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Abstract—Bitcoin is a decentralized digital currency, intro-
duced in 2008, that has recently gained noticeable popularity. Its
main features are: (a) it lacks a central authority that controls
the transactions, (b) the list of transactions is publicly available,
and (c) its syntax allows more advanced transactions than simply
transferring the money. The goal of this paper is to show how
these properties of Bitcoin can be used in the area of secure
multiparty computation protocols (MPCs).

Firstly, we show that the Bitcoin system provides an attractive
way to construct a version of “timed commitments”, where the
committer has to reveal his secret within a certain time frame,
or to pay a fine. This, in turn, can be used to obtain fairness
in some multiparty protocols. Secondly, we introduce a concept
of multiparty protocols that work “directly on Bitcoin”. Recall
that the standard definition of the MPCs guarantees only that the
protocol “emulates the trusted third party”. Hence ensuring that
the inputs are correct, and the outcome is respected is beyond
the scope of the definition. Our observation is that the Bitcoin
system can be used to go beyond the standard “emulation-based”
definition, by constructing protocols that link their inputs and the
outputs with the real Bitcoin transactions.

As an instantiation of this idea we construct protocols for
secure multiparty lotteries using the Bitcoin currency, without
relying on a trusted authority (one of these protocols uses
the Bitcoin-based timed commitments mentioned above). Our
protocols guarantee fairness for the honest parties no matter
how the loser behaves. For example: if one party interrupts the
protocol then her money is transferred to the honest participants.
Our protocols are practical (to demonstrate it we performed their
transactions in the actual Bitcoin system), and can be used in real
life as a replacement for the online gambling sites. We think that
this paradigm can have also other applications. We discuss some
of them.
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I. INTRODUCTION

Secure multiparty computation (MPC) protocols, originat-
ing from the seminal works of Yao [41] and Goldreich et
al. [29], allow a group of mutually distrusting parties to
compute a joint function f on their private inputs. Typically,
the security of such protocols is defined with respect to the
ideal model where f is computed by a trusted party Tf .
More precisely: it is required that during the execution of a
protocol the parties cannot learn more information about the
inputs of the other participants than they would learn if f was
computed by Tf who: (a) receives the inputs from the parties,
(b) computes f , and (c) sends the output back to the parties.
Moreover, even if some parties misbehave and do not follow
the protocol, they should not be able to influence the output
of the honest parties more than they could in the ideal model
by modifying their own inputs.

As an illustration of the practical meaning of such se-
curity definition consider the case when there are only two
participants, called Alice and Bob, and the function that they
compute is a conjunction f∧(a, b) = a∧b, where a, b ∈ {0, 1}
are Boolean variables denoting the inputs of Alice and Bob,
respectively. This is sometimes called the marriage proposal
problem, since one can interpret the input of each party as
a declaration if she/he wants to marry the other one. More
precisely: suppose a = 1 if and only if Alice wants to marry
Bob, and b = 1 if and only if Bob wants to marry Alice.
In this case f∧(a, b) = 1 if and only if both parties want to
marry each other, and hence, if, e.g., b = 0 then Bob has no
information about Alice’s input. Therefore the privacy of Alice
is protected.

One can also consider randomized functions f , the simplest
example being the coin tossing problem [9] where the com-
puted function frnd : {⊥}×{⊥} → {0, 1} takes no inputs, and
outputs a uniformly random bit. Yet another generalization are
the so-called reactive functionalities where the trusted party T
maintains a state and the parties can interact with T in several
rounds. One example of such a functionality is the mental
poker [39] where T simulates a card game, i.e. she first deals
a deck of cards and then ensures that the players play the game
according to the rules.

It was shown in [29] that for any efficiently-computable
function f (or, more general, any reactive functionality) there
exists an efficient protocol that securely computes it, assuming
the existence of the trapdoor-permutations. If the minority of
the parties is malicious (i.e. does not follow the protocol) then
the protocol always terminates, and the output is known to
each honest participant. If not, then the malicious parties can
terminate the protocol after learning the output, preventing
the honest parties from learning it. It turns out [20] that in
general this problem, called the lack of fairness, is unavoid-
able, although there has been some effort to overcome this
impossibility result by relaxing the security requirements [30],
[15], [6], [35]. Note that in case of the two-player protocols it
makes no sense to assume that the majority of the players is
honest, as this would simply mean that none of the players
is malicious. Hence, the two-party protocols in general do
not provide complete fairness (unless the security definition
is weakened).

Since the introduction of the MPCs there has been a signif-
icant effort to make these protocols efficient [32], [7], [22] and
sometimes even to use them in the real-life applications such
as, e.g., the online auctions [10]. On the other hand, perhaps
surprisingly, the MPCs have not been used in many other
areas where seemingly they would fit perfectly. One prominent
example is the internet gambling: it may be intriguing that



currently gambling over the internet is done almost entirely
with the help of the web-sites that play the roles of the “trusted
parties”, instead of using the coin flipping or the mental poker
protocols. This situation is clearly unsatisfactory from the
security point of view, especially since in the past there were
cases when the operators of these sites abused their privileged
position for their own financial gain (see e.g. [36]). Hence,
it may look like the multiparty techniques that eliminate the
need for a trusted party would be a perfect replacement for
the traditional gambling sites (an additional benefit would be
a reduced cost of gambling, since the gambling sites typically
charge fees for their service).

In our opinion there are at least two main reasons why the
MPCs are not used for online gambling. The first reason is that
the multiparty protocols do not provide fairness in case there
is no honest majority among the participants. Consider for
example a simple two-party lottery based on the coin-tossing
protocol: the parties first compute a random bit b, if b = 0 then
Alice pays $1 to Bob, if b = 1 then Bob pays $1 to Alice,
and if the protocol did not terminate correctly then the parties
do not pay any money to each other. In this case a malicious
party, say Alice, could prevent Bob from learning the output
if it is equal to 0, making 1 the only possible output of a
protocol. Since this easily generalizes to the multiparty case,
it is clear that the gambling protocol would work only if the
majority is honest, which is not a realistic assumption in the
fully distributed internet environment (there are many reasons
for this, one of them being the sybil attacks [23] where one
malicious party creates and controls several “fake” identities,
easily obtaining the “majority” among the participants).

The second reason is even more fundamental, as it comes
directly from the inherent limitations of the MPC security
definition, namely: such protocols do not provide security
beyond the trusted-party emulation. This drawback of the
MPCs is rarely mentioned in the literature as it seems obvious
that in most of the real-life applications cryptography cannot
be “responsible” for controlling that the users provide the
“real” input to the protocol and that they respect the output.
Consider for example the marriage proposal problem: it is clear
that even in the ideal model there is no technological way
to ensure that the users honestly provide their input to the
trusted party, i.e. nothing prevents one party, say Bob, to lie
about his feelings, and to set b = 1 in order to learn Alice’s
input a. Similarly, forcing both parties to respect the outcome
of the protocol and indeed marry cannot be guaranteed in a
cryptographic way. This problem is especially important in the
gambling applications: even in the simplest “two-party lottery”
example described above, there exists no cryptographic method
to force the loser to transfer the money to the winner.

One pragmatic solution to this problem, both in the digital
and the non-digital world is to use the concept of “reputation”:
a party caught on cheating (i.e. providing the wrong input
or not respecting the outcome of the game) damages her
reputation and next time may have trouble finding another
party willing to gamble with her. Reputation systems have been
constructed and analyzed in several papers (see, e.g. [37] for
an overview), however they seem too cumbersome to use in
many applications, one reason being that it is unclear how to
define the reputation of the new users in the scenarios when the
users are allowed to pick new names whenever they want [26].

Another option is to exploit the fact that the financial
transactions are done electronically, and hence one could try
to “incorporate” the final transaction (transferring $1 from the
loser to the winner) into the protocol, in such a way that the
parties learn who won the game only when the transaction has
already been performed. It is unfortunately not obvious how
to do it within the framework of the existing electronic cash
systems. Obviously, since the parties do not trust each other,
we cannot accept solutions where the winning party learns
e.g. the credit card number, or the account password of the
loser. One possible solution would be to design a multiparty
protocol that simulates, in a secure way, a simultaneous access
to all the online accounts of the participants and executes a
wire transfers in their name.1 Even if theoretically possible,
this solution is clearly very hard to implement in real life,
especially since the protocol would need to be adapted to sev-
eral banks used by the players (and would need to be updated
whenever they change). The same problems occur obviously
also if above we replace the “bank” with some other financial
service (like PayPal). One could consider using Chaum’s Ecash
[17], or one of its variants [18], [16]. Unfortunately, none
of these systems got widely adopted in real-life. Moreover,
they are also bank-dependent, meaning that even if they get
popular, one would face a challenge of designing a protocol
that simulates the interaction of a real user with a bank, and
make it work for several different banks.

We therefore turn our attention to Bitcoin, which is a
decentralized digital currency introduced in 2008 by Satoshi
Nakamoto2 [34]. Bitcoin has recently gained a noticeable
popularity (its current market capitalization is over $5 billion)
mostly due to its distributed nature and the lack of a central
authority that controls the transactions. Because of that it is
infeasible for anyone to take control over the system, create
large amounts of coins (to generate inflation), or shut it down.
The money is transferred directly between two parties — they
do not have to trust anyone else and transaction fees are
zero or very small. Another advantage is pseudonymity3 —
the users are only identified by their public keys that can be
easily created, and hence it is hard to link the real person with
the virtual party spending the money. However, since all the
transactions and the connections between them are publicly
known there are several ways to extract some information
about Bitcoin users from the block chain, see e.g. [38].

In Section II we describe the main design principles of
Bitcoin, focusing only on the most relevant parts of this system.
A more detailed description can be found in Nakamoto’s
original paper [34], the Bitcoin wiki webpage en.bitcoin.it
(sections particularly relevant to our work are: “Transactions”
and “Contracts”), or other papers on Bitcoin [33], [19], [5],
[38]. In the sequel “B” denotes the Bitcoin currency symbol.

1Note that this would require, in particular, “simulating” the web-browser
and the SSL sessions, since each individual user should not learn the contents
of the communication between the “protocol” and his bank, as otherwise he
could interrupt the communication whenever he realizes that the “protocol”
ordered a wire transfer from his account. Moreover, one would need to assume
that the transactions cannot be cancelled once they were ordered.

2This name is widely believed to be a pseudonym.
3A very interesting modification of Bitcoin that provides real cryptographic

anonymity has been recently proposed in [33].



A. Our contribution

We study how to do “MPCs on Bitcoin”. First of all, we
show that the Bitcoin system provides an attractive way to
construct a version of “timed commitments” [11], [27], where
the committer has to reveal his secret within a certain time
frame, or to pay a fine. This, in turn, can be used to obtain
fairness in certain multiparty protocols. Hence it can be viewed
as an “application of Bitcoin to the MPCs”.

What is probably more interesting is our second idea,
which in some inverts the previous one by showing an “ap-
plication of the MPCs to Bitcoin”, namely we introduce a
concept of multiparty protocols that work directly on Bitcoin.
As explained above, the standard definition of the MPCs
guarantees only that the protocol “emulates the trusted third
party”. Hence ensuring that the inputs are correct, and the
outcome is respected is beyond the scope of the definition. Our
observation is that the Bitcoin system can be used to go beyond
the standard “emulation-based” definition, by constructing
protocols that link the inputs and the outputs with the real
Bitcoin transactions. This is possible since the Bitcoin lacks a
central authority, the list of transactions is public, and its syntax
allows more advanced transactions than simply transferring the
money.

As an instantiation of this idea we construct protocols for
secure multiparty lotteries using the Bitcoin currency, without
relying on a trusted authority. By “lottery” we mean a protocol
in which a group of parties initially invests some money, and
at the end one of them, chosen randomly, gets all the invested
money (called the pot). Our protocols can work in purely peer-
to-peer environment, and can be executed between players that
are anonymous and do not trust each other. Our constructions
come with a very strong security guarantee: no matter how
the dishonest parties behave, the honest parties will never get
cheated. More precisely, each honest party can be sure that,
once the game starts, it will always terminate and will be fair.

Our two main constructions are as follows. The first
protocol (Section IV) can be executed between any number
of parties. Its security is obtained via the so-called deposits:
each user is required to initially put aside a certain amount of
money, which will be paid back to her once she completes the
protocol honestly. Otherwise the deposit is given to the other
parties and “compensates” them the fact that the game termi-
nated prematurely. This protocol uses the timed commitment
scheme described above. A certain drawback of this protocol
is that the deposits need to be relatively large, especially if
the protocol is executed among larger groups of players. More
precisely to achieve security the deposit of each player needs
to be N(N − 1) times the size of the bet (observe that for the
two-party case it simply means that the deposit is twice the
size of the bet).

We also describe (in Section V) a protocol that does not
require the use of deposits at all. This comes at a price: the
protocol works only for two parties, and its security relies on
an additional assumption (see Section V for more details).

The only cost that the participants need to pay in our
protocols are the Bitcoin transaction fees. The typical Bitcoin
transactions are currently free. However, the participants of
our protocols need to make a small number of non-standard
transactions (so-called “strange transactions”, see Section II),

for which there is usually some small fee (currently around
0.00005B ≈ $0.03). To keep the exposition simple we initially
present our results assuming that the fees are zero, and later,
in Section VI, argue how to extend the definitions and security
statements to take into account also the non-zero fees. For the
sake of simplicity we also assume that the bets in the lotteries
are equal to 1B. It should be straightforward to see how to
generalize our protocols to other values of the bets.

Our constructions are based on the coin-tossing protocol
of Blum [9]. We managed to adapt this protocol to our model,
without the need to modify the current Bitcoin system. We do
not use any generic methods like the MPC or zero-knowledge
compilers, and hence the protocols are very efficient. The
only cryptographic primitives that we use are the commitment
schemes, implemented using the hash functions (which are
standard Bitcoin primitives). Our protocols rely strongly on the
advanced features of the Bitcoin (in particular: the so-called
“transaction scripts”, and “time-locks”). Because of the lack
of space we only sketch the formal security definitions. The
security proofs will appear in an extended version of this paper.
We executed our transactions on the real Bitcoin. We provide
a description of these transactions and a reference to them in
the Bitcoin chain.

B. Applications and future work

Although, as argued in Section I-C below, it may actually
make economic sense to use our protocols in practice, we view
gambling mostly as a motivating example for introducing a
concept that can be called “MPCs on Bitcoin”, and which
will hopefully have other applications. One (rather theoretical)
example of such application is the “millionaires problem”
where Alice and Bob want to establish who is richer.4 It is
easy to see that Alice and Bob can (inefficiently) determine
who has more coins by applying the generic MPC and zero-
knowledge techniques. This is possible since the only inputs
that are needed are (a) the contents of the Bitcoin ledger
(more precisely: its subset consisting of the non-redeemed
transactions), which is public, and (b) Alice’s and Bob’s private
keys used as their respective private inputs (see Section II for
the definitions of these terms). Obviously, using this protocol
makes sense only if, for some reason, each party is interested
in proving that she is the richer one. This is because every
participant can easily pretend to be poorer than she really is
and “hide” his money by transferring it to some other address
(that he also controls). Since we do not think that this protocol
is particularly relevant to practical applications, we do not
describe it in detail here. Let us only observe that, interestingly,
this protocol is in some sense dual to the coin-tossing protocol,
as it uses the Bitcoin system to verify the correctness of the
inputs, instead guaranteeing that the outcome is respected (as
it is the case with the coin-tossing)5.

We think that analyzing what functionalities can be com-
puted this way (taking into account the problem of the

4The formal definition is as follows: let a, b ∈ N denote the amount of
coins that Alice and Bob respectively own. In this case the parties compute
the function fmill : N × N → {A,B} defined as: fmill(a, b) = A if and
only if a ≥ b and fmill(a, b) = B otherwise.

5The reader may be tempted to think that a similar protocol could be used
with the eCash [17]. This is not the case, as in eCash there is no method of
proving in zero-knowledge that the money has not been spent (since the list
of transactions is not public).



participants “pretending to be poorer than they really are”)
may be an interesting research direction. Other possible future
research directions are: constructing protocols secure against
“malleability attacks” and “eavesdropping attacks” (see Sec. V
for more details) that do not require the deposits, providing a
more formal framework to analyze the deposit-based technique
(this can probably be done using the tools from the “rational
cryptography” literature [31], [1], [28]).

C. Economic analysis

Besides of being conceptually interesting, we think that our
protocols can have direct practical applications in the online
gambling, which is a significant market: it is estimated that
there are currently 1,700 gambling sites worldwide handling
bets worth over $4 billion per year [25]. Some of these sites
are using Bitcoin. The largest of them, SatoshiDice, has been
recently sold for over $12 million [14]. All of the popular sites
charge a fee for their service, called the house edge (on top of
the Bitcoin transaction fees). Currently, the honesty of these
sites can be verified only ex post facto: they commit to their
randomness before the game starts and later prove to the public
that they did not cheat. Hence, nothing prevents them from
cheating and then disappearing from the market (using the
MPC terminology: such protocols provide security only against
the “covert adversaries” [40]). Of course, this means that the
users need to continually monitor the behavior of the gambling
sites in order to identify the honest ones. This system, called
the “mathematically provable fairness” is described in a recent
article [13], where it is advised to look on a particular page,
called Mem’s Bitcoin Gambling List, to check the gambling
sites’ reputation. This simple reputation system can of course
be attacked in various ways. Moreover, one can expect that
the sites with more established reputation will have a higher
house edge, and indeed the SatoshiDice site charges more than
the other, less well-known, sites. Currently SatoshiDice house
edge is around 2% [13].

Compared to the gambling sites, our protocols have the
following advantage. First of all, the security guarantee is
stronger, as it does not depend on the honesty of any trusted
party. Secondly, in our protocols there is obviously no “house
edge”. On a negative side, the Bitcoin transaction fees can be
slightly larger in our case than in the case of the gambling
sites (since we have more transactions, and some of them
are “strange”). At the moment of writing this paper, using
our solution is cheaper than using SatoshiDice for bets larger
than, say, $5, but of course whether our protocols become
really widely used in practice depends on several factors that
are hard to predict, like the value of the fees for the “strange
transactions”.

We also note that, although our initial motivation was the
peer-to-peer lottery, it can actually make a lot of sense for
the online gambling services to use our solutions, especially
the two-party protocol. Of course the business model of such
services makes sense only if there is non-zero house edge.
This is not a problem since our protocols can be easily used
in lotteries where the expected payoff is positive for one party
(in this case: the gambling service) and it is negative for the
other one (the client). Such “provably guaranteed fairness” can
be actually a good selling line for some of these services.

D. Previous, concurrent and subsequent work

Some of the related work has been already described in the
earlier sections. Previous papers on Bitcoin analyze the Bitcoin
transaction graph [38], or suggest improvements of the current
version of the system. This includes important work of Barber
et al. [5] who study various security aspects of Bitcoin and
Miers et al. [33] who propose a Bitcoin system with provable
anonymity. Our paper does not belong to this category, and in
particular our solutions are fully compatible with the current
version of Bitcoin (except of the ,,malleability” and ,,eaves-
dropping” problem concerning the last protocol, Section V).

Usage of Bitcoin to create a secure and fair two-player
lottery has been independently proposed by Adam Back and
Iddo Bentov in [4]. Similarly to our solution, their protocol
makes use of the time-locked transactions, but the purpose they
are used for is slightly different. Their protocol uses time-locks
to get the deposit back if the protocol is interrupted, while
this paper uses time-locks to make a financial compensation
to an honest party, whenever the other party misbehaves. Ad-
ditionally, protocol from [4] is not resilient to the malleability
attacks, while our main schemes (Section III and IV) are.

Another work relevant to ours is Section 7.1 of [5] where
the authors construct a secure “mixer”, that allows two parties
to securely “mix” their coins in order to obtain unlinkability
of the transactions. They also construct commitment schemes
with time-locks, which are similar to these from [4]. Also,
the main motivation of this work is different: the goal of [5]
is to fix an existing problem in Bitcoin (“linkability”), while
our goal is to use Bitcoin to perform tasks that are hard (or
impossible) to perform by other methods.

Commitments in the context of the Bitcoin were also con-
sidered in [19], however, the construction and its applications
are different — the main idea of [19] is to use the Bitcoin sys-
tem as a replacement of a trusted third party in time-stamping.
The notion of “deposits” has already been used in Bitcoin
(see en.bitcoin.it/wiki/Contracts, Section “Example 1”6), but
the application described there is different: the “deposit” is a
method for a party with no reputation to prove that she is not
a spambot by temporarily sacrificing some of her money.

In the subsequent work [2], [3] we show how to extend
the ideas from this paper in order to construct a fair two-party
protocol for any functionality. Similar ideas were developed
independently by Iddo Bentov and Ranjit Kumaresan [8].
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II. A SHORT DESCRIPTION OF BITCOIN

Bitcoin works as a peer-to-peer network in which the
participants jointly emulate the central server that controls the

6Accessed on 13.11.2013.



correctness of transactions. In this sense it is similar to the
concept of the multiparty computation protocols. Recall that,
as described above, a fundamental problem with the traditional
MPCs is that they cannot provide fairness if there is no
honest majority among the participants, which is particularly
difficult to guarantee in the peer-to-peer networks where the
sybil attacks are possible. The Bitcoin system overcomes this
problem in the following way: the honest majority is defined in
terms of the “majority of computing power”. In other words:
in order to break the system, the adversary needs to control
machines whose total computing power is comparable with
the combined computing power of all the other participants
of the protocol. Hence, e.g., the sybil attack does not work,
as creating a lot of fake identities in the network does not
help the adversary. In a moment we will explain how this is
implemented, but let us first discuss the functionality of the
trusted party that is emulated by the users.

One of the main problems with the digital currency is the
potential double spending: if coins are just strings of bits then
the owner of a coin can spend it multiple times. Clearly this
risk could be avoided if the users had access to a trusted ledger
with the list of all the transactions. In this case a transaction
would be considered valid only if it is posted on the board.
For example suppose the transactions are of a form: “user X
transfers to user Y the money that he got in some previous
transaction Ty”, signed by the user X. In this case each user
can verify if money from transaction Ty has not been already
spent by X. The functionality of the trusted party emulated
by the Bitcoin network does precisely this: it maintains a full
list of transactions that happened in the system. The format
of the Bitcoin transactions is in fact more complex than in
the example above. Since it is of a special interest for us, we
describe it in more detail in Section II-A.

The Bitcoin ledger is implemented using the concept of the
Proofs of Work (PoWs) [24] in the following clever way. The
users maintain a chain of blocks. The first block B0, called the
genesis block, was generated by the designers of the system
in January 2009. Each new block Bi contains a list Ti of
new transactions, the cryptographic hash of the previous block
H(Bi−1), and some random salt R. The key point is that not
every R works for given Ti and H(Bi−1). In fact, the system
is designed in such a way that it is moderately hard to find
a valid R. Technically it is done be requiring that the binary
representation of the hash of (Ti||H(Bi−1)||R) starts with a
certain number m of zeros (the procedure of extending the
chain is called mining, and the machines performing it are
called miners). The hardness of finding the right R depends
of course on m, and this parameter is periodically adjusted
to the current computing power of the participants in such a
way that the extension happens an average each 10 minutes.
The system contains an incentive to work on finding the new
blocks. We will not go into the details of this, but let us only
say that one of the side-effects of this incentive system is the
creation of new coins7.

The idea of the block chain is that the longest chain C is
accepted as the proper one. If some transaction is contained
in a block Bi and there are several new blocks on top of it,
then it is infeasible for an adversary with less than a half of

7The number of coins that are created in the system is however limited,
and therefore Bitcoin is expected to have no inflation.

the total computating power of the Bitcoin network to revert
it — he would have to mine a new chain C ′ bifurcating from
C at block Bi−1 (or earlier), and C ′ would have to be longer
than C. The difficulty of that grows exponentially with number
of new blocks on top of Bi. In practice the transactions need
10 to 20 minutes (i.e. 1-2 new blocks) for reasonably strong
confirmation and 60 minutes (6 blocks) for almost absolute
certainty that they are irreversible.

To sum up, when a user wants to pay somebody in bitcoins,
he creates a transaction and broadcasts it to other nodes in the
network. They validate this transaction, send it further and add
it to the block they are mining. When some node solves the
mining problem, it broadcasts its block to the network. Nodes
obtain a new block, validate transactions in it and its hash and
accept it by mining on top of it. Presence of the transaction in
the block is a confirmation of this transaction, but some users
may choose to wait for several blocks on top of it to get more
assurance.

A. The Bitcoin transactions

The Bitcoin currency system consists of addresses and
transactions between them. An address is simply a public
key pk .8 Normally every such a key has a corresponding
private key sk known only to one user. The private key is
used for signing the transactions, and the public key is used
for verifying the signatures. Each user of the system needs
to know at least one private key of some address, but this
is simple to achieve, since the pairs (sk , pk) can be easily
generated offline. We will frequently denote key pairs using
the capital letters (e.g. A), and refer to the private key and
the public key of A by: A.sk and A.pk , respectively (hence:
A = (A.sk , A.pk)). We will also use the following convention:
if A = (A.sk , A.pk) then let sigA(m) denote a signature on
a message m computed with A.sk and let verA(m,σ) denote
the result (true or false) of the verification of a signature σ
on message m with respect to the public key A.pk .

1) Simplified version: We first describe a simplified version
of the system and then show how to extend it to obtain the
description of the real Bitcoin. We do not describe how the
coins are created as it is not relevant to this paper. Let A =
(A.sk , A.pk) be a key pair. In our simplified view a transaction
describing the fact that an amount v (called the value of a
transaction) is transferred from an address A.pk to an address
B.pk has the following form

Tx = (y,B.pk , v, sigA(y,B.pk , v)),

where y is an index of a previous transaction Ty . We say that
B.pk is the recipient of Tx, and that the transaction Ty is
an input of the transaction Tx, or that it is redeemed by this
transaction (or redeemed by the address B.pk ). More precisely,
the meaning of Tx is that the amount v of money transferred
to A.pk in transaction Ty is transferred further to B.pk . The
transaction is valid only if (1) A.pk was a recipient of the
transaction Ty , (2) the value of Ty was at least v (the difference
between v and the value of Ty is called the transaction fee),
(3) the transaction Ty has not been redeemed earlier, and (4)

8Technically an address is a hash of pk . In our informal description we
decided to assume that it is simply pk . This is done only to keep the exposition
as simple as possible, as it improves the readability of the transaction scripts
later in the paper.



the signature of A is correct. Clearly all of these conditions
can be verified publicly.

The first important generalization of this simplified sys-
tem is that a transaction can have several “inputs” meaning
that it can accumulate money from several past transactions
Ty1 , . . . , Ty�

. Let A1, . . . , A� be the respective key pairs of
the recipients of those transactions. Then a multiple-input
transaction has the following form:

Tx = (y1, . . . , y�, B.pk , v, sigA1
(y1, B.pk , v), . . . ,

sigA�
(y�, B.pk , v)),

and the result of it is that B.pk gets the amount v, provided
it is at most equal to the sum of the values of transactions
Ty1

, . . . , Ty�
. This happens only if none of these transactions

has been redeemed before, and all the signatures are valid.
Moreover, each transaction can have a lock-time t that tells at
what time the transaction becomes final (t can refer either to a
block index or to the real physical time). In this case we have:

Tx = (y1, . . . , y�, B.pk , v, t, sigA1
(y1, B.pk , v, t), . . . ,

sigA�
(y�, B.pk , v, t)).

Such a transaction becomes valid only if time t is reached and
if none of the transactions Ty1

, . . . , Ty�
has been redeemed

by that time (otherwise it is discarded). Each transaction can
also have several outputs, which is a way to divide money
between several users or get a change. We ignore this fact in
our description since we will not use it in our protocols.

2) A more detailed version: The real Bitcoin system is
significantly more sophisticated than what is described above.
First of all, there are some syntactic differences, the most
important for us being that each transaction Tx is identified
not by its index, but by its hash H(Tx). Hence, from now on
we will assume that x = H(Tx).

The main difference is, however, that in the real Bitcoin
the users have much more flexibility in defining the condition
on how the transaction Tx can be redeemed. Consider for
a moment the simplest transactions where there is just one
input and no time-locks. Recall that in the simplified system
described above, in order to redeem a transaction the recipient
A.pk had to produce another transaction Tx signed with his
private key A.sk . In the real Bitcoin this is generalized as
follows: each transaction Ty comes with a description of
a function (output-script) πy whose output is Boolean. The
transaction Tx redeeming the transaction Ty is valid if πy

evaluates to true on input Tx. Of course, one example of
πy is a function that treats Tx as a pair (a message mx,
a signature σx), and checks if σx is a valid signature on
mx with respect to the public key A.pk . However, much
more general functions πy are possible. Going further into
details, a transaction looks as follows: Tx = (y, πx, v, σx),
where [Tx] = (y, πx, v) is called the body9 of Tx and σx

is a “witness” that is used to make the script πy evaluate
to true on Tx (in the simplest case σx is a signature on
[Tx]). The scripts are written in the Bitcoin scripting language,
which is a stack based, not Turing-complete language (there
are no loops in it). It provides basic arithmetical operations

9In the original Bitcoin documentation this is called “simplified Tx”. We
have chosen to rename it to “body” since we find the original terminology
slightly misleading.

on numbers, operations on stack, if-then-else statements and
some cryptographic functions like calculating hash function or
verifying a signature. The generalization to the multiple-input
transactions with time-locks is straightforward: a transaction
has a form:

Tx = (y1, . . . , y�, πx, v, t, σ1, . . . , σ�),

where the body [Tx] is equal to (y1, . . . , y�, πx, v, t), and
it is valid if (1) time t is reached, (2) every πi([Tx], σi)
evaluates to true, where each πi is the output script of the
transaction Tyi

, and (3) none of these transactions has been
redeemed before. We will present the transactions as boxes.
The redeeming of transactions will be indicated with arrows
(the arrows will be labelled with the transaction values). For
example a transaction Tx = (y1, y2, πx, v, t, σ1, σ2) will be
represented as:

Tx(in: Ty1 , Ty2 )
in-script1: σ1 in-script2: σ2

out-script(body, arg):
πx(body, arg)
val: v B

tlock: t

Ty1 Ty2

v1 B v2 B

v B

The transactions where the input script is a signature,
and the output script is a verification algorithm are the most
common type of transactions. We will call them standard
transactions, and the address against which the verification
is done will be called the recipient of a transaction. Currently
some miners accept only such transactions. However, there
exist other ones that do accept the non-standard (also called
strange) transactions, one example being a big mining pool10

called Eligius (that mines a new block on average once per
hour). We also believe that in the future accepting the general
transactions will become standard, maybe at a cost of a slightly
increased fee. This is important for our applications since our
protocols rely heavily on the extended form of transactions.

B. Security Model

To reason formally about the security we need to describe
the attack model that corresponds to the current Bitcoin sys-
tem. We assume that the parties are connected by an insecure
channel and have access to the Bitcoin chain. Let us discuss
these two assumptions in detail. First, recall that our protocol
should allow any pair of users on the internet to engage in a
protocol. Hence, we cannot assume that there is any secure
connection between the parties (as this would require that
they can verify their identity, which obviously is impossible in
general), and therefore any type of a man-in-the middle attack
is possible.

The only “trusted component” in the system is the Bitcoin
chain. For the sake of simplicity in our model we will ignore
the implementation details of it, and simply assume that the
parties have access to a trusted third party denoted Ledger,

10Mining pools are coalitions of miners that perform their work jointly and
share the profits.



whose contents is publicly available. One very important aspect
that needs to be addressed are the security properties of the
communication channel between the parties and the Ledger.
Firstly, it is completely reasonable to assume that the parties
can verify Ledger’s authenticity. In other words: each party
can access the current contents of the Ledger. In particular, the
users can post transactions on the Ledger. After a transaction
is posted it appears on the Ledger (provided it is valid),
however it may happen not immediately, and some delay is
possible. There is an upper bound maxLedger on this delay.
This corresponds to an assumption that sooner or later every
transaction will appear in some Bitcoin block. We use this
assumption very mildly and e.g. maxLedger = 1 day is also ok
for us (the only price for this is that in such case we have
to allow the adversary to delay the termination of the protocol
for time O(maxLedger)). Each transaction posted on the Ledger
has a time stamp that refers to the moment when it appeared
on the Ledger.

What is a bit less obvious is how to define privacy of the
communication between the parties and the Ledger, especially
the question of the privacy of the writing procedure. More
precisely, the problem is that it is completely unreasonable to
assume that a transaction is secret until it appears on the Ledger
(since the transactions are broadcast between the nodes of the
network). Hence we do not assume it. This actually poses an
additional challenge in designing the protocols because of the
problem of the malleability11 of the transactions. Let us explain
it now. Recall that the transactions are referred to by their
hashes. Suppose a party P creates a transaction T and, before
posting it on the Ledger, obtains from some other party P′ a
transaction T ′ that redeems T (e.g.: T ′ may be time-locked and
serve P to redeem T if P′ misbehaves). Obviously T ′ needs
to contain (in the signed body) a hash H(T ) of T . However,
if now P posts T then an adversary (allied with malicious P′)
is able to produce another transaction T̂ whose semantics is
the same as T , but whose hash is different (this can be done,
e.g., by adding some dummy instructions to the input scripts
of T ). The adversary can now post T̂ on the Ledger and, if he
is lucky, T̂ will appear on the Ledger instead of T ! In this case
T ′ will be invalid, so P may lose the money. It is possible that
in the future versions of the Bitcoin system this issue will be
addressed and the transactions will not be malleable. In Section
V we propose a scheme that is secure under the assumption
that the communication between the parties and the Ledger
is private. We would like to stress that our main schemes
(Section III and IV) do not not assume non-malleability of
the transactions, and are secure even if the adversary obtains
full information on the transactions before they appear on the
Ledger.

We do not need to assume any privacy of the reading
procedure, i.e. each party accesses pattern to Ledger can be
publicly known. We assume that the parties have access to a
perfect clock and that their internal computation takes no time.
The communication between the parties also takes no time,
unless the adversary delays it. These assumptions are made to
keep the model as simple as possible, and the security of our
protocols does not depend on these assumptions. In particular
we assume that the network is asynchronous and our protocols
are also secure if the communication takes some small amount

11See en.bitcoin.it/wiki/Transaction Malleability.

of time. For simplicity we also assume that the transaction
fees are zero. The extension to non-zero transaction fees is
discussed in Section. VI.

III. BITCOIN-BASED TIMED COMMITMENT SCHEME

We start with constructing a Bitcoin-based timed-
commitment scheme [11], [27]. Recall that a commitment
scheme [9], [12] consists of two phases: the commitment phase
Commit and the opening phase Open . Typically a commit-
ment scheme is executed between two parties: a committer
C and a recipient. To be more general we will assume that
there are n recipients, denoted P1, . . . ,Pn. The committer
starts the protocol with some secret value x. This value will
become known to every recipient after the opening phase
is executed. Informally, we require that, if the committer is
honest, then before the opening phase started, the adversary
has no information about x (this property is called “hiding”).
On the other hand, every honest recipient can be sure that,
no matter how a malicious sender behaves, the commitment
can be open in exactly one way, i.e. it is impossible for the
committer to “change his mind” and open with some x′ �= x.
This property is called “binding”. Although incredibly useful
in many applications, the standard commitment schemes suffer
from the following problem: there is no way to force the
committer to reveal his secret x, and, in particular, if he aborts
before the Open phase starts then x remains secret.

Bitcoin offers an attractive way to deal with this problem.
Namely: using the Bitcoin system one can force the committer
to back his commitment with some money, called the deposit,
that will be given to the other parties if he refuses to open the
commitment within some time t.

We now sketch the definition of a Bitcoin-based commit-
ment scheme. First, assume that before the protocol starts
the Ledger contains n unredeemed standard transactions
UC
1 , . . . , U

C
n that can be redeemed with a key known only

to C, each having value dB (for some parameter d). In fact,
in real life it would be enough to have just one transaction,
that would later be “split” inside of the protocol. This would,
however, force us to use the multiple-output transactions which
we want to avoid, in order not to additionally complicate the
description of the system.

The protocol is denoted CS(C, d, t, s) and it consists of two
phases: the commitment phase, denoted CS.Commit(C, d, t, s)
(where s contains the message to which C commits and some
randomness) and the opening phase CS.Open(C, d, t, s). The
honest committer always opens his commitment by time t. In
this case he gets back his money, i.e. the Ledger consists of
standard transactions that can be redeemed with a key known
only to him, whose total value12 is (d · n)B.

The security definition in the standard commitment
scheme: assuming that the committer is honest, the adversary
does not learn any significant information about x before the
opening phase, and each honest party can be sure that there is
at most one value x that the committer can open in the opening
phase. Each recipient can also abort the commitment phase
(which happens if he discovers that the Committer is cheating,

12In case of non-zero transaction fees this value can be decreased by these
fees. This remark applies also to the amounts d redeemed by the recipients.



Commiti(in: UC
i )

in-script: sig
˜C
([Commiti])

out-script(body, σ1, σ2, x):
(H(x) = h ∧ ver

˜C
(body, σ1))∨

(ver
˜C
(body, σ1) ∧ ver

˜Pi
(body, σ2))

val: dB

Openi(in: Commiti)
in-script:
sig

˜C
([Openi]),⊥, s

out-script(body, σ):
ver

˜C
(body, σ)

val: dB

PayDepositi(in: Commiti)
in-script:
sig

˜C
([PayDepositi]), sig ˜Pi

([PayDepositi]),⊥
out-script(body, σ): ver

˜Pi
(body, σ)

val: dB

tlock: t

dB dB

dB

dB dB

Pre-condition:
1) The key pair of C is ˜C and the key pair of each Pi is ˜Pi.

2) The Ledger contains n unredeemed transactions UC
1 , . . . , U

C
n , which can be redeemed with key ˜C, each having value dB.

The CS.Commit(C, d, t, s) phase
3) The Committer C computes h = H(s). He sends to the Ledger the transactions Commit1, . . . ,Commitn. This obviously means that

he reveals h, as it is a part of each Commiti.
4) If within time maxLedger some of the Commiti transactions does not appear on the Ledger, or if they look incorrect (e.g. they differ in

the h value) then the parties abort.
5) The Committer C creates the bodies of the transactions PayDeposit1, . . . ,PayDepositn, signs them and for all i sends the signed body

[PayDepositi] to Pi. If an appropriate transaction does not arrive to Pi, then he halts.

The CS.Open(C, d, t, s) phase
6) The Committer C sends to the Ledger the transactions Open1, . . . ,Openn, what reveals the secret s.
7) If within time t the transaction Openi does not appear on the Ledger then Pi signs and sends the transaction PayDepositi to the Ledger

and earns dB.

Fig. 1. The CS protocol. The scripts’ arguments, which are omitted are denoted by ⊥.

or if the adversary disturbs the communication). However,
there is one additional security guarantee: if the committer did
not open the commitment by time t then every other party earns
dB. More precisely: for every honest Pi the Ledger contains
a transaction, whose value is dB, that can be redeemed with
a key known only to Pi.

Let us also comment on the formal aspects. To satisfy the
page limit, we do not provide the full formal model, however,
from the discussion above it should be clear how such a
model can be defined. We allow negligible error probabilities
both in binding and in hiding. Also, the last security property
(concerning the deposits) has to hold only with overwhelming
probability. As these notions are asymptotic, this requires using
a security parameter, denoted by k. Of course, in reality the
parameter k is partially fixed by the Bitcoin specification
(e.g. we cannot modify the length of the outputs of the hash
functions).

A. The implementation

Our implementation can be based on any standard com-
mitment scheme as long as it is hash-based, by which we
mean that it has the following structure. Let H be a hash
function. During the commitment phase the committer sends
to the recipient some value denoted h (which essentially
constitutes his “commitment” to x), and in the opening phase
the committer sends to the recipient a value s, such that
H(s) = h. If H(s) �= h then the recipient does not accept
the opening. Otherwise he computes x from s (there exists an
algorithm that allows him to do it efficiently). One example of

such a commitment scheme is as follows. Suppose x ∈ {0, 1}∗.
In the commitment phase C computes s := (x||r), where r
is chosen uniformly at random from {0, 1}k, and sends to
every recipient h = H(s). In the opening phase the committer
sends to every recipient s, the recipient checks if indeed
h = H(s), and recovers x by stripping-off the last k bits from
s. The binding property of this commitment follows from the
collision-resistance of the hash function H , since to be able to
open the commitment in two different ways a malicious sender
would need to find collisions in H . For the hiding property we
need to assume that H is a random oracle. We think that this
is satisfactory since anyway the security of the Bitcoin PoWs
relies on the random oracle assumption. Clearly, if H is a
random oracle then no adversary can obtain any information
about x if he does not learn s (which an honest C keeps private
until the opening phase).

The basic idea of our protocol is as follows. The committer
will talk independently to each recipient Pi. For each of
them he will create in the commitment phase a transaction
Commit i with value d that normally will be redeemed by
him in the opening phase with a transaction Openi. The
transaction Commit i will be constructed in such a way that the
Openi transaction has to automatically open the commitment.
Technically it will be done by constructing the output script
of Commit i in such a way that the redeeming transaction has
to provide s (which will therefore become publicly known as
all transactions are publicly visible). Of course, this means
that the money of the committer is “frozen” until he reveals
s. However, to set a limit on the waiting time of the recipient,
we also require the committer to send to Pi a transaction



PayDeposit i that can redeem Commit i if time t passes. Of
course, Pi, after receiving PayDeposit i needs to check if it
is correct. The commitment scheme and the transactions are
depicted on Figure 1 (page 8). We now state the following
lemma, whose proof will appear in the extended version of
this paper.

Lemma 1: The CS scheme on Figure 1 is a Bitcoin-based
commitment scheme.

IV. THE LOTTERY PROTOCOL

As discussed in the introduction, as an example of an
application of the “MPCs on Bitcoin” concept we construct
a protocol for a lottery executed among a group of parties
P1, . . . ,PN . We say that a protocol is a fair lottery protocol
if it is correct and secure. To define correctness assume all
the parties are following the protocol and the communication
channels between them are secure (i.e. it reliably transmits the
messages between the parties without delay).

We assume that before the protocol starts, the Ledger
contains unredeemed standard transactions T 1, . . . , TN known
to all the parties, all of value 1B and each T i can be redeemed
with a key known only to Pi. Moreover, since we will use
the commitment scheme from Section III, the parties need
to have money to pay the “deposits”. This money will come
from transactions {U i

j}, where i, j ∈ {1, . . . , N} and i �= j,

such that each U i
j can be redeemed only by Pi and has value

dB (for some parameter d whose value will be determined
later). We assume that these transactions are on the Ledger
before the protocol starts. The protocol has to terminate in time
O(maxLedger) and at the moment of termination, the Ledger
has to contain a standard transaction with value N B which can
be redeemed with a key known only to Pw, were w is chosen
uniformly at random from the set {1, . . . , N}. The Ledger
also contains transactions for paying back the deposits, i.e. we
require that for each Pi there is an additional transaction (that
can be redeemed only by him) whose value is (N − 1)dB.
Of course, in the case of the non-zero fees these values will
be slightly smaller, but to keep things simple we assume here
that these fees are zero.

To define security, look at the execution of the protocol
from the point of view of one party, say P1 (the case of
the other parties is symmetric). Assume P1 is honest and
hence, in particular, the Ledger contains the transactions
T 1, U1

2 , . . . , U
1
N , whose recipient is P1 and whose value is: 1B

in case of T 1 and dB in case of the U1
j ’s. Obviously, P1 has no

guarantee that the protocol will terminate successfully, as the
other party can, e.g., leave the protocol before it is completed.
What is important is that P1 should be sure that she will not
lose money because of this termination (in particular: the other
parties should not be allowed to terminate the protocol after he
learned that P1 won). This is formalized as follows: we define
the payoff of P1 in the execution of the protocol to be equal
to the difference between the money that P1 invested and the
money that he won. More formally, the payoff of P1 is equal
to X1 − ((N − 1) · d+ 1)B, where X1 is defined as the total
sum of the values of transactions from the execution of the
protocol (including T 1, U1

2 , . . . , U
1
N ) that P1 (and only him)

can redeem when the protocol terminates. (The payoff of any
other participant Pi is defined symmetrically.)

Ideally we would like to require that the expected payoff of
each honest player cannot be negative13. However, since the
security of our protocol relies on non-perfect cryptographic
primitives, such as commitment schemes, we have to take
into account a negligible probability of the adversary breaking
them. Hence, we require only that these values are “at least
negligible”14 in some security parameter k (that is used in the
crypto primitives). Formally, we say that the protocol is secure
if for any strategy of the adversary, that controls the network
and corrupts the other parties, (1) the execution of the protocol
terminates in time O(maxLedger), and (2) the expected payoff
of each honest party is at least negligible. The expected values
are taken over all the randomness in the experiment (i.e. both
the internal randomness of the parties and the adversary). We
also note that, of course, a dishonest participant can always
interrupt in a very early stage. This is not a problem if the
transaction fees are zero. In case of the non-zero transaction
fees this may cause the other parties to lose a small amount
of money. This problem is addressed in Section VI.

A. The protocol

Our protocol is built on top of the classical coin-tossing
protocol of Blum [9] that is based on cryptographic commit-
ments. The Blum’s scheme adapted to N parties is very simple
— each party Pi commits herself to an element bi ∈ ZN .
Then, the parties open their commitments and the winner is
Pw where w = (b1 + · · · + bN mod N) + 1. As described in
the introduction, this protocol does not directly work for our
applications, and we need to adapt it to Bitcoin. In particular,
in our solution creating and opening the commitments are done
by the transactions’ scripts using double SHA-256 hashing15.
Due to the technical limitations of Bitcoin scripting language
in its current form16, instead of random numbers bi, the parties
commit themselves to strings si sampled with uniformly
random length from SN

k := {0, 1}8k∪. . .∪{0, 1}8(k+N−1), i.e.
the set of strings of length k, . . . , (k+N − 1) bytes17, where
k is the security parameter. The winner is determined by the
winner choosing function f(s1, . . . , sN ) and in our protocol

f(s1, . . . , sN ) = P� if
∑N

i=1 |si| ≡ (� − 1) mod N, where
s1, . . . , sN are the secret strings chosen from SN

k and |si| is a
length of string si in bytes. Honest users first randomly choose
length (in bytes) of their strings from the set {k, . . . , k+N−1}

13In principle it can be actually positive if the adversary plays against his
own financial interest.

14Formally: a function α : N → R is at least negligible if there exists a
function β : N → R such that for every i we have α(i) ≥ β(i) and β is
negligible, i.e. its absolute value is asymptotically smaller than the inverse of
any polynomial.

15Notice that use of single SHA-256 would be insecure here, because
it is constructed using Merkle–Damgard transformation and therefore it is
susceptible to the length extension attack [21]. It this attack an adversary
which knows H(x) can compute a value H(x||y) for some string y controlled
by him without the knowledge of the original value x. It could allow to
completely compromise the lottery protocol, because the winner choosing
function (described later) highly depends on the lengths of the secrets.

16Most of the more advanced instructions (e.g. concatenation, accessing
particular bits in a string or arithmetic on big integers) have been disabled
out of concern that the clients may have bugs in their implementation.
Therefore, computing length (in bytes), hashing and testing equality are the
only operations available for strings.

17The transactions in the protocol will always check if their inputs are
from SN

k (whenever they are supposed to be from this set). If not, they are
considered invalid, and the transaction is not evaluated.



and then generate a random string of the appropriate length.
It is easy to see that as long as one of the parties draws her
string’s length uniformly, then the output of f(s1, . . . , sN ) is
also uniformly random.

1) First attempt: For simplicity let us start with the case
of N = 2 parties, called Alice A and Bob B. Their key
pairs are A and B (resp.) and their unredeemed transactions
placed on the Ledger before the protocol starts are denoted
TA, UA and TB, UB. We start with presenting a naive and
insecure construction of the protocol, and then show how
it can be modified to obtain a secure scheme. The protocol
starts with Alice and Bob creating their new pairs of keys

Ã = (Ã.sk , Ã.pk) and B̃ = (B̃.sk , B̃.pk), respectively. These
keys will be used during the protocol. It is actually quite
natural to create new keys for this purpose, especially since
many Bitcoin manuals recommend creating a fresh key pair
for every transaction. Anyway, there is a good reason to do
it in our protocol, e.g. to avoid interference with different
sessions of the same protocol. Both parties announce their
public keys to each other. Alice and Bob also draw at random
their secret strings sA and sB (respectively) from the set S2

k
and they exchange the hashes hA = H(sA) and hB = H(sB).
Moreover Alice sends to the Ledger the following transaction:

PutMoneyA
1 (in: TA)

in-script: sigA([PutMoneyA
1 ])

out-script(body, σ): ver
˜A
(body, σ)

val: 1B

Bob also sends to the Ledger a transaction PutMoneyB
1 defined

symmetrically (recall that TA and TB are standard transactions
that can be redeemed by Alice and Bob respectively). If at any
point later a party P ∈ {A,B} realizes that the other party is
cheating, then the first thing P will do is to “take the money
and run”, i.e. to post a transaction that redeems PutMoneyP

1 .
We will call it “halting the execution”. This can clearly be
done as long as PutMoneyP

1 has not been redeemed by some
other transaction. In the next step one of the parties constructs
a transaction Compute1 defined as follows:

Compute1(in: PutMoneyA
1 ,PutMoneyB

1 )
in-script1: sig

˜A
([Compute1)] in-script2: sig

˜B
([Compute1)]

out-script(body, σ1, σ2, ŝA, ŝB):
(ŝA, ŝB ∈ S2

k ∧H(ŝA) = hA ∧H(ŝB) = hB

∧ f(ŝA, ŝB) = A ∧ ver
˜A
(body, σ1)) ∨

(ŝA, ŝB ∈ S2
k ∧H(ŝA) = hA ∧H(ŝB) = hB

∧ f(ŝA, ŝB) = B ∧ ver
˜B
(body, σ2))

val: 2B

Note that the body of Compute1 can be computed from the
publicly-available information. Hence this construction can be
implemented as follows: first one of the players, say, Bob com-
putes [Compute1], and sends his signature sig

˜B([Compute1)]
on it to Alice. Alice adds her signature sig

˜A([Compute1)] and
posts the entire transaction Compute1 to the Ledger.

The output script of Compute1 is an alternative of two
conditions. Since they are symmetric (with respect to A and
B) let us only look at the first condition (call it γ). To make it
evaluate to true on body one needs to provide as “witnesses”
(σ1, ŝA, ŝB) where ŝA and ŝB are the pre-images of hA and hB

(with respect to H) from S2
k . Clearly the collision-resistance of

H implies that ŝA and ŝB have to be equal to sA and sB (resp.).
Hence γ can be satisfied only if the winner choosing function
f evaluates to A on input (sA, sB). Since only Alice knows

the private key of Ã, only she can later provide a signature
σ1 that would make the last part of γ (i.e.: “ver

˜A(body , σ1)”)
evaluate to true.

Clearly before Compute1 appears on the Ledger each party
P can “change her mind” and redeem her initial transaction
PutMoneyP

1 , which would make the transaction Compute1
invalid. As we said before, it is ok for us if one party interrupts
the coin-tossing procedure as long as she had to decide about
doing it before she learned that she lost. Hence, Alice and
Bob wait until Compute1 appears on the Ledger before they
proceed to the step in which the winner is determined. This
final step is simple: Alice and Bob just broadcast sA and sB,
respectively. Now: if f(sA, sB) = A then Alice can redeem

the transaction Compute1 in a transaction ClaimMoneyA
1

constructed as:

ClaimMoneyA
1 (in: Compute1)

in-script: sig
˜A
([ClaimMoneyA

1 ]),⊥, sA, sB
out-script(body, σ): verA(body, σ)
val: 2B

On the other hand Bob cannot redeem Compute1, as the
condition f(sA, sB) = B evaluates to false. Symmetrically:
if f(sA, sB) = B then only Bob can redeem Compute1 by an

analogous transaction ClaimMoneyB
1 .

This protocol is obviously correct. It may also look secure,
as it is essentially identical to Blum’s protocol described at
the beginning of this section (with the hash functions used
as the commitment schemes). Unfortunately, it suffers from
the following problem: there is no way to guarantee that
the parties always send sA and sB. In particular: one party,
say, Bob, can refuse to send sB after he learned that he lost
(i.e. that f(sA, sB) = A). As his money is already “gone”
(his transaction PutMoneyB

1 has already been redeemed in
transaction Compute1) he would do it just because of sheer
nastiness. Unfortunately in a purely peer-to-peer environment,
with no concept of a “reputation”, such behavior can happen,
and there is no way to punish it.

This is exactly why we need to use the Bitcoin-based
commitment scheme from Section III. Later, in Section V we
also present another technique for dealing with this problem,
which avoids using the deposits. Unfortunately, it suffers from
certain shortcomings. First of all, it works only for two parties.
Secondly, and more importantly, to achieve full security it
needs an assumption that an adversary cannot see transactions
until they appear on the Ledger.

2) The secure version of the scheme: The general idea
behind the secure MultiPlayersLottery protocol is that each
party first commits to her inputs using the CS(C, d, t, s) com-
mitment scheme, instead of the standard commitment scheme
(the parameters d and t will be determined later). Recall that
the CS commitment scheme can be opened by sending a value
s, and this opening is verified by checking that s hashes to
a value h sent by the committer in the commitment phase.
So, Alice executes the CS protocol acting as the committer
and Bob as a recipient (note that there is only one recipient
and hence n = 1). Let sA and hA be the variables s and h



PutMoney1(in: T 1)
in-script: sigP1

([PutMoney1])
out-script(body, σ):
ver

˜P1
(body, σ)

val: 1B

. . .

PutMoneyi(in: T i)

in-script: sigPi
([PutMoneyi])

out-script(body, σ):
ver

˜Pi
(body, σ)

val: 1B

. . .

PutMoneyN (in: TN )

in-script: sigPN
([PutMoneyN ])

out-script(body, σ):
ver

˜PN
(body, σ)

val: 1B

ComputeN (in: . . . ,PutMoneyi, . . .)

. . .
in-script:
sig

˜Pi
([ComputeN ]) . . .

out-script(body, σ, ŝ1, ŝ2, . . . , ŝN ):
ŝ1, ŝ2, . . . , ŝN ∈ SN

k ∧
H(ŝ1) = h1 ∧ . . . ∧H(ŝN ) = hN ∧ verf(ŝ1,...,ŝN )(body, σ)

val: N B

1B

1B

1B

ClaimMoney1(in: ComputeN )
in-script:
sig

˜P1
([ClaimMoney1]), s1, . . . sN

out-script(body, σ): verP1
(body, σ)

val: N B

. . .

ClaimMoneyi(in: ComputeN )
in-script:
sig

˜Pi
([ClaimMoneyi]), s1, . . . sN

out-script(body, σ): verPi
(body, σ)

val: N B

. . .

ClaimMoneyN (in: ComputeN )
in-script:
sig

˜PN
([ClaimMoneyN ]), s1, . . . sN

out-script(body, σ): verPN
(body, σ)

val: N B

N B N B N B

Pre-condition:
1) For each i, player Pi holds a pair of keys (Pi.sk , Pi.pk).
2) For each i, the Ledger contains a standard transaction T i that has value 1B and whose recipient is Pi. The Ledger contains also the transactions

{U i
j}, for i, j ∈ {1, . . . , N} and i 	= j, such that each U i

j can be redeemed by P i and has value d = N B.
Initialization phase:

3) For each i, player Pi generates a pair of keys ( ˜Pi.sk , ˜Pi.pk) and sends his public key ˜Pi.pk to all other players.
4) For each i, player Pi chooses his secret si from SN

k (with uniformly random length).
Deposits phase:

5) Let t be the current time. For each i, the commitment phase CS.Commit(Pi, d, t + 4 · maxLedger, si) is executed using the transactions {U i
j} as

inputs.
6) If any two commitments of different players are equal (i.e. hi = hj for i 	= j) then the players abort the protocol18.

Execution phase:
7) For each i, player Pi puts the transaction PutMoneyi to the Ledger. The players halt if any of those transactions did not appear on the Ledger before

time t+ 2 ·maxLedger.
8) For each i ≥ 2, player Pi computes his signature on the transaction ComputeN and sends it to the player P1.
9) Player P1 puts all received signatures (and his own) into inputs of transaction ComputeN and puts it to the Ledger. If ComputeN did not appear

on the Ledger in time t+ 3 ·maxLedger, then the players halt.
10) For each i, the player Pi puts his Open transactions on the Ledger what reveals his secret and sends back to him the deposits he made during the

executions of CS protocol from Step. 5. If some player did not reveal his secret in time t + 4 · maxLedger, then other players send the appropriate
PayDeposit transactions from that player CS protocols to the Ledger to get N B.

11) The player, that is the winner (i.e. Pf(s1,...,sN )), gets the pot by sending the transaction ClaimMoneyf(s1,...,sN ) to the Ledger.

Fig. 2. The MultiPlayersLottery protocol.

created this way. Symmetrically: Bob executes the CS protocol
acting as the committer, and Alice being the recipient, and the
corresponding variables are sB and hB. Once both commitment
phases are executed successfully (recall that this includes
receiving by each party the signed PayDeposit transaction),
the parties proceed to the next steps, which are exactly as
before: first, each of them posts his transaction PutMoney on
the Ledger. Once all these transactions appear on the Ledger
they create the Compute2 transaction (in the same way as
before), and once it appears on the Ledger they open the
commitments. The only difference is obviously that, since they
used the CS commitment scheme, they can now “punish” the
other party if she did not open her commitment by executing
PayDeposit after the time t passes, and claim her deposit. On
the other hand: each honest party is always guaranteed to get
her deposit back, hence she does not risk anything investing

this money at the beginning of the protocol.

It is straightforward how to extend this protocol for any
number of players. The more detailed description is presented
on Figure 2 (page 11).

We also need to comment about the choice of the param-
eters t and d. First, it easy to see that the maximum time in
which the honest parties will complete the protocol is at most
4·maxLedger after time t′ — the time when the protocol started.
Hence we can safely set t := t′ + 4 ·maxLedger.

The parameter d should be chosen in such a way that
it will fully compensate to each party the fact that a player

18We would like to thank Iddo Bentov and Ranjit Kumaresan for pointing
out this step. It protects from the copy attack: e.g. in case of two players
lottery P1 waits until P2 commits with his hash h2 and then commits with
the same hash. During the opening phase P1 again waits until P2 reveals his
secret s2 and reveals the same secret. By doing this he always wins since
f(s2, s2) = P1.



aborted. Let us now calculate the payoff of some fixed player
P1, say, assuming the worst-case scenario, which is as that
(a) the protocol is always aborted when P1 is about to win,
and (b) there is only one “aborting party” (so Pi is paid
only one deposit). Hence his expected payoff is −N−1

N B

(this corresponds to the case when he lost) plus d−1
N B (the

case when the protocol was aborted). Therefore to make the
expected value equal to 0 we need to set d = N B. This implies
that the total amount of money invested in deposit by each
player has to be equal to N(N − 1)B. In real-life this would
be ok probably for small groups N = 2, 3, but not for the
larger ones.

We now have the following lemma, whose proof will
appear in the extended version of this paper.

Lemma 2: The MultiPlayersLottery protocol from Figure
2 is a fair lottery protocol for d = N B and t = t′ + 4 ·
maxLedger, where t′ is the starting time of the protocol.

V. TWO-PARTY LOTTERY SECURE IN A STRONGER MODEL

In this section we show a construction of a two-party lottery
which avoids using the deposits, and hence may be useful
for applications where the parties are not willing to invest
extra money in the execution of the protocol. The drawback
of the protocol presented in this section is that it works only
for two parties. Moreover, to achieve full security it needs
an assumption that the channel between the parties and the
Ledger is private, what means that the adversary cannot see
the transactions sent by the honest user, before they appear
on the Ledger. In reality Bitcoin transactions are broadcast via
a peer-to-peer network, so it is relatively easy to eavesdrop
the transactions waiting to be posted on the Ledger. Another
problem related to eavesdropping is malleability of transaction
(already described in Section II-B). Recall, that the problem
is that an adversary can modify (“maul”) the transaction T
eavesdropped in the network in such a way that the modified
transaction is semantically equivalent to the original one, but it
has a different hash. Then, the adversary can send the modified
version of T to the Ledger and if he is lucky it will be posted
on the Ledger and invalidate the original transaction T (its
input will be already redeemed). Hence, e.g., the transactions
that were created to redeem T will not be able to do it (as the
hash of the transaction is different). In order to be secure for
the protocol presented in this section, we need to assume that
such attacks are impossible. Technically, we do it by assuming
that the channel from each party to the Ledger is private. The
protocols secure in this model will be called secure under
private channel assumption.

To explain our protocol let us go to the point in Section
IV where it turned out that we need the Bitcoin commitment
schemes. Recall that we observed that the protocol from
Section IV-A2 is not secure against a “nasty behavior” of
the party that, after realizing that she lost, simply quits the
protocol.

3) An alternative (and slightly flawed) idea for a fix:
Suppose for a moment we are only interested in security
against the “nasty Bob”. Our method is to force him to reveal
sB simultaneously with Compute1 being posted on the Ledger,
by requiring that sB is a part of Compute1. More concretely
this is done as follows. Recall that in our initial protocol

we said that Compute1 is created and posted on the Ledger
by “one of the parties”. This was ok since the protocol was
completely symmetric for A and B. In our new solution we
break this symmetry by modifying the Compute1 transaction
(this new version will be denoted Compute2) and designing
the protocol in such a way that Compute2 will be always
posted on the Ledger by B. First of all, however, we redefine
the PutMoneyB

1 transaction that B posts on the Ledger at the
beginning of the protocol. The modified transaction is denoted
PutMoneyB

2 .

PutMoneyB
2 (in: TB)

in-script: sigB([PutMoneyB
2 ])

out-script(body, σ, ŝ): ver
˜B
(body, σ) ∧ ŝ ∈ S2

k ∧ H(ŝ) = hB

val: 1B

The only difference compared to PutMoneyB
1 is the addition

of the “∧ ŝ ∈ S2
k ∧ (H(ŝ) = hB)” part. This trick forces Bob

to reveal the pre-image of hB (which has to be equal to sB)
whenever he redeems PutMoneyB

2 .

The transaction PutMoneyA
1 remains unchanged, i.e.:

PutMoneyA
2 := PutMoneyA

1 . Clearly players can still redeem
their transactions later in case they discover that the other
player is cheating. Transaction Compute2 is the same as
Compute1, except that sB is added to the input script for the
second input transaction:

Compute2(in: PutMoneyA
2 ,PutMoneyB

2 )
in-script1: sig

˜A
([Compute2]) in-script2: sig

˜B
([Compute2]), sB

out-script(body, σ1, σ2, ŝA, ŝB):
(ŝA, ŝB ∈ S2

k ∧H(ŝA) = hA ∧H(ŝB) = hB

∧ f(ŝA, ŝB) = A ∧ ver
˜A
(body, σ1)) ∨

(ŝA, ŝB ∈ S2
k ∧H(ŝA) = hA ∧H(ŝB) = hB

∧ f(ŝA, ŝB) = B ∧ ver
˜B
(body, σ2))

val: 2B

The parties post their PutMoney2 transactions on the Ledger
and construct transaction Compute2 in the following way.
First, observe that both parties can easily construct the body
of Compute2 themselves, as all the information needed for
this is: the transactions PutMoneyA

2 and PutMoneyB
2 and the

hashes of sA and sB, which are all publicly available. Hence the
only thing that needs to be computed are the input scripts. This
computation is done as follows: first Alice computes her input
script sig

˜A([Compute2]) and sends it to Bob. Then Bob adds
his input script (sig

˜B([Compute2]), sB), and posts Compute2
on the Ledger.

The ClaimMoneyP
2 procedures (for P ∈ {A,B}) remain

unchanged (except, of course that their input is Compute2
instead of Compute1). Let us now analyze the security of this
protocol from the point of view of both parties. First, observe
that Alice does not risk anything by sending sig

˜A([Compute2])
to Bob. This is because it consists of a signature on the entire
body of the transaction, and hence it is useless as long as Bob
did not add his input script19. But, if Bob added a correct
input script and posted Compute2 on the Ledger then he
automatically had to reveal sB. Hence, from the point of view
of Alice the problem of “nasty Bob” is solved.

19Recall that the body of a transaction includes also the information about
its input transactions, and moreover, a transaction becomes valid only if all
the input transactions can be redeemed



Unfortunately, from the point of view of Bob the situation
looks much worse, as he still has no guarantee that Alice will
post sA once she learned that she lost. This is why one more
modification of the protocol is needed.

4) The secure version of the scheme: To fix the problem
described above we extend our protocol by adding a special
transaction that we denote Fuse and that will be used by Bob
to redeem Compute if Alice did not send sA within some
specific time, say, 2 · maxLedger. To achieve this we will use
the time-lock mechanism described in the introduction. This
requires modifying once again the Compute2 transaction so it
can be redeemed by Fuse . All in all, the transactions are now
defined as follows:

Compute(in: PutMoneyA,PutMoneyB)
in-script1: sig

˜A
([Compute)] in-script2: sig

˜B
([Compute]), sB

out-script(body, σ1, σ2, ŝA, ŝB):
(ŝA, ŝB ∈ S2

k ∧H(ŝA) = hA ∧H(ŝB) = hB

∧ f(ŝA, ŝB) = A ∧ ver
˜A
(body, σ1)) ∨

(ŝA, ŝB ∈ S2
k ∧H(ŝA) = hA ∧H(ŝB) = hB

∧ f(ŝA, ŝB) = B ∧ ver
˜B
(body, σ2)) ∨

(ver
˜A
(body, σ1) ∧ ver

˜B
(body, σ2))

val: 2B

Fuse(in: Compute)
in-script: sig

˜A
([Fuse]), sig

˜B
([Fuse]),⊥,⊥

out-script(body, σ): verB(body, σ)
val: 2B

tlock: t+ 2 ·maxLedger

(t above refers roughly to the time when Fuse is created,
we will define it more concretely in a moment).

The transactions ClaimMoneyA and ClaimMoneyB are
almost the same as the transactions ClaimMoneyA

2 and
ClaimMoneyB

2 (except that they redeem Compute transac-
tion instead of Compute2). It is clear that Compute can
be generated jointly by Alice and Bob in the same way
as before (the only new part of Compute is the last line
“ver

˜A(body , σ1)∧ver ˜B(body , σ2)” that can be easily computed
by both parties from the public information).

What remains is to describe the construction of the Fuse
transaction. Clearly, Bob can create the entire Fuse by himself,
except of the signature sig

˜A([Fuse]) in the input script, which
has to be computed by Alice, as only she knows her private
key. To do this Alice needs to know the body of Fuse . It is easy
to see that she knows all of it, except of the input transaction
Compute. Moreover, Bob cannot simply send Compute to
Alice, since Compute includes the information about his secret
sB which Alice should not learn at this point.

We solve this problem by exploiting the details of the
Bitcoin implementation, namely the fact that the transactions
are referenced by their hashes. Hence, to create the body
of Fuse Alice only needs to know the hash hCompute of
Compute. Therefore our protocol will contain the follow-
ing sub-procedure (executed directly after Bob constructs
Compute, but before he posts it on the Ledger): (1) Bob
sends hCompute = H(Compute) to Alice, (2) Alice computes
[Fuse], signs it, and sends the signature sig

˜A([Fuse]) to Bob,
(3) Bob verifies Alice’s signature and halts if it is incorrect.
Time t that is used in the time-lock in Fuse will refer to time
when Alice executed Step (2) above. This system guarantees

that Bob can always claim his 2B in time t+2 ·maxLedger even
if Alice did not execute the last step. Observe that of course
Alice should halt her execution if she does not see Compute on
the Ledger within time t+maxLedger, as otherwise Bob could
simply post Compute much later (after time t+2 ·maxLedger,
say) and immediately use Fuse to claim the reward.

There are some issues in this procedure that need to be ad-
dressed. Firstly, the reader may be worried that H(Compute)
reveals some information on Compute. In practice (and in
theory if H is a random oracle) this happens only if the set
of possible inputs to H is small and known to the adversary.
In our case the adversary is the dishonest Alice, and it can
be easily seen that from her point of view the set of possible
Compute transactions is huge, one reason for this being that
Compute includes sB, which is secret and uniform.

Unfortunately the fact that Alice does not know the com-
plete transaction Compute, but only its hash, poses a risk to
her. This is because a dishonest Bob can, instead of sending
H(Compute), send a hash of some other transaction T in
order to obtain the information that can be used to redeem
some other transaction used within the protocol, or even
outside this session of the protocol. This is actually one of the
reasons why we assumed that the keys used by the users in
our procedure are fresh and will not be used later: in this way
we can precisely know, which transactions can be redeemed
if one obtains Alice’s signature on [Fuse] constructed with
false hCompute .20. It is easy to see that the only transaction
other than Compute, that could be potentially redeemed using
Alice’s signature is PutMoneyA. This transaction cannot be
redeemed by “Fuse with false hCompute”, for several reasons,

one of them being that the value of PutMoneyA is 1B, which
is less than the value of Fuse (equal to 2B).

In this way we constructed the TwoPlayersLottery proto-
col. Its complete description is presented on Figure 3 (page
14). We now have the following lemma (the proof will appear
in the extended version of this paper).

Lemma 3: The TwoPlayersLottery protocol from Figure 3
is a secure lottery protocol under the private channel assump-
tion.

Notice that without the private channel assumption there
are two possible attacks, which could harm Bob. One is
that Alice could see Compute, which contains sB before it
is posted on the Ledger. In case she lost she could react
with sending to the Ledger another transaction T , which
redeems PutMoneyA. If she was lucky and the transaction
T was posted on the Ledger before Compute, then Compute
would become invalidated (one of its inputs would be already
redeemed) and Bob would not earn any money. The other
possible attack concerns the malleability problem: for the
security to hold Bob needs to be sure that the Fuse transaction
will redeem the transaction Compute. Unfortunately, Fuse has

20 As a more concrete example what could go wrong without this assump-
tion consider the following scenario. Assume there is a not-redeemed transac-
tion Compute∗ on the Ledger whose recipient is Alice and that also can be
redeemed by a transaction with an input script (sig

˜A
([T ]), sig

˜B
([T ]),⊥,⊥)

(this can happen, e.g., if two coin-tossing protocol are executed in par-
allel between Alice and Bob). Then a dishonest Bob can send to Alice
H(Compute∗) instead of H(Compute), and redeem Compute∗ in time
t+ 2 ·maxLedger



PutMoneyA(in: TA)
in-script:
sigA([PutMoneyA])
out-script(body, σ):
ver

˜A
(body, σ)

val: 1B

PutMoneyB(in: TB)
in-script:
sigB([PutMoneyB])
out-script(body, σ, ŝ):
ver

˜B
(body, σ)∧

(ŝ ∈ S2
k ∧H(ŝ) = hB)

val: 1B

Compute(in: PutMoneyA,PutMoneyB)

in-script1:
sig

˜A
([Compute)]

in-script2:
sig

˜B
([Compute]), sB

out-script(body, σ1, σ2, ŝA, ŝB):
((ŝA, ŝB ∈ S2

k ∧H(ŝA) = hA ∧H(ŝB) = hB)
∧ ((f(ŝA, ŝB) = A ∧ ver

˜A
(body, σ1))

∨ (f(ŝA, ŝB) = B ∧ ver
˜B
(body, σ2))))

∨ (ver
˜A
(body, σ1) ∧ ver

˜B
(body, σ2))

val: 2B
Fuse(in: Compute)

in-script:
sig

˜A
([Fuse]),

sig
˜B
([Fuse]),⊥,⊥

out-script(body, σ):
verB(body, σ)
val: 2B

tlock:
t+ 2 ·maxLedger

ClaimMoneyA(in: Compute)
in-script:
sig

˜A
([ClaimMoneyA]),⊥, sA, sB

out-script(body, σ): verA(body, σ)
val: 2B

ClaimMoneyB(in: Compute)
in-script:
⊥, sig

˜B
([ClaimMoneyB]), sA, sB

out-script(body, σ): verB(body, σ)
val: 2B

1B
1B

2B2B 2B

1B
1B

2B

2B 2B

Pre-condition:
1) Alice holds a pair of keys A = (skA, pkA) and Bob holds a pair of keys B = (skB , pkB).
2) The Ledger contains standard transactions TA and TB that have value 1B each and whose recipients are pkA and pkB , respectively.

Initialization phase:
3) Alice and Bob generate their key pairs ˜A = ( ˜A.sk , ˜A.pk) and ˜B = ( ˜B.sk , ˜B.pk) (respectively) and exchange the public keys ˜A.pk and ˜B.pk .
4) The players choose their secret strings sA and sB.
5) Alice computes a hash of her secret hA := H(sA) and sends it to Bob.
6) Bob computes a hash of his secret hB := H(sB) and sends it to Alice.
7) If the commitments are equal (i.e. hA = hB) then the players abort the protocol.
8) Each P ∈ {A,B} computes PutMoneyP and posts it on the Ledger. The players proceed to the next step only once both of these transactions appear

on the Ledger.
Computation phase:

9) The players construct the Compute transaction as follows:

a) Alice computes the body of the transaction Compute together with the signature sig
˜A
([Compute]) and sends sig

˜A
([Compute]) to Bob.

b) Bob verifies Alice’s signature and halts if it is incorrect. Otherwise he computes the whole transaction Compute by adding a signature
sig

˜B
([Compute]) to the message received in the previous step.

10) The players construct the Fuse transaction as follows:

a) Bob sends hCompute = H(Compute) to Alice,
b) Alice computes [Fuse], signs it, and sends the signature sig

˜A
([Fuse]) to Bob (let t denote the time when it happened),

c) Bob verifies Alice’s signature and halts if it is incorrect.

Execution phase:
11) Bob sends Compute to the Ledger. Note that this reveals sB. If Compute did not appear on the Ledger in time t+maxLedger then Alice halts.
12) Alice sends sA to Bob. If Bob did not receive it in time t+ 2 ·maxLedger then he sends the Fuse transaction to the Ledger.
13) If f(sA, sB) = A then Alice sends ClaimMoneyA to the Ledger, otherwise Bob sends ClaimMoneyB to the Ledger.

Fig. 3. The TwoPlayersLottery protocol

to be created strictly before Compute appears on the Ledger.
If an adversary intercepts Compute before it happened (or: if
a miner is malicious) then he can post a “mauled” Compute
transaction on the Ledger that behaves exactly as the original
one, except that it has a different hash. Hence Fuse would
becomes useless.

VI. NON-ZERO TRANSACTION FEES

We now address the problem of the transaction fees, which
was ignored in the description above. On a technical level
there is no problem with incorporating the fees into our
protocol: the transactions can simply include a small fee that
has to be agreed upon between the parties before the protocol
starts. The expected payoff of the parties will be in this case
slightly negative (since the fees need to be subtracted from

the outcome). It is straightforward how to modify the security
definition to take this into account. One problem that the reader
may notice is the issue of the “nasty” behavior of the parties.
For example, a malicious Alice can initiate the protocol with
Bob just to trigger him to post PutMoneyB on the Ledger.
If Alice later aborts then Bob obviously gets his money back,
except of the transaction fee. Of course, this does not change
his expected payoff, but it still may be against his interests, as
he loses some money on a game that from the beginning was
planned (by Alice) never to start.

We now describe a partial pragmatic remedy for this
problem. The basic idea is to modify the protocol by changing
the instructions what to do when the other parties misbehave.
Recall, that in our protocols the parties are instructed to
simply redeem all their transactions if they notice a suspicious



behavior of the other party. Now, instead of doing this, they
could keep these transactions on the Ledger and reuse them in
some other sessions of the protocol. Of course, this has to be
done with care. For example the timed commitment schemes
have to be redeemed within a certain time frame). One also
has to be careful to avoid problems with reusing the keys,
described above, cf. Footnote 20. To argue formally about
the security of this solution one would need to introduce a
multi-player mathematical model capturing the fact that several
sessions can be executed with shared secrets. This is beyond
the scope of this paper, so we just stay on this informal level.

VII. IMPLEMENTATION

As a “proof of concept” we have implemented and executed
the presented protocols. The transactions were created using
bitcoinj Java library, as normal Bitcoin clients do not allow
user to create (nor broadcast) non-standard transactions, and
sent directly to Eligius mining pool, which is currently the
only one accepting non-standard transactions21.

Below we present links to some of these transactions on the
blockchain.info website. To save space, all links are relative to
the url blockchain.info/tx-index/ (hence, they are only indices
of transactions used by the blockchain.info site).

Commitment scheme CS: Links to all transactions in a
correct execution of the commitment scheme with one recipient
are as follows: Commit : 97079150; Open: 97094781.

Here is an example of an execution for two recipi-
ents, which finished with PayDeposit transactions broad-
cast: Commit : 96947667; PayDeposit1: 96982401; and
PayDeposit2: 96982398.

Three-party lottery (MultiPlayersLottery): We have per-
formed a correct execution of the three-party lottery protocol,
where each player bets 0.0012B. First, the players perform
standard transactions with output value 0.0012B. The transac-
tions are as follows: PutMoneyA: 96946847; PutMoneyB :
96946887; and PutMoneyC : 96947563. Then the players
exchange the hashes hA, hB and hC , and sign and broadcast
the Compute transaction (96964833). After the revealing of
their secrets sA, sB and sC (by opening the commitments), the
winner (in this case, player C) broadcasts the ClaimMoneyC

transaction (96966124) to get the pot.

Two-party lottery without deposits (TwoPlayersLottery):
Below we present links to all transactions in a correct
execution of the protocol won by Alice: PutMoneyA:
96424665; PutMoneyB : 96436412; Compute: 96436416;
ClaimMoneyA: 96436417; In this execution, the players bet
0.04B each and the transaction fees were set to 0.0001B for
each transaction.

We also performed an execution which finished with
the Fuse transaction: PutMoneyA: 97094615; PutMoneyB :
97094780; Compute: 97099280; Fuse: 97105484.

21Unfortunately, it seems that currently Eligius is not accepting any trans-
action Tx redeeming Ty if it earlier received some other transaction T ′

x
redeeming Ty , even if T ′

x is time-locked in the future. We would like to stress
that this is just an implementation decision made by the Eligius administrators
and it does not follow from the Bitcoin specification. We hope that this feature
of Eligius will be removed in the future (or, that the other mining pools will
start accepting the non-standard transactions).

As an example of a raw transaction we present
the PutMoneyB transaction from the first of the
TwoPlayersLottery protocol executions described above
(96436412) in more details. Here is its dump (with some
fields omitted):

{ "lock_time":0,
"in":[{ "prev_out": {"hash":"a14...096", "n":0},

"scriptSig":"304...a01 039...443" }],
"out":[{"value":"0.03990000",

"scriptPubKey":"
OP_SIZE 32 34 OP_WITHIN OP_VERIFY
OP_SHA256 f53...226 OP_EQUALVERIFY
020...e33 OP_CHECKSIG" }]}

The meaning of the above is as follows. "lock_time":0
means, that the transaction does not have a time lock.
"hash":"a14...096" denotes a hash of the transaction,
which is being redeemed in PutMoneyB and "n":0 denotes,
which output of that transaction is being redeemed. The
input script "scriptSig":"304...a01 039...443"
consists of the signature (039...443) on PutMoneyB under
the key B.pk and the public key B.pk itself (304...a01)
(in standard transaction’s output there is only pk’s hash and
pk has to be included in the corresponding input).

The output script expects to get as input an ap-
propriate signature and Bob’s secret string. The script
consists of three parts: the first part OP_SIZE 32 34
OP_WITHIN OP_VERIFY checks whether the second argu-
ment has an appropriate length; the second part OP_SHA256
f53...226 OP_EQUALVERIFY checks if its hash is equal
to hB i.e. f53...226); and the last part 020...e33
OP_CHECKSIG checks if the first argument is an appropriate

signature under key B̃.pk (i.e. 020...e33).
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