automatic provenance collection vary
by scope and operational layer.

a provenance layer that observes all activity from within the
Linux kernel. LPM does not interfere with security; thus, LPM
can be protected by Linux’s existing security mechanisms,
which is both easier and safer. We wrote an SELinux policy
to protect LPM’s trusted computing base.

Past Proposals. LPM is designed to be a general platform
for provenance collection, unifying the functional needs of
a variety of provenance projects. Figure 2 shows that these
systems vary in the events for which they collect provenance,



attack

user

controlled_by

/etc/ld.so.cache

read

/lib/libc-2.12.so

read

/etc/rc.local

read

/bin/ps

read

/var/spool/cron/root

read

/etc/passwd

read

/etc/shadow

readwritten_by written_by written_by written_by written_by

Fig. 3: Fig. 2: A provenance graph for a malicious script that obtains persistent access and creates a machine backdoor.

such as application context, files, inter-process communication
(IPC), memory, network events, and process executions.

Provenance Hooks. LPM is able to serve all of these needs,
observing system activity through a set of 170 provenance
hooks that are placed throughout the kernel. We have placed a
provenance hook directly after each security hook in the kernel,
facilitating provenance collection for all activities permitted by
the active security policy. LPM also lets applications annotate
provenance for events that cannot be viewed from within the
kernel, such as workflows or database queries.

Policy-Reduced Provenance. In practice, provenance moni-
tors record extraneous information, such as the provenance for
starting up the system, creating excessive storage overhead.
We are developing a new module that can selectively collect
provenance based on a user-specified policy. A key insight is
that our policy can leverage existing context from a system’s
security framework. MAC policies that enforce confinement
between applications can be utilized to collect complete prove-
nance within a subdomain of system operations.

Securing the Provenance Monitor. Provenance security is its
own rich area of study, and yet proposals for provenance-aware
systems have at times failed to incorporate security into the
foundations of their design. Perhaps the greatest contribution
of the LPM Framework will be that developers will no longer
need to worry about implementing their own security mech-
anisms. Instead, they can rely on existing mandatory access
control mechanisms such as SELinux. We envision a future in
which new experimental provenance modules will be released
with an associated SELinux policy, thus allowing for faster,
more secure prototyping of provenance-aware systems.

III. IMPLEMENTATION

LPM has been implemented as a patch to the Red Hat
Linux 2.6.32 kernel, and currently includes 2 major modules:
a re-implementation of Hi-Fi, and a module with a policy
mechanism that allows for automated provenance pruning.
The latters allows for dramatic reduction in storage overhead,
while simultaneously assuring the completeness of provenance
collected on a subset of system operations. We have performed
the classic kernel compilation macrobenchmark on both of
these modules. The Hi-Fi module imposes 2.2% overhead
(18 seconds) on kernel compilation compared to the vanilla
kernel. For our policy module, we see an 82% decrease in
storage costs when kernel compilation falls outside of the
specified provenance policy.

IV. PROVENANCE GRAPHS

LPM can produce provenance graphs (dot format) de-
scribing the lineage of any Linux kernel object, such as inodes,
process executions, and network packets. These graphs can be
applied in a variety of ways, such as to explain the impact of
an attack. Figure 3 shows the provenance graph of a malicious
script that has been executed on our provenance-aware system.
The script makes several attempts to obtain persistence on
the system, adding a line to /etc/rc.local, rewriting
/bin/ps, and adding a cron job in /var/spool/cron. It
then creates machine backdoor by modifying /etc/shadow
and /etc/passwd to create a new root user.

V. CONCLUSION

The LPM Framework will bring usable, secure provenance
monitors to the Linux operating system. We will be releas-
ing our source code upon publication, and intend to pursue
incorporating LPM into the mainline Linux kernel source tree.

REFERENCES

[1] Lineage FS. http://crypto.stanford.edu/˜cao/lineage.html.
[2] J. P. Anderson. Computer Security Technology Planning Study. Tech-

nical Report ESD-TR-73-51, Air Force Electronic Systems Division,
1972.

[3] R. S. Barga and L. A. Digiampietri. Automatic capture and efficient
storage of e-Science experiment provenance. Concurr. Comput. : Pract.
Exper., 20:419–429, April 2008.

[4] A. Bates, B. Mood, M. Valafar, and K. Butler. Towards Secure
Provenance-based Access Control in Cloud Environments. In Proceed-
ings of the 3rd ACM Conference on Data and Application Security and
Privacy, CODASPY ’13, pages 277–284, New York, NY, USA, 2013.
ACM.

[5] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach. QUIRE:
Lightweight Provenance for Smart Phone Operating Systems. In
Proceedings of the 20th USENIX Security Symposium, 2011.

[6] P. McDaniel, K. Butler, S. McLaughlin, R. Sion, E. Zadok, and
M. Winslett. Towards a Secure and Efficient System for End-to-End
Provenance. In TaPP ’10: Proceedings of the 2nd USENIX Workshop
on the Theory and Practice of Provenance, 2010.

[7] K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Seltzer.
Provenance-Aware Storage Systems. In Proceedings of the 2006
USENIX Annual Technical Conference, 2006.

[8] D. Pohly, S. McLaughlin, P. McDaniel, and K. Butler. Hi-Fi: Collect-
ing High-Fidelity Whole-System Provenance. In Proceedings of the
2012 Annual Computer Security Applications Conference, ACSAC ’12,
Orlando, FL, USA, 2012.

[9] S. Smalley, C. Vance, and W. Salamon. Implementing selinux as a linux
security module. Technical report, 2002.

[10] W. Zhou, Q. Fei, A. Narayan, A. Haeberlen, B. T. Loo, and M. Sherr.
Secure Network Provenance. In ACM Symposium on Operating Systems
Principles (SOSP), 2011.

2


	Where are all the Provenance Monitors?
	Linux Provenance Modules
	Implementation
	Provenance Graphs
	Conclusion
	References

