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I. INTRODUCTION TO BITCOIN

Bitcoin is a digital currency system introduced in 2008
by an anonymous developer using a pseudonym ‘“Satoshi
Nakamoto” [15]. Despite its mysterious origins, Bitcoin be-
came the first cryptographic currency that got widely adopted
— as of January 2014 the Bitcoin capitalization is over $ 10
bln. The enormous success of Bitcoin was also widely covered
by the media (see e.g. [12], [3], [13], [14]) and even attracted
the attention of several governing bodies and legislatures,
including the US Senate [13]]. Bitcoin owes its popularity
mostly to the fact that it has no central authority, the transaction
fees are very low, and the amount of coins in the circulation is
restricted, which in particular means that nobody can “print”
money to generate inflation. The financial transactions between
the participants are published on a public ledger maintained
jointly by the users of the system, which is called the block
chain.

II. BITCOIN CONTRACTS

One of the very interesting, but slightly less known, fea-
tures of Bitcoin is the fact that it allows for more compli-
cated “transa7ctions” than the simple money transfers between
the participants: very informally, in Bitcoin it is possible to
“deposit” some amount of money in such a way that it can
be claimed only under certain conditions. These conditions
are written in the form of Bifcoin scripts and in particular
may involve some timing constrains. This property allows
to create the so-called contracts [16], where a number of
mutually-distrusting parties engage in a Bitcoin-based protocol
to jointly perform some task with financial consequences. The
security of the protocol is guaranteed purely by the properties
of Bitcoin, and no additional trust assumptions are needed.
This Bitcoin feature can have several applications in the digital
economy, like creating the assurance contracts, the escrow
and dispute mediation, the rapid micropayments [16], the
multiparty lotteries [[6]. It can also be used to add some extra
properties to Bitcoin, like the certification of the users [7],
or creating the secure “mixers” whose goal is to enhance the
anonymity of the transactions [8]]. Their potential has even
been noticed by the media (see e.g. a recent enthusiastic article
on the CNN Money [14]).
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Despite the plenty of potential applications, the contracts
have not been widely used in real life so far. In our opinion,
the main reason for that is the fact that the contracts are tricky
to write and analyze. As experienced by ourselves [4]], [5], [6],
developing such contracts is hard due to the distributed nature
of the block chain and a huge number of possible interleavings.
Moreover, the protocols that involve several parties and the
timing constraints are naturally hard to analyze by hand.
Therefore, since mistakes in the contracts can be exploited by
the malicious parties for their own financial gain, it is natural
that users are currently reluctant to use this feature of Bitcoin.

III. OUR CONTRIBUTION

We propose an approach that can help designing secure
Bitcoin contracts. Our idea is to use the methods originally
developed for the computer-aided analysis for hardware and
software systems, in particular the timed automata [1], [2].
They seem to be the right tool for this purpose due to the
fact that the protocols used in Bitcoin contracts typically have
a finite number of states and depend on the notion of time.
This time-dependence is actually two-fold, as (1) it takes some
time for Bitcoin transactions to appear on the block chain, and
(2) Bitcoin transactions can come with a “time lock” which
specifies the time when a transaction becomes valid.

We propose a framework for modeling Bitcoin contracts
using timed automata. Our method is general and can be used
to model almost any contracts. As a proof-of-concept we used
this framework to verify the security of two Bitcoin contracts
from our previous work [6], [S] in the UPPAAL system [9],
[10].

IV. MODELLING BITCOIN CONTRACTS

In our framework the parties (both honest and malicious)
are modelled as timed automata, which communicate with each
other using shared variables.

The main challenges in modelling Bitcoin contracts as
timed automata are (1) modelling the state of the block chain
and the peer-to-peer network, (2) modelling the knowledge of
the parties, and (3) modelling the behavior of the adversary.
The way we face these problems is described below.

A. The block chain

In Bitcoin, whenever a party wants to post a transaction on
the block chain she broadcasts it over a peer-to-peer network
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and the transactions becomes confirmed (i.e. included in the
block chain) after some time, usually about 10 min. We assume
that there exists an upper bound on this waiting time (1-2
hours, say). In our models it is captured as follows. We model
the block chain as a shared structure denoted BlockChain,
which keeps information about all transactions broadcast or
already confirmed. Moreover, we use a timed automaton
denoted BlockChainAgent (presented on Fig. [I), which is
responsible for maintaining the state of the BlockChain. In
particular, it is responsible for ensuring that the transactions
become confirmed with appropriate time frames. In order
to post a transaction an automaton denoting a party simply
communicates this fact via the shared BlockChain structure.

B. Knowledge of the parties

We need to model the knowledge of the parties (both the
honest users and the adversary) in order to be able to decide
whether they can perform a specific action in a particular
situation (e.g. sign a given transaction). Our representation of
knowledge is symbolic and based on Dolev-Yao model [11].
We assume that there is a fixed set of private/public keys and
secret strings and for each party we keep information, which
of these values are known to her. Moreover, for each party we
keep a set of signatures received by her during the execution
of the protocol.

C. Adversary

The real-life Bitcoin adversary can create an arbitrary
number of transactions with arbitrary output scripts, so it is
clear that we need to somehow limit his possibilities, so that
the space of possible states is finite and of a reasonable size.
We show that without loss of generality we can consider only
scenarios in which an adversary broadcasts transactions only
from a finite set depending only on the protocol being verified.

Hence, an adversary is modelled as a (nondeterministic)
timed automaton, which can broadcast arbitrary transactions
from the mentioned set at arbitrary time assuming that his
knowledge allows him to do it. He is also allowed to send
messages to the other parties and intercept the transactions
broadcast in the network.

<cond> time == bc][i].timelock and (not bcfi].timelock_passed)
<action> bc[i].timelock_passed = true

. <state> and

<cond> is_waiting(bc[i])
<action> try_to_confirm(bcfi], n)

Fig. 1. The BlockChainAgent automaton

V. IMPLEMENTATION

As a proof-of-concept we implemented our framework in
the UPPAAL system and verified the security of the Bitcoin-
based timed commitment scheme from [6] and a version of the
simultaneous Bitcoin-based timed commitment scheme from
[S]]. Both protocols turned out to be secure, but the verification
process showed that there was a bug in our first implementation
of the latter protocol. UPPAAL provides diagnostic traces,
which allows to easily find bugs like the one mentioned.

- <state> forall(i : TxId) ((not bc[i].timelock_passed) imply time <= bc[i].timelock)

VI. CONCLUSIONS

We propose a quite general method of modelling Bitcoin
contracts by timed automata, which we used to verify security
of the two contracts from the literature in UPPAAL. Our
experiments confirmed that the computer aided verification and
in particular timed automata provides a very good tool for
verifying Bitcoin contracts.
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