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Abstract—Common authentication methods based on pass-
words, tokens, or fingerprints perform one-time authentication
and rely on users to log out from the computer terminal when
they leave. Users often do not log out, however, which is a
security risk. The most common solution, inactivity timeouts,
inevitably fail security (too long a timeout) or usability (too
short a timeout) goals. One solution is to authenticate users con-
tinuously while they are using the terminal and automatically
log them out when they leave. Several solutions are based on
user proximity, but these are not sufficient: they only confirm
whether the user is nearby but not whether the user is actually
using the terminal. Proposed solutions based on behavioral
biometric authentication (e.g., keystroke dynamics) may not
be reliable, as a recent study suggests.

To address this problem we propose Zero-Effort Bilateral
Recurring Authentication (ZEBRA). In ZEBRA, a user wears a
bracelet (with a built-in accelerometer, gyroscope, and radio) on
her dominant wrist. When the user interacts with a computer
terminal, the bracelet records the wrist movement, processes
it, and sends it to the terminal. The terminal compares the
wrist movement with the inputs it receives from the user (via
keyboard and mouse), and confirms the continued presence
of the user only if they correlate. Because the bracelet is
on the same hand that provides inputs to the terminal, the
accelerometer and gyroscope data and input events received
by the terminal should correlate because their source is the
same – the user’s hand movement. In our experiments ZEBRA
performed continuous authentication with 85% accuracy in
verifying the correct user and identified all adversaries within
11 s. For a different threshold that trades security for usability,
ZEBRA correctly verified 90% of users and identified all
adversaries within 50 s.

I. INTRODUCTION

Desktop computers (also called computer terminals or

simply terminals) are still being used in large numbers at

workplaces and at homes, often by multiple users. To prevent

unauthorized access users authenticate themselves before

using the terminal (e.g., by logging in with username and

password) and deauthenticate (i.e., log out) after their use.

This important deauthentication step, however, is overlooked

by most authentication schemes. Common schemes such as

password-based or fingerprint-based authentication provide

one-time authentication and rely on the users to log out.

Unfortunately, users often do not log out, they either forget

to log out or intentionally do not log out to avoid logging

in again. Although deauthentication is important for many

different devices, our focus in this work is to address the

deauthentication problem on computer terminals; future

extensions will support laptops, tablets, and phones.

The consequence of not logging out from a terminal can

be severe: an adversary with access to your terminal can

snoop through your private information, modify or delete

your data, or steal your credentials to take actions on your

behalf. Even in a non-adversarial setting, other authorized

users could accidentally misuse your account if you forget to

log out. For instance, Koppel et al. [1] report that physicians

frequently enter data into the wrong patient’s record because

they thought the open record belonged to the patient they

were treating; in fact, while they were away from the terminal

another physician used that terminal to update a different

patient’s record and forgot to log out. Sometimes clinicians

leave terminals intentionally logged in, as a professional

courtesy, so that the next user does not have to log in.

This deauthentication problem is a major concern in a busy

multi-user environment where users have to authenticate and

deauthenticate often, e.g., when users’ use of terminals is

interlaced or when they have to use a terminal multiple

times but for short durations. For example, in a clinical

inpatient setting where physicians, nurses, residents, and

medical students come and go, check on patients, and use any

available terminal to view and update patient medical records;

or in a busy restaurant or retail shop where employees share

kiosks to place orders and manage bills.

Even in workspaces where users have their own personal

terminals, deauthentication is an important problem. Users

either forget to log out or intentionally do not log out as a

workaround to avoid logging in later; they find password-

based authentication (the most common authentication

method) tedious and time consuming. Thus, users often log

in once when they arrive at work and log out when they leave,

but they do not log out during their shift when they step

away from the terminal, leaving their terminal vulnerable to

snooping and attacks by a co-worker or a passerby.

The most common solution to the deauthentication problem

is ‘timeouts’, i.e., to execute automatic logout after inactivity

for a timeout period. The problem with this approach is

that a single timeout period does not work for everyone and

often timeout periods are blind to context [2], [3]. Another

approach is to use a proximity sensor that detects a users’

departure and log them out, but these sensors are unreliable

in crowded environments [4].

One way to automate the deauthentication process is to

continuously authenticate the current user and, when the user

changes, deauthenticate the previous user and ask the new



user to authenticate herself. There are two goals that make

this method challenging. First, continuous authentication

should be passive (i.e., without requiring explicit action by

the user) and unobtrusive so that it is not a burden on the

user. Second, the system should quickly identify that the

user has departed or changed without relying on users to

log themselves out, because users often forget to log out.

Computer use that is frequent, irregular, and short-lived – as

is the case in hospitals – makes continuous authentication

particularly challenging.

Our approach is to continuously authenticate a user based

on her interactions with a terminal by monitoring her hand

movements and comparing them with her inputs to the

terminal using input devices (i.e, the keyboard and mouse).

As with behavioral biometrics based on keystroke and mouse

dynamics, our approach is based on the user’s interactions –

but there is an important distinction. Behavioral biometrics

rely on how the user does a particular interaction (e.g.,

how the user types or how the user moves a mouse) and

hence require user-specific training and typically require

long periods of observation to authenticate the user. Our

approach relies on what interactions the user does when

using a terminal and hence does not require user-specific

training or long periods of observation to authenticate the user.

We confirm the user’s continued presence by observing what

the user is doing from two different sources and comparing

those observations; we call this bilateral authentication. This

approach complements any method that may be used for

initial authentication, such as a password, a token, or a

fingerprint biometric.

Zero-Effort Bilateral Recurring Authentication, or ZEBRA,

monitors a user’s hand movements via a bracelet worn on

their wrist that they use to control the mouse. This bracelet

is registered to the user, like any authentication token, so its

presence should imply the presence of the associated user.

ZEBRA goes beyond mere proximity, however. After logging

in (using additional credentials) the user interacts with the

terminal and the bracelet records the user’s hand movements

using built-in accelerometer and gyroscope sensors and

transmits their data to the terminal over a short-range radio

(e.g., Bluetooth). The terminal then compares the user’s hand

movements with the inputs it observes and confirms the

presence of the user if they correlate. For example, when

the user clicks the mouse and then starts typing (with both

hands) his hand used to control the mouse (bracelet hand)

moves from the mouse to the keyboard; when the user scrolls

using the mouse scroll-wheel his hand is relatively stationary.

It is these kinds of hand motions that the terminal expects for

inputs that it receives from the user. The core idea of ZEBRA

is that if the bracelet is on the same hand that provides inputs

to the terminal then the accelerometer and gyroscope data

(from the bracelet) and the terminal input events should

correlate because their source is the same – the user’s mouse

hand movement. Conversely, if these movements no longer

correlate, the terminal infers that a different person is now

using the terminal and can take action (e.g., to lock the screen,

log out the former user, or require initial authentication for

the new user).

We make three main contributions. First, we introduce a

new type of authentication, bilateral authentication, which

falls into a new category of authentication of ‘what the user

does when interacting’ with a terminal. It is worth mentioning

again that this is distinct from behavioral biometrics that fall

into the category ‘how the user interacts’. Second, we propose

ZEBRA, a novel mechanism to continuously authenticate the

current user passively and unobtrusively, and to automatically

deauthenticate the user. We further describe how ZEBRA

can be used to improve the initial authentication process

(e.g., username and password). Third, we evaluate ZEBRA’s

performance with a user study and demonstrate strong results.

II. BACKGROUND AND RELATED WORK

Passwords are one of the oldest and the most common

authentication schemes. Passwords are convenient because

users do not have to carry anything, they are intuitive, and

are efficient to use. However, the plight of passwords is well

documented [5], [6]. Users find it hard to remember strong

passwords, and they use workarounds such as choosing weak

passwords, sharing them, reusing them, writing them down,

or intentionally leaving their terminals unlocked so that they

do not have to enter the password again [4], [7]–[12]. One

problem with password-based authentication schemes is that

there is no reliable and convenient way to deauthenticate

users, so if a user leaves a terminal unlocked any passerby

can access it. Organizations have tried timeouts for auto

deauthentication, but efforts have failed because they are not

reliable [2].

To address the limitation of a timeout approach to deau-

thenticate, some have proposed using proximity sensors that

detect close proximity of a human, and when the user walks

away, they detect the user’s departure and log out the user if

necessary. Proximity-based deauthentication, like timeouts, is

blind to context, and one proximity setting may not work for

all users. Moreover, as Sinclair et al. [4] report, these sensors

were not reliable when they were tested in a hospital – they

will trigger when someone walks past in the hallway and

would sometimes log a user out when she was still using the

terminal. Their deauthentication solution frustrated the users,

who developed a work-around by covering the proximity

sensor with an empty cup.

A proximity-based authentication scheme using a wearable

token (e.g., ZIA [13]) also provides passive continuous

authentication, but such schemes are not reliable in dense

workspaces such as hospitals, where multiple authorized

users may be near the terminal at the same time. Although

proximity-based authentication schemes are well suited for

single-user machine scenarios, their attack window lasts until

the user walks out of the proximity range, which may be many



minutes. When there is a group of clinicians near a device,

whom should the device authenticate? Sinclair et al. [4]

note these shortcomings of proximity-based authentication

mechanisms from their observations of clinicians’ terminal

use and their discussions with the clinicians.

Biometrics are convenient because users do not have to

remember their credentials – they are always with them.

However, biometrics can be stolen by physical observation

or internal observation (from within the device) and they

are hard to recover from theft or loss, because it may not

be possible to change the biometric. Some biometrics such

as fingerprint or iris require user input, which makes them

unsuitable for continuous user authentication. Biometrics

based on voice or face may be suitable for continuous

authentication provided they can be captured easily and

correctly without interrupting the user, which is not always

possible when the user is not speaking or in front of her

camera. Behavioral biometrics based on keystroke dynamics

or mouse dynamics provide unobtrusive passive continuous

authentication. However, they require a user-enrollment step

and as a user’s behavior changes they need to be re-enrolled,

which may increase the maintenance cost of this scheme.

Moreover, keystroke-based biometric is not resilient to theft

or internal observation, as Meng et al. [14] show that an

attacker with some training can successfully mimic a user’s

typing behavior. Rasmussen et al. [15] propose a pulse-

based biometric for continuous authentication where a metal

keyboard sends small electric current through the user’s body

and verifies the user based on the user’s body’s resistance

to the current. Such an approach has significant deployment

cost, because it requires modifying every input device. This

scheme requires users’ hands to be in-touch with the keyboard

at the same time for the pulse to pass through the body, and

this restricts how the user may use a keyboard.

Table I shows a comparative evaluation of ZEBRA with

the authentication schemes described above, using the

usability-deployability-security (UDS) framework [16]. UDS

framework is actually for evaluating web authentication

schemes, but some of its evaluation properties are applicable

to authentication schemes for devices; we use some of

those properties and 3 additional properties to compare

continuous authentication schemes: Verifying-Actual-User,

the scheme should verify who is actually using a terminal;

No-Constraint-on-Using-the-Device, the scheme should work

irrespective of how the user uses the device; and Automatic-
Deauthentication, the scheme should automatically deauthen-

ticate users. Due to lack of space we do not provide a detailed

comparative evaluation here; we refer readers to our technical

report for details [17].

The closest work is perhaps ‘shake well before use’ [18],

in which a user shakes two devices to generate a shared

encryption key between them. Also similar is the product

Bump [19], wherein users bump their phones to exchange

contacts. In these works, the same action (shaking or

Table I: Comparative evaluation of ZEBRA against other

continuous authentication schemes.
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Passwords

Proximity-based

Fingerprint

Voice-based

Facial recognition

Keystrokes-based

Pulse-based

= offers the benefit; = almost offers the benefit; no circle= does not
offer the benefit. = better than ZEBRA; = worse than ZEBRA; no
pattern= equivalent to ZEBRA.

1Properties from the UDS framework. 2Additional properties, not in UDS.

bumping) is observed by two different devices and compared

to generate an encryption key or match two devices. In

both these cases, the user must take explicit action, so these

methods are not passive or unobtrusive. Furthermore, the

signals being observed and compared are of the same type –

accelerometer signals. In our work, we have two different

types of signals to correlate – one is from the sensors in the

bracelet and the other is a set of input events on a terminal.

Consider the following two use cases that motivate the

need for ZEBRA.

Sally is a member of clinical staff in a hospital. She walks

to a computer terminal and logs in to update her patient’s

record. She needs some more information from her colleague

to update the record. She steps away to talk to that colleague,

leaving the terminal open because she is planning to come

back and update that record. Sally does not return before

the timeout period expires, so the terminal automatically

logs Sally out. In the meantime another clinician, Tina, logs

into the same terminal and updates a record and leaves,

again forgetting to log out. Soon Sally returns and finds that

terminal open. She assumes that it is still her account and

her patient’s record, since she was using it earlier. Sally does

not check whether it is indeed her account and her patient,

nor does the system, and she accidentally updates the wrong

patient’s record under Tina’s name. Incidents like these are

not uncommon in hospitals [1], [3].

Claire, a chemical engineer, is authorized to alter the

operation of a drug manufacturing plant using a terminal

linked to the plants SCADA system. After logging in she

gets an emergency call from her sister and walks around a



nearby corner to hear her sister better, knowing the terminal

automatically logs out in 15 minutes. Jake, a biomedical

engineer competing with Claire for a promotion, happens by

and notices the open terminal is logged into Claire’s account.

He makes a subtle change in the plants operation that reduces

efficiency and gets logged as Claire’s doing, and then quickly

walks away. Claire, the better and more honest engineer is

passed over for promotion in favor of devious Jake because

of her “mistake”. The US Code of Federal Regulations, Title

21, Part 11 requires many FDA-regulated industries such as

drug makers, medical device manufacturers, biotechnology

companies, biologics developers and others to implement

measures to control, monitor and report access to critical

terminal control systems [20], [21]. Terminal timeouts are

an important part of these protections but may be inadequate

to prevent tampering.

III. SYSTEM MODEL

ZEBRA is designed to prevent intentional and accidental

misuse of a user’s account on a terminal. ZEBRA is not

a method for initial authentication; rather, it compliments

any existing initial authentication schemes by providing

continuous authentication and automatic deauthentication.

When a user logs in (e.g., by providing username and

password), ZEBRA continuously authenticates the current

user (i.e., verifies whether the current user is the same user

who logged in), and when a different user starts using the

same terminal while the current user is logged in, ZEBRA

deauthenticates the current user, thereby preventing account

misuse. In this section, we state the assumptions that we

make for ZEBRA, its desired properties, and its adversary

model.

Assumptions. We make the following assumptions.

1) We assume that each user wears a bracelet on the

hand she uses to control the mouse interface. The

bracelet has built-in accelerometer and gyroscope

sensors and a wireless radio (e.g., Bluetooth) that it

uses to communicate with the terminal. Today, many

wrist-worn fitness devices meet these assumptions,

demonstrating that such a device is feasible and can

have long battery life.

2) Each bracelet is associated with a single user, and users

do not share bracelets. This association can be imple-

mented using a variety of approaches. For instance,

one can use a biometric bracelet [22], or a user may

be required to enter a PIN when she puts the bracelet

on to activate it, and the bracelet would deactivate

when it is removed from the wrist or after a period of

time (e.g., 24 hours). This assumption is similar to the

photo ID-cards used by many organizations. In other

instances there might be a biometrically-authenticated

station where employees check out bracelets at the

start of a shift.

3) The bracelet and the terminal are already paired; they

share encryption keys that they can use to secure

their communication. Pairing is a one-time task and

any suitable pairing method may be used [23]. In an

enterprise setting, we assume administrative tools pair

all bracelets with all terminals in a distributed fashion.

4) We assume that all communication between the bracelet

and terminal is secured by other means (e.g., Bluetooth

Low Energy or ANT+ protocols). The terminal does

not communicate wirelessly to untrusted/unknown

bracelets.

5) There exists an initial authentication scheme (e.g.,

username-password) that users use to log in to termi-

nals. Once they log in, ZEBRA continuously verifies

that the current user is the same user who logged in.

Desired properties. We desire ZEBRA to be

1) Continuous: It should continuously authenticate the

current user as long as the user is logged in.

2) Passive: It should not require any explicit user inter-

vention and should not interrupt the user.

3) Unobtrusive: It should be completely unobtrusive and

should not invade the user’s privacy; the user should

be comfortable using the system.

4) Quick: It should be quick to identify when a user other

than the logged-in user starts using the terminal so that

it can deauthenticate the logged-in user to prevent any

access misuse.

5) Accurate: It should not incorrectly deauthenticate a

user nor falsely authenticate a user.

6) User-agnostic: It should not require any user-specific

training.

Adversary model. We are primarily concerned with the

threat of unauthorized access when the user forgets to log

out when stepping away from the terminal, even if the user

remains in the terminal’s proximity doing other tasks (e.g.,

walking, writing, talking to someone, or working on another

nearby terminal). If the user steps out of the radio’s proximity

range of the terminal one can use proximity-based solutions.

We consider two types of adversaries. First, an innocent

authorized user who wants to use a terminal for her own

task: she finds an open terminal and uses it, either because

she assumes the logged-in account on the terminal is hers

or because she does not want to do the login step. Second,

a malicious individual wants to use an open (logged-in)

terminal while the already logged-in user is nearby, perhaps

because the logged-in user has privileges desired by the

adversary, or the adversary wants to take action in the name

of the logged-in victim. This adversary may try to observe

and mimic the logged-in user’s hand movements to fool the

terminal into falsely authenticating himself as that user.

IV. APPROACH

In this section we introduce bilateral authentication, com-

pare it with traditional authentication methods, and give an



overview of ZEBRA.

A. Bilateral authentication

Traditional user-authentication schemes authenticate a user

by comparing an attribute that the user produces with a

previously stored attribute. For instance, password-based

authentication schemes compare the hash of the user-entered

password with the stored password hash, voice-based authen-

tication schemes compare features of the user’s voice against

stored features of authorized users’ voices, and a keystroke-

based biometric scheme compares keystroke dynamics of the

user with the user’s stored keystroke dynamics.

In our case, bilateral authentication, the user is authenti-

cated by comparing two observations of the same attribute

of the user, measured separately in real-time by two sources

(hence the term bilateral). A related example of a bilateral

authentication method is the ‘same-body authentication’

solution by Cornelius et al. [24]. They measure a user’s

motion using multiple accelerometer sensors placed at

different positions on the body and compare these sensors’

signals (which measure the same attribute, the user’s motion)

to determine whether all the sensors are on the same body.

A general bilateral user-authentication method can be

described as a user-authentication method where an attribute

about the user, a, is observed and measured by two indepen-

dent parties P and Q, where these measured signals could

be the same (as in the above example) or different (as in

ZEBRA) but the user is authenticated only if the two signals

correlate. The attribute a could be physiological (e.g., heart

rate, body temperature), behavioral (e.g., walking, user’s

interaction with device), or environmental (e.g., being in the

same room, radio signal).

There are several benefits of bilateral authentication,

some of which overlap with desired properties identified

by previous research [16]. These include:

1) No need to store sensitive information in the authenti-

cating device. Although sensitive information can be

stored securely, in practice it is not stored securely,

and when the system is compromised users’ sensitive

information is leaked [25]. By eliminating the need to

store any sensitive information we eliminate this risk.

2) No mental burden on users. Users have to remember

their password if they use a password-based authen-

tication scheme; previous work has shown that users

are not good at remembering passwords and they use

work-arounds to avoid using passwords [4], [8]. In

bilateral authentication there is no secret for users to

remember.

3) No hassle for users over time. Users’ habits and

behaviors change over time, either naturally or due

to an injury or illness. Behavior-based authentication

schemes are susceptible to these changes, and they need

to be re-trained for the user whose behavior changed

over time. Bilateral authentication does not rely on any

user-specific behavior, only on the fact that the user is

doing specific interactions with the terminal.

4) No hardware modifications to the terminal, assuming

it has short-range radio such as Bluetooth.

Bilateral authentication, however, cannot always be used

because it is not always possible to monitor the users’

interaction externally. Not all interactions between the user

and desktop involve the dominant hand; notably, periods of

screen reading involve no motion at all. We expect that, much

as with common screen-saver software, users will need to

periodically jiggle the mouse while reading extensively.

B. ZEBRA

ZEBRA provides continuous authentication, that is, it

continuously verifies the identity of the logged-in user.

Although continuous authentication has many uses, it is a

necessary foundation for a smart deauthentication mechanism.

Such a mechanism can automatically take protective action

(such as locking the screen) when another user starts using

a terminal that a previous user had logged in to.

ZEBRA works as follows: Jane, a ZEBRA user, logs in to

the terminal, the terminal connects wirelessly to her bracelet

(because she had paired them earlier, the terminal can look

up her bracelet’s network address, given her username, and

seek that bracelet on the short-range radio connection). The

presence of the bracelet may optionally be required by the

login process, serving as a second-factor token, strengthening

the initial authentication step. We are concerned here with

what happens after login, continuously verifying that Jane

remains the active user of the terminal. As Jane uses the

terminal, the bracelet captures the sensor data (accelerometer

and gyroscope) from Jane’s dominant wrist movement and

sends it to the terminal. From the acceleration data the

terminal receives, it generates, using a classifier, a sequence

of ‘interactions’ (mouse scrolling or typing) that Jane appears

to be doing. The terminal also generates the actual sequence

of interactions, based on the inputs it receives from keyboard

and mouse. By comparing these two sequences of interactions,

the terminal verifies whether the user using the terminal is

Jane, i.e., the one wearing the bracelet.

When Jane steps away from the terminal and another user

starts using the terminal, the two sequences of interactions

will not match because the interaction sequence that Jane’s

bracelet generates when she is away from her terminal will

be different from the interaction sequence of the other user

on the terminal. Since the two interaction sequences will not

match, the terminal will deauthenticate Jane and take action

to prevent another user from misusing her account.

The idea of ZEBRA stems from two observations: i) people

interact with most input devices with their hands, and ii) a

user’s hand movements when the user interacts with an input

device can be correlated to the inputs the device receives. For

example, when the user is scrolling or clicking, her fingers

are moving but her wrist is relatively stationary; when the



user clicks the mouse and then starts typing on the keyboard

(typically with both hands), her hand will move from the

mouse to keyboard. Thus, the hypothesis driving ZEBRA is

that if we can capture the user’s hand movement and compare

it with the inputs the terminal receives, we can determine

whether the user is using the terminal.

Figure 1 shows a user’s wrist acceleration when she was

interacting with the terminal. The x-axis represents the time

(in seconds) from the start of the experiment and the y-axis

represents the magnitude of the acceleration, as measured by

the bracelet on the wrist. We marked, with shaded regions,

three types of user interactions in the figure: scrolling, typing,

and MKKM, where MKKM stands for ‘Mouse to Keyboard

or Keyboard to Mouse’ interaction representing the action

of switching between keyboard and mouse. As shown in

the figure, the user scrolled the mouse at 65.5 s, from 66.3 s

to 74.4 s, and then briefly at 75.1 s. The graph shows that

her wrist was relatively still during scrolling, as one would

expect. When she moved her hand from mouse to keyboard

(around 77 s) to type, we see a sudden spike in acceleration

caused as she lifted her hand off the mouse and as she rested

her hands on the keyboard. As she typed (77.5 s to 83.4 s),

we see small changes in the acceleration, implying that her

wrist moves little during typing. After typing she switched

from keyboard to mouse (around 83.5 s), and we see another

sudden spike in the acceleration.

We can see the differences in the acceleration patterns

between interactions. For instance, broadly speaking, there

is more wrist movement during typing than scrolling, but

less than when she switches between keyboard and mouse.

This example supports our hypothesis that we can generate

a sequence of interactions from a user’s wrist movement.

The acceleration data that is not marked in the graph

represents the user’s other interactions with the terminal

such as mouse-dragging, clicking, or hand movements not

involving interaction with the terminal; we highlighted only

three types of interactions on the graph for readability.

C. Dealing with adversaries

ZEBRA deals with the two adversaries described in

Section III as follows:

In the case of the innocent authorized user who wants

to use an already open terminal for her own task, if Sally

attempts to use the terminal that Tina left open, the terminal

will try to verify whether the current user (Sally) is Tina.

If the terminal does not receive data from Tina’s bracelet,

e.g., because Tina is not near the terminal, ZEBRA will log

Tina out and will attempt to log Sally in. If Tina is near the

terminal but not using the terminal, e.g., she may be talking

to a nurse, then ZEBRA will attempt to correlate Tina’s

bracelet movements with Sally’s inputs on the terminal. The

classification will fail with high probability, and ZEBRA will

log Tina out and attempt to log Sally in. Thus, ZEBRA will

prevent an innocent authorized user from performing a task,

e.g., updating a patient’s record, with another authorized

user’s credentials.

ZEBRA deals with the case of a malicious individual in

a similar fashion. In the second use-case, Claire leaves her

terminal unattended, and Jake manages to get access to her

terminal before the terminal times out and auto-locks. As

Jake tries to navigate the terminal using the keyboard and

mouse, the terminal will try to correlate Jake’s inputs with

Claire’s hand movements. Assuming that it is hard to control

a terminal at will by mimicking Claire’s hand movements

while she is around the corner talking on the phone, the

correlation will fail in a similar manner to the previous case

and, therefore, the terminal will lock, preventing Jake from

misusing Claire’s account. Our evaluation shows that our

assumption is reasonable in the case of humans trying to

mimic human hand movements. We touch on the resilience

of ZEBRA to automated attacks in Section VII-C.

V. METHOD

In this section, we describe the ZEBRA architecture and

our approach to correlate a terminal’s input with bracelet

acceleration data.

A. Architecture

Figure 2 shows the architecture of ZEBRA. As shown

in the figure, there are five main components in ZEBRA.

The interaction extractor extracts interactions from a user’s

keyboard and mouse inputs, and sends the sequence of

interactions to the authenticator and the time intervals of the

interactions to the segmenter. The segmenter segments the

accelerometer and gyroscope data into blocks based on the

time intervals it receives from the interaction extractor. The

feature extractor extracts features for each block of data that

it receives from the segmenter. The interaction classifier takes

these features and classifies them into one of our specified

interactions. The authenticator compares the actual sequence

of interactions that it receives from the interaction extractor

and the inferred sequence of interactions that it receives from

the interaction classifier, and it makes a decision whether the

two users – the current terminal user and the user wearing

the bracelet – are the same or different. If they are different

then we need to deauthenticate the bracelet user, who is

currently logged in to the terminal. Based on the system

policy or user preference, ZEBRA can either logout the user,

lock the screen, raise an alarm, or take some other action.

Below we discuss each component in detail.

B. Interaction extractor

As mentioned, this component extracts ‘interactions’ from

the input events stream generated by the OS when the user

provides inputs to the terminal via keyboard or mouse. We

use three main types of user interactions with a terminal:

MKKM, scrolling, and typing. There are other interactions,

such as moving the mouse, dragging the mouse, or clicking



Figure 1: Acceleration of user’s wrist when she is using a computer terminal.
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Figure 2: ZEBRA architecture.

the mouse, but we do not consider them because in our

evaluation they did not contribute to ZEBRA’s performance.

MKKM. This interaction captures the users’ dominant hand

(here, we mean the mouse hand) movement when she

switches from the mouse to the keyboard or from the

keyboard to the mouse; MKKM is short for ‘Mouse to

Keyboard or Keyboard to Mouse’. An MKKM interaction

consists of a mouse-related event followed by a keypress

event or vice-versa.

There is, however, a challenge in identifying whether the

keypress event followed by a mouse-related event was caused

by the dominant hand or the other hand, because the user

may press a key with her non-dominant hand while keeping

her dominant hand on the mouse. With one bracelet, we

cannot identify such events with certainty. We account for

such events by dividing the keys on the keyboard into three

zones, depending on which hand the user is likely to use to

press that key: left zone, middle (or ambiguous) zone, and

right zone, as shown in Figure 3. We introduced the ‘middle’

zone because not everyone types according to two-handed

typing guidelines, which divides the keyboard into two zones,

and we noticed some subjects used either hand to type the

keys in the middle zone. So, if the user is right handed (that

is, uses the mouse with her right hand) and presses a key in



the right zone after a mouse event, we assume she moved

her dominant hand. Thus, we assume that users will stick

with our zone divisions, i.e., use their left hand for keys in

the left zone and their right hand for keys in the right zone.

Some users may break this assumption, but this heuristic

seemed to work well, because to identify MKKM we only

need the user to press any one key in the right (or left) zone

with their right (or left) hand, and we observed that all our

subjects did use two hands when typing.

Scrolling. This interaction captures users’ use of a scroll-

wheel built-in to the mouse. When a user is scrolling,

ScrollWheel events are continuously generated by the

OS, each event reporting the amount of scroll performed

by the user since the last scroll, so that the application can

update the UI accordingly. We define a scrolling interaction

as a sequence of uninterrupted ScrollWheel events.

However, sometimes the mouse is slightly moved because

the user’s hand is not still, and we observe some MouseMove
events in the ScrollWheel events stream. The idea behind

this interaction is to capture the durations during which

the user was using the mouse and her hand (wrist) was

relatively stationary, so we ignore small mouse movements.

We consider a mouse movement as small if the associated

MouseMove events in the ScrollWheel events stream

are few in number (e.g., 5 events) and the cumulative

mouse displacement indicated by these MouseMove events

is small (e.g., 5 pixels). These thresholds (minimum number

of MouseMove events and maximum mouse displacement)

are parameters in our experiments.

Thus, we define a scrolling interaction as a sequence of

ScrollWheel events with few intervening MouseMove
events such that the total mouse displacement is small (below

a certain threshold).

Typing. This interaction captures the users’ use of the

keyboard. When a user hits a key, she first presses the key

down, and then as she removes her finger she releases the

key up. Associated to these actions, two events are generated

by the OS for each keypress: KeyDown and KeyUp. Thus,

we define a typing interaction as a sequence of KeyDown
and KeyUp events.

If there is a continuous keypress events stream with mouse-

related events in between, we count those keypress events as

separate typing interactions, separated by the mouse-related

events. Unlike scrolling, where we ignored small numbers of

mouse-related events, during typing any mouse-related event

means that the user moved her hand from keyboard to mouse,

which is an MKKM interaction. Thus, for a keypress events

sequence with few mouse-related events in between, we

extract at least four interactions: typing, MKKM (to switch

to mouse), MKKM (to switch back to keyboard), typing, and

maybe scrolling between the two MKKM events if the user

scrolled the mouse-wheel.

Figure 3: Keyboard divided into left, middle, and right zones.

Extraction. When extracting interactions from input events,

we apply three constraints: idle threshold, minimum duration,

and maximum duration. Idle threshold is the maximum time

difference between two consecutive events in an interaction.

The rationale behind this constraint is to capture only the

interactions that involve the user’s continuous interaction

with the terminal and eliminate interactions during which the

user does tasks other than using the mouse and the keyboard.

During a pause, there is no input to the terminal; we do not

know what the user is doing, and thus cannot correlate with

the user’s wrist movement. If there is a pause greater than

the threshold, we split the interaction into two interactions

separated by the pause. For example, if in a series of keypress

events there is a 2min pause, then we split these keypress

events into two typing interactions, one before the pause

begins and one after the pause ends.

The other constraints refer to the minimum and maximum

duration of interactions. If an interaction lasts for less than the

minimum duration, we ignore it, and if an interaction exceeds

the maximum duration we split it into two consecutive

interactions. While splitting the interaction we do ensure

that the new interaction is longer than the minimum duration:

if the new split interaction has duration less than the minimum

duration, we do not split the interaction; thus, we can have

interactions that are almost as long as minimum duration +
maximum duration.

Based on these three constraints and the definitions of

the interactions described above, this component outputs

a sequence of interactions from given input events. This

sequence of interactions, IE, is of the form

(I0, t0, t1), (I1, t2, t3), . . .

where I0 is an interaction ID (corresponding to one of the

three described interactions) that starts at time t0 and ends

at t1, and similarly interaction I1 spans (t2, t3).

From the sequence IE, interaction ID sequence

(I0, I1, . . .) is sent to the authenticator. The interaction tim-

ings sequence ((t0, t1), (t2, t3), . . .) is sent to the segmenter.



C. Segmenter

This component receives accelerometer and gyroscope data

from the user’s bracelet. The accelerometer data is of the

form

(ti, xi, yi, zi), (tj , xj , yj , zj), . . .

where (ti, xi, yi, zi) represents one acceleration data sample

taken at time ti and the instantaneous accelerations along x,

y, and z axes are xi, yi, zi, respectively. The gyroscope data

is of the similar form

(ti, ai, bi, ci), (tj , aj , bj , cj), . . .

where (ti, ai, bi, ci) represents one gyroscope data sample

taken at time ti and represents the instantaneous rotational

velocity along x, y, and z axes, ai, bi, ci, respectively.

As shown in Figure 2 the segmenter receives actual

interaction time intervals from the interaction extractor. The

segmenter breaks the acceleration data stream into blocks

corresponding to each time interval, using the time of each

data sample and the time of the intervals. For the time-

interval sequence, ((t0, t1), (t2, t3), . . .) this component will

place all the accelerometer and gyroscope data samples with

time t0 ≤ t ≤ t1 into the first block, all the data samples with

time t2 ≤ t ≤ t3 into the second block, and so on. These

data blocks are sent to the feature extractor. Acceleration and

gyroscope samples outside interaction intervals are discarded.

In most signal-processing algorithms, data is segmented

into blocks (also called windows) of equal size, but in our

case the block sizes are variable. There are two main reasons

to perform segmentation this way. First, when the user is not

interacting with the terminal, we do not have any interaction

sequences to use for authentication, so we ignore the sensor

data for durations when she is not interacting with the

terminal. Second, the user’s interactions themselves are of

variable duration so it makes sense to chunk accelerometer

data this way. For the durations when she is interacting,

one could segment sensor data into blocks of equal size

and infer an interaction for each block, but given that a

user’s interactions are of variable duration, it is likely that

one sensor data block would contain data for one or more

interactions, which would reduce the classifier performance.

Variable segmentation ensures that each sensor data block

contains data for just one interaction.

D. Features

This component receives sensor data in blocks, and it

computes a feature vector over each block. We do not

know the orientation of the user’s bracelet, so we ignore

the orientation (individual axis accelerations and angular

velocities) and just use the magnitude of acceleration and

angular velocity. For each acceleration data sample (t, x, y, z),
the magnitude m is given by

m =
√
x2 + y2 + z2

and for each gyroscope data sample (t, a, b, c), the magnitude

r is given by

r =
√
a2 + b2 + c2.

After computing these magnitudes, we now have for each

block a series of magnitudes (m0, r0), (m1, r1), . . ..
We compute the following 12 features over each series

of acceleration and angular velocity magnitudes in a seg-

mented interaction block: mean, median, variance, standard
deviation, median absolute deviation (MAD), inter-quartile
range (IQR), power, energy, peak-to-peak amplitude, auto-
correlation, kurtosis, and skew. We chose the first seven

features because others have used them successfully for

activity recognition [26] and for correlation among different

accelerometer signals [24]. We add the latter five features to

capture the patterns of the three interactions that we noticed.

During MKKM, there is a sudden spike in positive and

sometimes in negative direction, so we use peak-to-peak
amplitude. Because the placement of the peaks in a MKKM is

towards the start of the interactions, we use skew as a feature.

During typing, the peakedness is distinct, and so we included

kurtosis as one of our features. The wrist movement pattern

during a typing or scrolling interaction should be roughly

similar, unlike MKKM, so we use the auto-correlation feature

to capture that difference.

For each block of data, we compute a feature vector

F = (f0, . . . , f11), and send the sequence of feature vectors

F0, F1, . . . (each corresponding to one interaction block) to

the interaction classifier.

E. Interaction classifier

The classifier takes a feature vector F as input and outputs

an interaction ID, its inference that the sensor data associated

with that feature vector represents that interaction.

To train the classifier, we segment a subject’s wrist

sensor data based on her actual interaction timings, as

described above. We feed the classifier with feature vectors

corresponding to the actual interaction and provide the actual

interaction labels. Later, when evaluating our approach with

a given subject, we use a classifier that was trained with

other subjects’ data, because our intent is for the classifier

to be user agnostic.

The classifier receives a sequence of feature vectors

and it outputs its inference, a sequence of interaction IDs

(i0, i1, . . .). It then sends this sequence to the authenticator.

We explored two classifiers: Naive Bayes classifier and

Random Forest classifier. For our dataset, the Random Forest

classifier outperformed the Naive Bayes classifier; the results

reported in Section VI are with the Random Forest classifier.

F. Authenticator

The authenticator matches two sequences: the sequence of

actual interactions and the sequence of interactions inferred

by the classifier based on the user’s wrist movement. If the



two sequences match, the authenticator outputs 1 indicating

that the current terminal and the bracelet user are the same.

On the other hand, if the two sequences do not match, it

outputs 0 indicating that the two users are different. If the

users are different, we need to deauthenticate the bracelet

user, who is logged in the terminal.

To match the two sequences, we use four parameters:

window size, overlap fraction, match threshold, and grace

period. The window size, w, is the number of interactions

the authenticator compares at a time. The overlap fraction,

f (0 ≤ f < 1), indicates how much we should overlap the

moving window, 0 being no overlap. For each window the

authenticator computes a matching score (between 0 and 1)

indicating how well the two sequences match in that window;

0 being no match at all, and 1 being a complete match. If

the matching score for a window is greater than the match

threshold, m, we output 1 for that window, indicating that

the terminal user and the bracelet users are the same for that

window. Otherwise, we output 0 for that window.

If we incorrectly output 0 for a window and deauthenticate

the user immediately, it would frustrate the user. To account

for such false negatives, we introduce the grace period

parameter, g. This parameter indicates how many consecutive

window scores of 0 are measured to deauthenticate the user.

For example, if g = 3 then we should get 0 for three

consecutive windows before we deauthenticate the user. We

reset the zero-count when we get a window with output

1. This parameter increases convenience but also increases

security risk; we keep its default value low.

VI. EVALUATION

As mentioned in Section III, we desire ZEBRA to be

continuous, passive, unobtrusive, user-agnostic, quick, and

accurate. We achieve the first four properties by design.

ZEBRA requires no explicit input from the user and as long

as the user is in (radio) proximity, i.e., the user’s bracelet

can send data to the terminal, ZEBRA continuously verifies

the presence of the user; thus, ZEBRA does continuous

authentication passively. The bracelet can potentially monitor

a user’s physical activity, which may be sensitive information

for some users. ZEBRA respects users’ privacy, and it does

not monitor the user’s movements when the user (and no one

else) is not using her logged-in terminal. While evaluating

ZEBRA for a user, we did not train the classifier using that

user’s data. Hence, ZEBRA is user-agnostic, i.e., independent

of the user’s behavior when she is using a terminal. We

evaluate accuracy and quickness through a user study and

present the results in this section.

A. User study

We recruited 20 subjects for our user study, using flyers

posted across our college campus and online. Table II shows

demographic data about the subjects. Subjects took about 30
to 40 mins to complete the user study; they received $10 as

Table II: Demographics of user study participants.

Category # of subjects

Gender
Male 7

Female 13

Field
Computer Science 8

Non-CS 12

Age
18-25 15
25-30 5

Handedness
Right 19
Left 1

compensation. Our research protocol was approved by our

campus IRB.

The user study consisted of three experiments. The

first experiment was designed to capture the users’ hand

movements as they interact with a desktop in normal use.

Subjects were instructed to imagine that they were in a public

cafe and were asked to browse the web for 10min. They

were told that everything they typed would be logged and so

were asked not to enter any sensitive information. Further,

they were asked not to read any long articles or watch videos,

as it would not provide much data for our study.

We designed our second experiment to collect user

interaction data in a more controlled setting. Users were

asked to fill out a small web form, which required users to

type, scroll, drag the mouse, click, and move the mouse; they

were asked to fill this web form five times.

Our third experiment was designed to collect data to test

a malicious adversarial case. For this experiment, we asked

each subject to be a malicious adversary whose goal was to

mimic the victim user’s mouse-hand movements to the best

of their abilities. The victim user (one of the researchers)

filled out the same web form that the subjects used in

Experiment 2; thus, the subjects were already accustomed to

the task. We realize that a real adversary can be motivated

and skilled enough to mimic users very well, compared to

our subjects. So we decided to assist the subjects when they

were performing the role of a malicious adversary. To assist

them in mimicking the victim, we made sure they had a

good view of the screen and the victim’s hand movement,

we increased the cursor size, and the victim user gave verbal

clues before he began an action. For example, the victim

would say ‘typing’ before he began typing. He would say

‘2’ when he was going to fill the question number 2 in the

web form. The victim tried to use the same pace to fill out

the web form for all subjects, but reduced the pace for some

subjects when they were lagging too far behind. It should

be noted that this experiment was intended to be favorable

for the adversary.

Each subject performed, on average, about 192 Scrolling

interactions, 293 Typing interactions, and 146 MKKM

interactions in the three experiments. After these three

experiments, we asked each subject to walk for a few minutes

and to write on a paper, so we could collect data for walking



and writing activities, because these are common activities

for a user that steps away from the terminal. We use this

data to evaluate how quickly ZEBRA can deauthenticate a

user when she does one of these tasks while another user

attempts to use her terminal.

B. Data collection

In our user study, we collected two types of data about

subjects’ interaction with the terminal: i) inputs received by

the OS through keyboard and mouse, captured by a script

we wrote; and ii) the subject’s hand movement, captured by

a sensor worn by the subject on her dominant wrist.

We used iMacs for our subject study. Subjects used an

iMac with an Apple keyboard and Apple mouse with a

scroll ball. We wrote a Python script that uses Apple’s

Cocoa APIs for OS X and captures all keyboard and

mouse input events generated by the operating system when

the subject provides input using those input devices. The

captured input events were KeyDown, KeyUp, MouseMove,

ScrollWheel, LeftMouseDown, LeftMouseUp, and

LeftMouseDragged, which are generated when the sub-

ject presses and releases a key, moves the mouse, uses the

scroll-wheel, presses and releases the left mouse button (left

click), and drags the mouse, respectively.1 For each keypress

event the OS reports the time when it is pressed/released,

the key value, whether the subject is holding the key down,

and whether the subject is repeatedly pressing the key. For

mouse-related events, the OS reports the time the event was

generated, absolute coordinates of the mouse pointer on

the screen, pointer displacement (in pixels) since the last

mouse event, and scroll length (i.e., how much the subject

scrolled the wheel). We log all this information, but in the

current implementation of ZEBRA, we use only the time

of event, event type, key value for keypress events, scroll

duration, absolute mouse pointer coordinates, and mouse

pointer displacement.

We used a Shimmer [27] to capture the subjects’ hand

movements, by asking each subject to wear a Shimmer device

on the wrist of the hand they normally use to operate a mouse.

The Shimmer contains an accelerometer sensor, a gyroscope

sensor, and a Bluetooth radio. Once connected to the terminal

over Bluetooth, the Shimmer streams its accelerometer and

gyroscope readings to the terminal at 500Hz, where they are

logged to a file. We calibrated all Shimmers’ accelerometers

and gyroscopes prior to their use.

C. Results

In this section we evaluate ZEBRA’s accuracy and how

quickly it deauthenticates users when an adversary starts

using their logged-in terminal.

1Although our implementation is for MacOS X, the same kinds of
information are available in Windows and Linux so our method should be
easily portable to other systems.

1) Accuracy: We use two metrics to evaluate the accuracy

of ZEBRA. The false-positive rate (FPR) is the fraction of

the testing data that is negative but misclassified as positive;

in ZEBRA the FPR is the fraction of all interactions where

an unauthorized user is authenticated as an authorized user.

Similarly, the false-negative rate (FNR) is the fraction of all

interactions where an authorized user is misclassified as an

unauthorized user.

A high FNR indicates that the system classifies an

authorized user incorrectly as an unauthorized user more

often. When this happens, the system takes protective action,

such as logging out the user or locking the terminal; both

actions will annoy the authorized user using the terminal. A

negative result indicates to the system that an unauthorized

individual is using the terminal and the system takes action,

such as logging out the user or locking the terminal. A false
negative is, as one might imagine, annoying to an authorized

user of the terminal. Thus, from the usability point of view

a low FNR is desirable. Figure 4 shows the average false-

negative rate across all subjects for different window sizes

and thresholds.

As described above, ZEBRA classifies the terminal user as

the bracelet user by comparing the actual interaction sequence

and the interaction sequence inferred by the classifier from

bracelet data. The comparison is performed over a given

window size. Thus, we compute an FNR as the fraction of

all windows where ZEBRA misclassified the authorized user

as an unauthorized user. Then each data point in the Figure 4

is the average of the FNR across all subjects for a given

window size and threshold value.

The threshold parameter indicates the fraction of interac-

tions in a window that should match for ZEBRA to consider

the user as the authorized user. Thus, the threshold value

indicates how strict ZEBRA is when correlating interactions,

and as expected the FNR is smaller for smaller threshold

values and it increases with threshold values. Window size is

the number of interactions matched at a time to authenticate

the user; a larger window size allows more interactions to

be matched, so the FNR drops as the window size increases.

ZEBRA performs best in terms of authenticating a user for

window sizes greater than 20; thus, the more interactions

a user provides while working on the terminal, the better

ZEBRA performs. In terms of threshold values ZEBRA

provides best FNR for 0.5 and 0.55, and reasonably well

for threshold value of 0.6. A low threshold value improves

usability but, as we show below, it reduces security, so we

need to choose the trade-off carefully.

For a given subject and adversary, the FPR is the fraction

of all windows where ZEBRA misclassified the adversary

as the subject (authorized user). We compute a FPR for

each subject as the average FPR across all adversaries; each

data point in the following FPR graphs is the average of

these FPR across all subjects. A high FPR indicates that we

falsely authenticate an unauthorized user as the logged-in



Figure 4: Average false-negative rate vs. window size for

different thresholds (0.5, 0.55, 0.6, 0.65 and 0.7). ZEBRA

performs best in continuously authenticating users for window

sizes larger than 20.

user, allowing him to access the logged-in user’s account,

which is undesirable. Thus, a low FPR is good from a security

point of view. Window size is the number of interactions

that ZEBRA is allowed to consider to issue the decision

whether the current user is the same as the logged-in user.

Thus, ideally we want a low FPR for a small window size.

Figures 5 and 6 show the average false-positive rate when

the adversary is using the terminal and the logged-in user is

walking and writing, respectively, near the terminal. (Note the

different y-axis scales.) As expected, the FPR is smaller for

the higher thresholds. The FPR is low and drops quickly with

respect to window size, when the user is walking compared

to when she is writing because the wrist movements while

walking are very different to wrist movements when a user

is using the terminal, whereas the wrist movements during

writing are somewhat similar to terminal use. Figure 5 shows

that the FPR is below 0.02 for thresholds 0.6 and above,

even for short window sizes. The FPR in the user-writing

case drops below 0.03 for threshold 0.6 for windows of size

15 or greater. Thus, ZEBRA performs reasonably well even

if the user is performing an activity that is somewhat similar

to working on a terminal in terms of hand movements.

In our third experiment, we imagine a malicious adversary:

the user is logged-in on a terminal A but steps aside to

work on a nearby terminal B, and the adversary starts using

terminal A while trying to mimic the user’s hand movements

and similar interactions. If the adversary succeeds in mim-

icking the user’s hand movements while providing similar

interactions to terminal A, then ZEBRA will misclassify

the adversary as the user and the adversary can continue

using the terminal. In our experiment we asked the subjects

to be the malicious adversary and try to mimic a user (a

researcher). Both the subject and researcher performed the

same tasks (filling web forms), and the researcher’s screen

Figure 5: Average false-positive rate when the adversary is

accessing the terminal while the logged-in user is walking

nearby.

Figure 6: Average false-positive rate when the adversary is

accessing the terminal while the logged-in user is writing

nearby.

and hands were clearly visible to the subject. Figure 7 shows

the false-positive rate for this case. The FPR rate drops below

0.04 for windows of size 15, and threshold 0.6 and above.

Thus, even when the adversary and the user were performing

the same task on nearby terminals, and the adversary was

trying to mimic the user’s actions, ZEBRA performed well

in recognizing the adversary. Thus, ZEBRA should be able

to recognize a change in user even in an environment where

the previous user is working on a nearby terminal when a

new user walks to the unlocked terminal to use it.

In Table III we show the mean and standard-deviation

of FNR and FPR for all subjects for threshold of 0.6 and

four window sizes. The high variability in FNR is because

of Subject 1, whose wrist movement during keyboard and

mouse interaction were very different compared to the other

subjects. To keep ZEBRA user-agnostic, for each subject we

train the classifier using other subjects’ data, but if a subject’s



Figure 7: Average false-positive rate when the adversary is

trying to access the user’s logged-in terminal by mimicking

the user who is using a nearby terminal.

interaction is very different than other subjects, the classifier

cannot accurately classify that subject’s interactions, which

affects ZEBRA’s accuracy in verifying that subject. This can

be resolved by training the classifier on a larger population

or training the classifier for these specific subjects. If we

exclude Subject 1, we get low variability and even better

FNR, as shown in the last column (FNR3) in Table III.

From the FPR and FNR results we found the parameters

that give a reasonable tradeoff between usability and security

with ZEBRA are window size of 21 and threshold of 0.6.

For window size of 21, ZEBRA verifies the user after every

21 interactions, which can take at most 21 s if the user is

providing inputs continuously, because each interaction is

at most 1 s long. However, in our experiment subjects took

about 6 s for 21 interactions. We use these optimal parameters

to evaluate quickness of ZEBRA in terms of the time ZEBRA

takes to recognize an unauthorized user.

Table III: Average FNR and FPR for different Window sizes

(W). Mean (and standard-deviation) of all subjects.

W FNR FPR1 FPR2 FNR3

5 0.164 (0.155) 0.016 (0.012) 0.061 (0.064) 0.140 (0.118)
13 0.041 (0.077) 0.007 (0.008) 0.061 (0.088) 0.026 (0.038)
21 0.037 (0.096) 0.001 (0.002) 0.031 (0.057) 0.017 (0.044)
29 0.035 (0.094) 0.001 (0.001) 0.017 (0.035) 0.015 (0.034)

1The adversary is using the terminal while the user is walking nearby.
2The adversary is using the terminal while the user is writing nearby.
3Mean (and standard-deviation) FNR for all subjects, excluding Subject 1.

2) Quickness: When the user changes (i.e., when the

current user is different than the logged-in user), we want

to identify the change immediately so we can prevent any

accidental or intentional misuse of the logged-in user’s

account. We define quickness as how ‘soon’ we can identify

a changed user, where ‘soon’ can be measured in time or

Figure 8: Fraction of authorized users that have access to

the terminal at time t, for optimal window size = 21 and

optimal threshold = 0.6.

windows, where a window represents a fixed number of

interactions. We use the ‘duration of attack success’ as a

metric to evaluate how quickly ZEBRA detects an adversary

and ‘duration of inappropriate lockout’ as a metric to evaluate

how often ZEBRA will lock out an authorized user because

it misclassified the user as an adversary. A smaller duration

of attack success is better as it gives a smaller attack window

for the adversary. On the other hand, it is desirable to have

extended periods of time without inappropriate lockouts in

order to improve usability.

Figure 8 shows the fraction of users that are recognized as

authorized users by ZEBRA at time t for a grace period (g)

of 1 and 2 windows. This figure shows the first instance in

time when ZEBRA misclassifies the user as an adversary and
takes action according to the system/user policy, which can be

to lock the terminal or log out the user. For instance, 95% of

users were still recognized as authorized users at 50 s, or said

another way, 5% of users were misclassified by ZEBRA by

time 50 s and may be required to re-authenticate themselves.

For grace period of 1 window, ZEBRA correctly recognized

85% of users throughout their session on the terminal. We

can improve this number by increasing the grace period. As

shown in the figure, for grace period of 2 windows, ZEBRA

recognizes 90% of users correctly throughout their use of

the terminal.

Figure 9 shows the fraction of adversaries that are

recognized as authorized users by ZEBRA at time t for

grace periods (g) of 1 and 2. This graph shows how

quickly ZEBRA can recognize an adversary and terminate

his access to the logged-in user’s account on the terminal.

As shown in the figure, for grace period of 1 window at

time t = 0, all adversaries have access to the terminal, but

within 5 s only 40% of adversaries have access – ZEBRA

identified on average 60% of adversaries as unauthorized

users within 5 s, and by t = 11 s, ZEBRA identified all



Figure 9: Fraction of adversaries that have access to the

terminal at time t, for optimal window size = 21 and optimal

threshold = 0.6.

Figure 10: Fraction of adversaries that have access to the

terminal at the end of window w, for optimal window

size = 21 and optimal threshold = 0.6.

adversaries. A grace period of 2 windows improves usability

of ZEBRA, as shown in Figure 8, but it also increases the

attack duration for adversaries; nonetheless ZEBRA still

identified all adversaries within 50 s, much faster than typical

deauthentication timer methods.

Figure 10 represents the above graph but in terms of

windows instead of time, i.e., the fraction of the adversaries

that have access to the terminal at the end of window w,

where window size is 21 and threshold is 0.6. ZEBRA

identified all adversaries for grace periods of 1 and 2 by the

end of window 2 and 4 respectively. As we mentioned above,

the window size is determined by the number of interactions

(in this case 21), but interactions have variable duration;

to compare with the previous figure, for all adversaries a

duration of 2 windows was approximately 11 s.

VII. DISCUSSION

ZEBRA allows the adversary a small attack window before

it can identify him as an unauthorized user; the adversary can

misuse the logged-in user’s account within this window. This

window arises because ZEBRA identifies an unauthorized

user based on that user’s inputs, and it needs to collect

enough inputs to make a decision with high probability. This

attack window exists for all passive continuous authentication

schemes that leverage user inputs for authentication, including

keystroke biometrics and mouse biometrics. The effects of

this attack window could be reduced with some help from

the operating system (OS), if the OS buffers the user’s inputs

and actions, and has the ability to roll-back actions whenever

the inputs fail to authenticate the user. Nonetheless, without

ZEBRA, an adversary will have unrestricted access to the

terminal until he is caught, whereas with ZEBRA, he has

unrestricted access for only a short duration.

Sometimes there may be two users giving input to a

terminal, e.g., two users working together or a clinician

asking for IT help from a staff. If the two users are giving

input one at a time, then ZEBRA can be easily configured

to authenticate both users for that terminal. However, if the

users are giving input at the same time, e.g., one user is

typing and another is handling the mouse, ZEBRA currently

cannot verify either user; the user could temporarily disable

ZEBRA to allow access to both users.

A. Deauthentication response

At its heart, ZEBRA is a method for continuous authenti-

cation. In this paper, we motivate the need for continuous

authentication as a tool for automating deauthentication when

a new person tries to use a terminal that has another another

user logged-in. We emphasize, however, that the desired

response to such situations is a matter of policy. Once

ZEBRA decides that the terminal is now being used by

someone other than the logged-in user, the policy might

dictate that it lock the screen, or that it log-out the current user.

With small modifications, a graduated response is possible.

Recall that ZEBRA uses a threshold parameter m and a

grace-period parameter g in making its decision; instead of

outputting a binary decision, we could arrange for ZEBRA

to output a probability intended to indicate its confidence
that the user input is coming from the logged-in user. As

long as the probability remains high, the terminal operates

normally. When the probability drops, the screen may dim,

then darken, then lock, then log out – in each case offering the

user an opportunity to take an action (increasingly complex,

as the confidence gets lower) to restore confidence in her

authenticity. Such an approach can improve usability without

necessarily lowering security and is a topic for future work.

B. Application to initial authentication

We describe ZEBRA as a complement to initial authenti-

cation methods such as passwords, biometrics or hardware



tokens [28]. If the ZEBRA bracelet (token) can be strongly

tied to a specific user, such as through wrist biometrics [22],

it may be possible for ZEBRA itself (with major modifica-

tions) to be used for initial authentication. Since ZEBRA

authenticates users based on their inputs from the keyboard

and mouse, a ZEBRA-based initial authentication method

would involve tasks the user has to perform as part of the

initial authentication, and these tasks will generate enough

inputs for authentication. For example, as part of initial

authentication, the user could be asked to type a displayed

text, draw a circle, or scroll through a window. There exist

authentication methods that require the user to perform tasks

such as choosing a specific face among a group of faces. The

benefit of a ZEBRA-based method would be that it does not

place any mental burden on the user to remember any secret –

users do the tasks displayed on the terminal. The challenge

would be to design initial authentication that is short but

generates enough user inputs to achieve high confidence.

C. Automated attacks

We designed experiment 3 to explore the extent to which

an adversary may be able to defeat ZEBRA in an open

terminal, by observing the wearer of the bracelet that opened

the terminal. Our results suggest that it is hard to use an

open terminal while mimicking an individual.

In principle, it is possible to automate the observation and

monitor the victim using a video camera in combination

with the use of special hardware (keyboard and mouse) that

would release keystrokes and mouse input to the system at the

specific times when the camera observes motion that may be

consistent with a keyboard, MKKM, or scrolling interaction.

In this way, the attacker would only have to worry about

operating the terminal without having to consciously observe

the victim. Our view is that this kind of sophisticated attack

is stronger than what is necessary to beat passwords today.

A video camera can be used to obtain passwords [29]. Also,

if you can plug a custom set of keyboard and mouse into

a terminal, you can potentially plug a hardware key logger

(between the keyboard and the system) as well [30].

D. Extension

In this work, we focused on the deauthentication problem

for desktop computers because we were motivated by

associated problems faced by healthcare professionals in

hospitals. It would be natural to extend ZEBRA to mobile

devices, such as smartphones or tablet computers, and we

believe this is possible. However, we should note that mobile

devices present different challenges. First, users move their

wrists less when interacting with mobile devices (e.g., while

using mobile phones users often move only their fingers)

compared to when they interact with computer terminals.

Second, users could be on the move when interacting with

mobile devices, whereas they are not moving when using

a terminal. Third, the solution would have to be extremely

energy-efficient to be able to run continuously on mobile

devices. On the other hand, mobile devices do present some

opportunities. For example, most mobile devices have built-in

motion sensors, which could be leveraged for authentication.

ZEBRA could also be extended to other devices such as

TV-remotes, game controllers, medical devices – any device

where the user provides frequent inputs with her hand. For

these devices, however, the application may be more for

improving usability than security. For example, if the TV

remote could identify who is holding it, it could provide

personalized functionality, which could lead to a better user

experience; identifying who is using a particular medical

device or sensor could help provide a secure user-attestation

that is useful for healthcare professionals.

VIII. CONCLUSION

In this paper, we introduce Zero-Effort Bilateral Recurring

Authentication (ZEBRA), a novel mechanism that enables

continuous authentication of users who wear a simple bracelet

as an authentication token and without the need for any

specialized hardware at computer terminals. Such a mech-

anism provides the foundation for smart deauthentication

of computer terminal users in dense, dynamic work spaces.

Our approach is continuous, user-agnostic, and unobtrusive.

Our evaluation of ZEBRA – via a user study – shows that

ZEBRA can achieve high accuracy, correctly identifying 90%

of users and locking out adversaries in less than 50 seconds.

For stronger security, ZEBRA can lock out adversaries in less

than 11 seconds with a small penalty in usability. ZEBRA’s

continuous authentication complements nearly any initial

authentication (login) method and can drive a range of

automatic deauthentication policies.
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