
Pivot: Fast, Synchronous Mashup Isolation Using Generator Chains

James Mickens

Microsoft Research
mickens@microsoft.com

Abstract—Pivot is a new JavaScript isolation framework for
web applications. Pivot uses iframes as its low-level isolation
containers, but it uses code rewriting to implement syn-
chronous cross-domain interfaces atop the asynchronous cross-
frame postMessage() primitive. Pivot layers a distributed
scheduling abstraction across the frames, essentially treating
each frame as a thread which can invoke RPCs that are
serviced by external threads. By rewriting JavaScript call
sites, Pivot can detect RPC invocations; Pivot exchanges RPC
requests and responses via postMessage(), and it pauses
and restarts frames using a novel rewriting technique that
translates each frame’s JavaScript code into a restartable
generator function. By leveraging both iframes and rewriting,
Pivot does not need to rewrite all code, providing an order-
of-magnitude performance improvement over rewriting-only
solutions. Compared to iframe-only approaches, Pivot provides
synchronous RPC semantics, which developers typically prefer
over asynchronous RPCs. Pivot also allows developers to use
the full, unrestricted JavaScript language, including powerful
statements like eval().

I. INTRODUCTION

A modern web application often contains JavaScript code

from multiple origins. For example, a single web page might

contain JavaScript from advertisers, analytics providers, and

social networking sites. These external origins have differing

levels of pairwise trust, and all of the external code must

coexist with the JavaScript that belongs to the owner of the

enclosing page. For security, each domain should expose

a narrow interface to its code and data. Unfortunately,

JavaScript has poor built-in mechanisms for encapsulation

and information hiding (§II). Thus, to enforce strong iso-

lation between untrusting origins, developers must use a

mashup isolation framework [3], [14], [22], [24] to restrict

cross-domain interactions.

A. Prior Isolation Schemes

At a high-level, these isolation systems use one of two

approaches. Some use iframes as the fundamental isolation

container. Browsers give each iframe a separate JavaScript

runtime; each runtime has distinct global variables, heap

objects, visual display areas, and so on. Iframes from

different origins cannot directly manipulate each other’s

state—instead, they must communicate using the asyn-

chronous, pass-by-value postMessage() call. By placing

each domain’s code in a separate frame, systems like

Privilege-separated JavaScript [3] leverage fast C++ code

inside the browser to enforce isolation boundaries. How-

ever, domains are forced to communicate via asynchronous

message passing. Asynchronous channels are an unnatural

fit for many types of cross-domain communication [22],

and continuation-passing style (CPS) [18], the most pop-

ular method for converting asynchronous calls into pseudo-

synchronous ones, can introduce subtle race conditions [18],

[22].

Other mashup frameworks use a rewriting approach [22],

[24]. In these systems, the integrating web page translates

each domain’s code into a constrained JavaScript dialect

that lacks dangerous features like the eval() function. The

rewriter also adds dynamic checks which enforce statically

unverifiable security properties. Code from different origins

runs in the same frame, so domains can communicate using

synchronous interfaces that resemble traditional RPCs. From

a developer’s perspective, these synchronous interfaces are

extremely attractive, since JavaScript’s pervasive asynchrony

is widely perceived to hinder application development and

maintenance [25], [26], [27], [36]. Unfortunately, JavaScript

is a highly dynamic language, and enforcing a reasonable

isolation model requires the rewriter to insert runtime checks

at every function call and property access. These checks,

which are implemented in slow JavaScript instead of fast

C++ inside the browser, can cause execution slowdowns

of up to 10x compared to the original, untranslated source

code [12], [22], [31].

B. Overview of Pivot

In this paper, we introduce Pivot, a new isolation frame-

work that combines the performance of iframe solutions

with the synchronous cross-domain interfaces that have tra-

ditionally been restricted to rewriting frameworks. Pivot uses

iframes as isolation containers, and uses postMessage()
as a low-level communication primitive. However, by com-

bining a novel rewriting technique with dynamic patching of

the JavaScript runtime [21], [23], Pivot provides true syn-

chronous interfaces that avoid the potential race conditions

of CPS’s pseudo-synchrony.

Figure 1 depicts the architecture of a Pivot application.

Pivot’s trusted master frame places each untrusted domain

into a separate “satellite” frame. Each satellite frame con-

tains untrusted JavaScript code from an external domain,

and an untrusted copy of the Pivot RPC library. Using that

library, a satellite can register one or more public RPC

interfaces with the Pivot master frame. Pivot implements a

distributed directory service that allows domains to discover

each other’s entry points.



Trusted master frame

Sensitive app 
code RPC directory

RPC routing

Local 
scheduler

Rewritten app code

Deferred 
event queue

Local 
scheduler

Rewritten app code

Deferred 
event queue

Untrusted satellite frame 1 Untrusted satellite frame 2

Figure 1: A sample Pivot application. Grey boxes indicate

components that are implemented by Pivot.

//The yielding function.
function factorial(){

var curr = 1;
var n = 1;
while(true){

curr = curr * n;
yield curr;
n += 1;

}
}

//Print the first 10 items in the factorial sequence.
var generator = factorial();
for(var i = 0; i < 10; i++){

alert(generator.next());
}

Figure 2: Example of a JavaScript generator function.

To build a synchronous RPC interface atop the

asynchronous postMessage() primitive, Pivot uses

three techniques:

Static rewriting: Pivot rewrites each domain’s JavaScript

code, combining all of the code in a frame into a single

generator function [9]. In contrast to a normal function,

which uses the return statement to return a single value

per function execution, and which loses its activation record

upon returning, a generator uses the yield statement to

remember its state across invocations. A generator can

yield different values after each invocation. Figure 2

provides a simple example of a generator function that

returns the factorial sequence. A rewritten Pivot frame is

a generator function that starts execution when invoked

by the local Pivot library, and yields to that library upon

invoking an RPC.

Distributed scheduling: The untrusted Pivot libraries in

each satellite communicate with the trusted Pivot library

in the master frame. Collectively, the master library and

the satellite libraries implement a distributed scheduler.

When frame X invokes an RPC defined by frame Y, X
yields control to its local Pivot library. That library sends a

postMessage() to the master that contains the RPC name

and the RPC arguments. The master uses postMessage()
to forward the information to the Pivot library in Y. Y’s

Pivot library invokes the appropriate code in Y, and uses

postMessage() to return the result to the master. The

master sends the result to the Pivot library in X. Finally, that

library restarts X’s code by calling X’s generator function

(Pivot places the result of the RPC in a well-known global

variable so that X’s restarted generator can consume it).

Buggy or malicious satellites may hang forever; to prevent

denial-of-service attacks on RPC initiators, Pivot will

timeout an RPC that takes too long to complete, restarting

the initiator and forcing the RPC to return an error value.

Deferring asynchronous events: JavaScript is an event-

driven language—programs define handler functions to

deal with asynchronous inputs like mouse clicks and the

arrival of network data. Browsers ensure that each frame is

single-threaded and non-preemptable, i.e., only one event

handler can run at any given time, and once started, a

handler runs to completion in an atomic fashion. However,

in Pivot, a frame’s generator function can invoke an RPC

(and thus yield) at arbitrary moments; while Pivot is waiting

for the RPC response, the yielded frame may generate

other asynchronous events. If Pivot allowed the associated

event handlers to run, it would violate the guarantee of

handler atomicity. Thus, Pivot dynamically interposes on

the browser’s event registration framework [23], wrapping

each event handler in code that simply adds the real event

handler to Pivot’s deferred execution queue. Pivot detects

when a satellite’s generator yields at a “natural” termination

point, i.e., a place at which the browser would normally

declare a handler call chain to be finished. At these points,

Pivot drains the deferred execution queue, executing any

handlers that it finds.

At a high-level, Pivot resembles a user-mode threading

library [32] in which frames are threads, and cross-frame

RPCs cause threads to yield to the Pivot scheduler. However,

Pivot must solve various challenges that are unique to

the web environment, such as preserving the atomicity of

rewritten event handlers without explicit support from the

browser’s JavaScript engine.

C. Our Contributions

Conventional wisdom is that mashup frameworks must

use one of two approaches: fast but asynchronous frame-

based isolation, or synchronous but slow rewriting-based

isolation. Pivot is the first mashup framework that provides

truly synchronous cross-domain interfaces while leveraging

iframes as isolation containers. Pivot uses less rewriting



var X = {data: "hello"}; //Create a prototype object
//for a class named X.

var obj = {__proto__: X};//Create an instance of X.

alert(obj.data); //Displays "hello".
X.data = "goodbye";
alert(obj.data); //Displays "goodbye".

Figure 3: Example of JavaScript’s prototype-based objects.

to provide higher performance—whereas prior rewriting

schemes like Caja [24] and Jigsaw [22] require dynamic

checks at every function call site and every []-mediated

property access, Pivot only requires checks at function call

sites. Furthermore, since Pivot uses iframes as isolation

containers, it allows the safe composition of rewritten code

with unrewritten code. Domains that do not require the

ability to make synchronous RPCs do not need to be

rewritten. By including the (untrusted) Pivot satellite library,

unrewritten satellites can still define externally visible RPCs;

the unrewritten satellites will asynchronously serve those

requests, and Pivot will pause and resume the rewritten

callers as necessary, providing those callers with the de-

sired synchronous RPC semantics. This safe composition of

rewritten code and unrewritten code is much different than

the rewrite-everything requirement of systems like Jigsaw,

and it facilitates important performance optimizations when

Pivot is run on browsers which have slow implementations

of the yield statement (§V-C). Our empirical analysis of

JavaScript call graphs demonstrates that Pivot’s master/satel-

lite architecture is well-aligned with the RPC patterns of real

applications (§V-A).

Since each satellite frame contains an isolated JavaScript

runtime, Pivot allows untrusted satellite code to use the

full JavaScript language, including powerful functions like

eval(). In contrast, rewriting systems that place all code

in a single frame require applications to use a restricted

JavaScript subset. Unlike prior rewriting systems that pro-

vide pseudo-synchrony [25], [26], [27], [36], Pivot provides

true synchrony without adding special syntax for RPCs, or

breaking the traditional JavaScript concurrency model of

atomic handler execution. This makes it easier to write new

Pivot applications and port legacy applications to Pivot. Our

evaluation also shows that Pivot can provide an order of

magnitude performance improvement over Jigsaw.

II. BACKGROUND

In this section, we provide an overview of the JavaScript

language, and describe how the JavaScript runtime interacts

with the rest of the browser. We focus on the security

interactions which influence Pivot’s design (§III) and the

design of previous isolation frameworks (§VI).

A. The JavaScript Language

JavaScript is an object-oriented scripting language that

provides extensive runtime mechanisms for object reflection

//The "with" statement places a JavaScript
//object at the front of the name resolution
//chain.
var str = "global";
var obj = {str: "insideWithStmt"};
alert(str); //Displays "global".
with(obj){

alert(str); //Displays "insideWithStmt".
}

//The "delete" statement removes a property
//from an object. So, if a rewriter tries
//to hide sensitive global objects using
//with statements, attacker code can
//use delete statements to reveal the
//sensitive global.

//Original attacker code wants to send
//a network request.
delete XMLHttpRequest;
var ajax = new XMLHttpRequest(...);

//The rewritten code places the original
//attacker code inside a with statement,
//but the delete allows the attacker to
//access the real XMLHttpRequest!
var blinder = {XMLHttpRequest: null};
with(blinder){

delete XMLHttpRequest;
var ajax = new XMLHttpRequest(...);

}

Figure 4: An attacker can use statements like delete to

subvert rewriting-based isolation.

and mutation. JavaScript has little support for encapsulation

or data hiding; this dearth of native isolation mechanisms,

combined with an abundance of reflection interfaces, makes

it difficult to write secure web applications that integrate

code from mutually untrusting origins. For example:

Prototype poisoning: Traditional object-oriented languages

like C++ use statically defined classes to implement object

inheritance. In contrast, JavaScript uses dynamic prototype

objects. As shown in Figure 3, a prototype is a JavaScript

object whose property names define the properties belonging

to all instances of that object. The property values of the

prototype become the default property values for instances

of that object.

An object’s prototype is a mutable property called
__proto__. By changing an object’s __proto__ value,

one can change an object’s type at runtime. In a prototype

poisoning attack [1], [18], malicious code mutates the pro-

totype for sensitive objects, or redefines their __proto__

references to point to attacker-controlled objects. This allows

the attacker to redefine the behavior of these sensitive ob-

jects. Poisoning attacks can be launched against application-

defined objects, as well as the built-in objects provided by

the browser. For example, by tampering with the prototype

for the built-in regular expression object, an attacker can sub-

vert security computations that look for patterns in strings.



Mutability attacks: Prototype poisoning is a specific

example of the mutability attacks which are endemic

to JavaScript. For example, key interfaces like

Math.random() and XMLHttpRequest can simply

be overwritten with application-defined code. Such

dynamic patching is not necessarily a sign of evil—for

example, diagnostic tools like Mugshot [23] use such

patching to debug application state. However, if a frame

contains two JavaScript libraries from domains X and

Y, and X’s code loads first, then Y cannot guarantee that

its code has unmediated access to the real system interfaces.

Dangerous built-in statements: JavaScript provides sev-

eral constructs for dynamically compiling and executing

source code; examples include the eval() method and the

Function() constructor. Malicious applications can use

these interfaces to hide attack code from static security

analyses. Prohibiting access to these interfaces is tricky

because JavaScript defines many aliases for such func-

tions, e.g., window.eval(), window.parent.eval(),

window.top.eval(), etc. [19].

JavaScript also provides statements like with and

delete that allow programs to dynamically modify the

scope chain that the runtime consults to resolve variable

names. Using these statements, attackers can circumvent

dynamic security mechanisms used by naïve code rewriters

(see Figure 4).

Complex “this” semantics: As implied by the previ-

ous paragraph, the built-in window object is an alias

for the global namespace. For example, the global

XMLHttpRequest object can also be referenced via

window.XMLHttpRequest. If a secure application wants to

prevent an untrusted library from accessing sensitive globals,

the application must prevent that library from accessing

window. Unfortunately, doing so is tricky, since JavaScript

provides multiple ways to access window. For example, all

JavaScript functions are actually methods, and if a method is

called unbound, e.g., as f() instead of someObj.f(), the

method’s this reference is automatically set to window.

The browser also uses window as the this reference for

timer callback functions and other event handling callbacks.

Source code that is dynamically evaluated via Function()
will also use window as this.

B. Isolation Using Iframes

Each frame represents a separate JavaScript runtime. If

two frames belong to the same origin1, they can ma-

nipulate each other’s JavaScript state using mechanisms

like the window.frames array. If two frames belong to

different origins, cross-frame interactions are restricted to

1An origin is defined as a three tuple <protocol, host, port>, e.g., <https,
cnn.com, 80>.

the postMessage() API, which asynchronously transfers

immutable strings.

Isolation frameworks like Privilege-separated JavaScript

(PSJ) [3] place untrusted libraries in separate iframes.

A trusted master frame implements sensitive functional-

ity, and exposes that functionality to untrusted frames via

asynchronous pass-by-value RPCs that are layered atop

postMessage(). The master frame also routes messages

between untrusted frames.

When the master frame creates an untrusted frame, the

master initializes the new frame in some way, e.g., by delet-

ing references to sensitive functions, or creating virtualized

copies of sensitive functions (see §VI for more detail). The

master also injects a communication library which layers a

high-level RPC protocol atop raw postMessage() calls.

The master then loads the untrusted code, which uses the

communication library to interact with the master.

Advantages: If the master trusts nothing in an untrusted

frame (including the communication stub that the master

injected at initialization time!), the master can rely on the

browser to isolate the master and the untrusted frames.

This is because each frame represents a separate JavaScript

runtime that can only exchange immutable strings with other

frames. Thus, if an untrusted frame falls victim to proto-

type poisonings, mutability attacks, or dangerous JavaScript

statements, other frames (included the trusted master) are

still safe.

Disadvantages: Frame-based isolation forces RPCs to be

asynchronous. Asynchronous semantics are often well-suited

for IO operations, and JavaScript uses asynchronous call-

backs to handle user input and network operations (§III-B).

Unfortunately, many types of mashup communication are

best expressed using synchronous RPCs. For example, sup-

pose that the master wants to incorporate a cryptography

library that defines a hash function. The master’s code can

be written in a much simpler way if the call to the hash

function is synchronous. If cross-domain interactions must

be asynchronous, then any master function f which invokes

an RPC must be split into a “top half” that initiates the RPC,

and a “bottom half” callback that asynchronously receives

and processes the result. This asynchronous refactoring

affects any code in the master that calls f—since f is now

asynchronous, anything that invokes f must define a callback

which is fired when f has completed. Even worse, if f ’s

bottom half must invoke additional RPCs, then this bottom

half must be split too. This stack splitting is difficult for

developers to manage across long, multi-hop asynchronous

call chains [2]; as a result, there are many projects which

attempt to introduce more synchrony into JavaScript [25],

[26], [27], [36] (although all of these projects provide

pseudo-synchrony, not Pivot’s true synchrony (§VI)).



C. Isolation Using Code Rewriting

Isolation systems like Caja [24] and Jigsaw [22] place

each domain’s code inside the same frame. To make this

co-location safe, the isolation system must rewrite each

domain’s code. For example, dangerous statements like

delete are statically removed at rewrite time. Preventing

other security problems requires the insertion of runtime

checks. For example, JavaScript allows object properties

to be accessed using dot notation (obj.x) and bracket

notation (obj["x"]). Bracket notation allows the property

specifier to be an arbitrary expression, like the return value

of a function (obj[f()]). To prevent manipulation of the
__proto__ property, the rewriter must instrument property

accesses that use the bracket notation.

As an application executes, it generates call chains which

may cross isolation boundaries. For example, a library from

domain X may invoke code from domain Y; in turn, Y’s

code may invoke a sensitive browser function. Each library

has distinct security privileges which constrain the allowable

interactions. To enforce these privileges, the isolation system

must rewrite functions so that they track execution context.

For example, Jigsaw maintains a privilege stack which rep-

resents the access rights of the corresponding functions on

the call stack; by examining the top of this stack, the Jigsaw

runtime can determine the access privileges of the currently

executing function. To implement this privilege stack, Jigsaw

rewrites function definitions so that, on function entry, a new

entry is pushed onto this stack, and on function return, that

entry is popped.

Advantages: Since all libraries reside within the same

frame, they can interact using synchronous RPCs. As dis-

cussed earlier, synchronous RPCs simplify cross-domain

interactions and make applications easier to understand.

Rewriting systems also allow libraries to exchange data by

reference instead of by value (as postMessage() requires).

Pass-by-reference is safe because the security runtime san-

itizes objects as they cross isolation boundaries, wrapping

the objects in proxies that only reveal sensitive properties

to authorized execution contexts. Using pass-by-reference,

applications can avoid complex marshaling operations that

postMessage()-based sharing may require.

Disadvantages: Compared to frame-based systems,

rewriting solutions impose high performance costs. Whereas

iframe isolation is implemented by fast C++ code inside

the browser, rewriting systems use application-level checks

that are implemented in JavaScript. Depending on the ap-

plication, these checks can reduce performance by 10x or

more [12], [22], [31]. Since multiple, untrusted libraries are

forced to share the single DOM belonging to a single frame,

the rewriter must expose a virtualized DOM interface to each

library. The security checks in this virtualized DOM further

reduce performance. Rewriting systems also force develop-

ers to write code in a new JavaScript dialect which has non-

<html>
<head>
<title>A Pivot app</title>
<script src="Pivot-master.js"></script>

</head>
<body>
<script>

var satX = {url: "http://x.com/x.html",
namespace: "x"};

var satY = {url: "http://y.com/y.html",
namespace: "y"};

var urlsToLoad = [satX, satY];
Pivot.createSatellites(urlsToLoad);

//Additional trusted master code . . .
</script>

</body>
</html>

Figure 5: The master frame of a simple Pivot application.

standard semantics as a result of restricted operations and

forbidden (but occasionally useful) statements like eval().

D. Summary

Historically, iframe isolation has provided high perfor-

mance, but it has required asynchronous, pass-by-value

RPCs. Rewriting systems provide synchronous pass-by-

reference RPCs, but performance is poor, and developers

cannot use raw JavaScript. Ideally, developers could use the

full, unconstrained JavaScript language to write RPCs that

are synchronous, high-performance, and capable of using

pass-by-reference arguments. In the next section, we de-

scribe how Pivot achieves three of the four goals, providing

synchronous, fast mashups that are written in raw JavaScript.

We describe how the unmet goal (pass-by-reference RPC

arguments) is difficult to implement efficiently.

III. DESIGN

At initialization time, a Pivot application consists of a

single frame (see Figure 5). This frame contains three

items: the trusted JavaScript code belonging to the Pivot

master library; the trusted, application-specific JavaScript

code which implements sensitive operations; and a list of

URLs representing untrusted content to load in the satellite

frames. Pivot’s master library is responsible for creating new

satellites and routing RPC messages between the satellites.

Each satellite frame contains rewritten (but untrusted)

application code, and an untrusted Pivot scheduler. A satel-

lite’s generator function (§III-A) yields to its local scheduler

upon invoking an RPC. The scheduler sends the RPC

request to the master frame, receives the response from the

master frame, and restarts the local generator function. The

scheduler also maintains the queue of deferred asynchronous

event handlers. Using this queue, the scheduler maintains the

illusion of single-threaded execution within a frame (§III-B).

Figure 6 provides an example of a satellite frame.



<html>
<head>
<title>A satellite frame</title>
<script src="Pivot-satellite.js"></script>

</head>
<body>
<script>

//Declare some functions . . .
function md5(data){...};
function sha1(data){...};

//. . . and make those functions
//externally visible as RPC names.
Pivot.registerRPC("md5", md5);
Pivot.registerRPC("sha1", sha1);

//Invoke an RPC declared by an
//external compression library.
var gzip = Pivot.getFunction("compression",

"gzip");

//Invoke the RPC synchronously, just
//like a local function.
var compressedStr = gzip("abcdefg . . .");

</script>
</body>
</html>

Figure 6: A satellite frame in a simple Pivot application. This

figure depicts the unrewritten version of the frame, i.e., this

is the code that the developer writes. See Section III-A for

a description of how Pivot rewrites code.

A. Rewriting: Creating Generators

Each JavaScript frame represents a single-threaded exe-

cution context. When a frame loads, it executes top-level

code that is equivalent to the main() function of a C

program. Once the top-level code finishes, the browser can

fire application-defined event handlers in response to asyn-

chronous events like user inputs or network activity. In this

section, we ignore asynchronous event handlers and describe

how to transform the top-level code into a generator. In

Section III-B, we discuss how Pivot supports asynchronous

event handlers.

Figure 7(a) provides a simple example of RPC invocation.

From the developer’s perspective, the RPC invocation looks

like a normal JavaScript function call. However, Pivot

rewrites the RPC call and adds bookkeeping code to

coordinate the behavior of the satellite frame and the master

frame.

Creating the generator function: First, Pivot wraps the

top-level application code in a function called program()
(see Figure 7(b)). Pivot replaces the RPC import statement

(Pivot.getFunction()) with code that defines a gener-

ator function. This generator represents a client-side RPC

stub. When invoked, the stub uses postMessage() to send

an RPC request to the master frame. The stub then yields the

special value Pivot.RPC_YIELD. Later, when the generator

resumes execution, it assumes that the local Pivot library has

var sha1 = Pivot.getFunction("crypto",
"sha1");

var retVal = sha1("foo");

(a) The unrewritten code invokes an RPC and stores the result.

//Pivot wraps the entire application in a
//generator function called "program".
var program = function(){
//Pivot rewrites the sha1 RPC stub
//to send a postMessage() request
//to the master frame, then yield.
var sha1 = function(){

postMessage(window.parent, //The master frame.
{namespace: "crypto",
funcName: "sha1",
args: Pivot.serialize(arguments)});
//The "arguments" keyword is a
//predefined JavaScript array
//containing a function’s arguments.

yield Pivot.RPC_YIELD;

//When control flow reaches here, it
//means that Pivot has restarted the
//yielding RPC stub, placing the RPC
//return value in Pivot.RPCRetVal.
yield Pivot.deserialize(Pivot.RPCRetVal);

};

//The next six lines are the rewritten
//version of "var retval = sha1(’foo’)".
var __tmp__, __gen__ = sha1("foo");
while((__tmp__ = __gen__.next()) ==

Pivot.RPC_YIELD){
yield Pivot.RPC_YIELD;

}
var retVal = __tmp__;

yield Pivot.CALL_CHAIN_FINISHED;
};
program = program(); //Get the actual generator.

(b) The rewritten code is a generator that yields upon RPC invocation.

Figure 7: Transforming an application into a generator

function.

received the RPC response and placed the response in the

special value Pivot.RPCRetVal. The stub simply returns

the value to the local caller of the stub.

Pivot rewrites each function call site to check for the

special return value Pivot.RPC_YIELD. If a function

returns this value, it means that the function (or something

in its downstream call chain) invoked an RPC. If a call

site receives a Pivot.RPC_YIELD value, that call site will

yield that value as well. This yielding occurs all the way

up the call stack, creating a chain of paused generator

functions that is rooted by the program() function. Note

that, although Pivot rewrites every function invocation, it

only has to unwind and rewind call stacks if an RPC is

invoked.

The local scheduler: Figure 8 depicts Pivot.run(). This

function issues the initial call to program(), and it is

the function to which program() yields. If program()
returns Pivot.RPC_YIELD, then Pivot.run() sim-



Pivot.run = function(){
var retVal = program.next();
switch(retVal){

case Pivot.RPC_YIELD:
//Need to wait for the master
//to send an RPC response via
//postMessage() . . .
return;

case Pivot.CALL_CHAIN_FINISHED:
//Do we need to run deferred
//handlers for asynchronous
//events?
Pivot.drainQueue();
return;

default:
alert("Error!");
break;

}
}

Figure 8: The Pivot scheduler simply invokes a generator

function (Figure 7(b)) and checks whether it yielded due to

an RPC invocation.

//Handle incoming postMessage()s.
Pivot.handlePM = function(evt){

function(evt){
switch(evt.data.type){
case Pivot.RPC_RESPONSE:

//Local code invoked an RPC, and we
//have received the response. Resume
//execution of local RPC stub!
Pivot.RPCRetVal = evt.data.RPCData;
Pivot.run();
break;

case Pivot.RPC_REQUEST:
//External satellite wants to call
//a locally defined function.
var retVal = Pivot.callLocalFunc(evt);
var resp = {type: Pivot.RPC_RESPONSE,

RPCData: retVal};
evt.source.postMessage(resp,

window.parent);
break;

default:
alert(‘‘Error!’’);

}

};
window.addEventListener("message",

Pivot.handlePM);

//Start the rewritten application!
Pivot.run();

Figure 9: At the bottom of a satellite frame, Pivot places

code to respond to postMessage()s and to start the frame’s

generator function.

ply terminates, and its satellite frame waits for an

RPC response via postMessage(). If program() re-

turns Pivot.CALL_CHAIN_FINISHED, then Pivot.run()
knows that program() has terminated naturally, i.e., it

has no more top-level code to run (see the bottom of

Figure 7(b)). In this case, Pivot.run() knows that it is

now safe to execute any deferred event handlers. We discuss

how Pivot processes these handlers in Section III-B.

RPC responses: Figure 9 shows the postMessage()
handler that Pivot inserts into each satellite. When the

satellite receives an RPC response, Pivot extracts the

RPC result from the postMessage() data, stores it

in Pivot.RPCRetVal, and invokes Pivot.run().

Pivot.run() invokes the paused program() routine.

program() resumes execution at the top of the

while-loop which invokes the sha1() RPC stub (see

Figure 7(b)). When the stub resumes, it finds the

RPC result in Pivot.RPCRetVal. The stub returns

that value to program(). program() consumes the

value and then terminates by yielding the special

Pivot.CALL_CHAIN_FINISHED value. This signals

to Pivot.run() that the program’s top-level code is done.

Summary: Figures 7(b), 8, and 9 collectively represent the

rewritten version of the simple application in Figure 7(a).

Figure 10 depicts the end-to-end RPC control flow.

B. Deferring Asynchronous Events

From the application’s perspective, a standard frame is

single-threaded and non-preemptive—at any given moment,

at most one application-defined call chain is executing. An

application can define callbacks which fire in response to

asynchronous events, but a callback’s execution can never

overlap with the execution of another callback or the appli-

cation’s top-level code.

As currently described, Pivot RPCs can violate these con-

currency semantics. This is because the browser’s JavaScript

scheduler is unaware of Pivot’s application-level scheduler.

For example, suppose that a satellite frame defines a callback

handler for mouse clicks. If the frame makes an RPC, the

frame’s generator chain will yield to Pivot, and Pivot will

consider the frame to be paused. However, while the RPC is

in-flight, the user may click on a visual element within the

frame, causing the browser to fire the mouse callback. The

callback will fire while the RPC is still in-flight, violating

developer expectations that Pivot RPCs act like regular, non-

yielding function calls.

To preserve the expected concurrency semantics, Pivot

rewrites asynchronous event handlers so that they are sched-

uled by Pivot instead of the browser. Pivot’s scheduler then

ensures that each satellite has only one active call chain

at any given time. Whereas Pivot uses static rewriting to

instrument function call sites, it uses dynamic patching of the

JavaScript runtime [21], [23] to help the static rewriter en-

force single-threaded semantics. Pivot redefines the registra-

tion interfaces for asynchronous event handlers, interposing

on timer interfaces like window.setTimeout(), GUI inter-

faces like DOMNode.addEventListener(), and network

interfaces like XMLHttpRequest.addEventListener().

The modified registration interfaces simply wrap each han-

dler in code that adds the real handler to Pivot’s deferred

execution queue.



Satellite1 Satellite2Master

Pivot.run()
program()
sha1(“foo”) postMessage()

<“crypto”, “sha1”,
“foo”>

Satellite1 Satellite2Master

program()

sha1(“foo”)
Pivot.routeRPC()

<“crypto”, “sha1”,“foo”>

Satellite1 Satellite2Master

program()

sha1(“foo”)
Pivot.handlePM()

sha1(“foo”)
postMessage()

<“Satelli
te1",

“b4d12…”>

Satellite1 Master

Pivot.handlePM() Pivot.routeRPC()

“b4d12…”

Resume

Pivot.run()

1 2

3 4

Satellite2

postMessage()

program()

sha1(“foo”)

postMessage()

Figure 10: The control flow of the RPC from the running example.

Step 1: The satellite frame begins to execute. Pivot.run() invokes the satellite’s generator function program() (see

Figure 7(b)); in turn, this generator invokes the RPC stub sha1(). The stub issues a postMessage() to the master frame

and then yields control. Upon detecting that sha1() has yielded, program() yields too. Pivot.run() then terminates.

Step 2: Satellite frame 1 saves the generator chain belonging to program() and sha1(). Meanwhile, the master frame

handles the incoming postMessage(), routing it to satellite frame 2, which implements RPCs belonging to the “crypto”

namespace.

Step 3: Satellite frame 2 receives the RPC request, invokes the sha1() function, and returns the result to the master frame,

tagging the result with the name of the destination frame.

Step 4: The master frame delivers the RPC response to satellite frame 1. The postMessage() handler invokes

Pivot.run(), which invokes the paused program() function; in turn, program() invokes the yielded sha1() stub,

which returns the RPC result to the call site in program().

Pivot.__setTimeout__ = window.setTimeout;
window.setTimeout = function(rewrittenCb, ms){

var wrappedCb = function(){
Pivot.deferredQ.append(rewrittenCb);

};
Pivot.__setTimeout__(wrappedCb, ms);

};

Figure 11: Dynamically interposing on the browser’s inter-

face for registering timer callbacks.

The JavaScript language has powerful reflection capabil-

ities, and to a first approximation, all JavaScript objects

are mutable, enumerable dictionaries. Thus, to interpose on

an event registration interface, Pivot simply assigns Pivot-

defined code to the relevant object property, as shown in

Figure 11. In practice, JavaScript’s reflection interfaces have

subtle semantics, and these interfaces are implemented in

semi-incompatible ways across different browsers. Thus,

Figure 11 provides a simplified description of Pivot’s dy-

namic patching. We defer a detailed description of JavaScript

reflection semantics to other work [21], [23].

So, whenever the browser tries to execute an asynchronous

handler, Pivot just adds that handler to a Pivot-controlled

queue. To maintain the illusion of single-threaded exe-

cution, Pivot only drains this queue when a frame has

no in-flight RPCs. Pivot detects this condition inside the

local scheduler (Figure 8). When a generator chain yields

Pivot.CALL_CHAIN_FINISHED, Pivot is guaranteed that

there are no active generator chains inside that frame. Thus,

Pivot.drainQueue() can safely iterate through the list of

deferred callbacks and execute each one.

Pivot rewrites all function call sites, including those inside

event handlers. Thus, deferred event handlers can invoke

RPCs. As shown in Figure 12, Pivot.drainQueue()
detects when a callback cb returns Pivot.RPC_YIELD.

When this happens, Pivot.drainQueue() sets the global

variable program to cb, and then immediately terminates

execution. Pivot’s standard RPC mechanisms will then en-

sure that the RPC is completed, and that the rest of the

deferred handlers are eventually executed.

Pivot executes callbacks in FIFO order to prevent star-

vation of early-arriving callbacks. If a callback executes a



Pivot.drainQueue = function(){
while(Pivot.deferredQ.length > 0){

var cb = Pivot.deferredQ.pop();
var retVal = cb.next();
switch(retVal){

case Pivot.RPC_YIELD:
//The callback made an RPC!
//We cannot issue any more
//deferred handlers until
//this RPC completes . . .
program = cb;
return;

case Pivot.CALL_CHAIN_FINISHED:
//The deferred handler did
//not issue an RPC, so it’s
//safe to execute another one.
break;

default:
alert("Error!");
break;

}
}

};

Figure 12: Executing deferred asynchronous callbacks.

long-running Pivot RPC, other callbacks will stall. This is

no different than the impact of a slow local function call

in a single-frame system like Jigsaw. However, Pivot uses

RPC timeouts to keep a buggy or malicious satellite from

indefinitely blocking a caller frame (§III-D).

C. Sandboxed Iframes

By default, iframes from the same origin can interact

with each other’s JavaScript state using references like

window.parent. If a developer wishes to self-host multiple

untrusted libraries, the developer should use the best practice

of serving each library from a separate origin. Alternatively,

Pivot can automatically place each library into a “sand-

boxed” iframe [35] which we describe below.

The new HTML5 standard extends the <iframe> tag

with an optional sandbox attribute. By default, sandboxed

frames can only display visual content—they cannot run

plugins, execute JavaScript code, or include forms. By

specifying parameters for the sandbox tag, e.g., <iframe
sandbox="allow-scripts">, the creator of the frame

can selectively enable permissions. However, if the sand-

boxed iframe does not have the allow-same-origin per-

mission, the browser gives the frame a unique, random

origin that is only known to the browser. The browser uses

this unique origin, not the true one, when applying the

same-origin policy to the sandboxed frame. So, by default,

JavaScript in the sandboxed frame cannot access content

belonging to any real origin. For example, the frame will

be unable to access cookies or other client-side storage

belonging to its true origin; the frame will also be unable

to send XMLHttpRequests to its home server. Even if the

sandboxed frame has the same true origin as its parent frame,

it cannot use JavaScript references like window.parent to

inspect the JavaScript state of its parent. Sandboxed frames

are allowed to communicate with their parent frames using

postMessage(), and they can display visual information

if their parent frames have given them a non-zero sized

viewport.

Pivot can optionally place each untrusted library into

a sandboxed frame that lacks the allow-same-origin
permission. By doing so, Pivot frees the developer from the

burden of maintaining separate origins for each self-hosted

library. Furthermore, if a master frame gives a sandboxed

satellite frame a zero-sized viewport, the satellite is restricted

to performing pure computation. All accesses to the network,

the visual display, user input, and local storage must be

requested through postMessage(), such that the master

frame vettes each request and executes the authorized ones

on behalf of the untrusted satellite.

D. Discussion

The JavaScript runtime provides built-in functions like

Math.random() and Date(). These functions never return

Pivot.RPC_YIELD. Thus, Pivot correctly treats these func-

tions like application-defined functions that are not RPCs

(although Pivot does need a call-site check not shown in

Figure 7(b) which tests whether a function is an application-

defined generator or a built-in function). A few built-in

methods internally call an application-defined function; for

example, Array.sort() uses such a function to compare

array elements. Pivot disallows such functions from invoking

RPCs, since Pivot cannot force C++ code inside the browser

to yield to Pivot’s application-level scheduler.

Figure 7(b) provides a simple example of how Pivot

rewrites a function call that is the right-hand side for an

assignment operation. Function calls can arise in a variety

of additional contexts—a function’s return value can be the

test condition for an if-statement, the argument to another

function, and so on. For a given function call, Pivot’s

general rewriting strategy is to find the lowest ancestor

in the abstract syntax tree that is a block statement. The

hoisted, rewritten call which checks for Pivot.RPC_YIELD
is inserted as a new AST child for the block; this child

immediately precedes the one which contained the original

function call. Pivot then replaces the original function call

with the temporary value set by the hoisted, rewritten call.

A buggy or malicious satellite that is servicing an RPC

may hang, i.e., the satellite may never return a value to

the Pivot scheduler. To prevent a denial-of-service attack on

the RPC initiator, Pivot will timeout an RPC that is taking

too long to complete, forcing the RPC to return an error

value to the initiator. The Pivot scheduler (Figure 8) imple-

ments these semantics by setting a JavaScript timer when

a generator yields the value Pivot.RPC_YIELD (the actual

timer code is not shown in the simplified figure). When the

Pivot postMessage() handler receives an RPC response

(Figure 9), Pivot cancels the relevant timer. If the timer is



not canceled, it will eventually restart the satellite frame

which initiated the hung RPC, setting Pivot.RPCRetVal
to an error value.

Pivot relies on the browser to enforce memory isolation

between the trusted master frame and the untrusted satellite

frames. However, nothing prevents a satellite from trying to

subvert the Pivot infrastructure within its own frame. For

example, a satellite can directly generate RPC requests by

crafting its own postMessage() calls. A satellite can also

try to attack Pivot’s virtualized event framework, e.g., by

looking for baroque JavaScript aliases to the underlying non-

virtualized functions [19]. Such chicanery does not affect

end-to-end application security because Pivot does not trust

anything in a satellite, including the satellite’s local Pivot

code. The master frame verifies that all RPC messages

are well-formed, destined for extant frames, and sent from

domains which are allowed to contact the specified destina-

tions. Thus, if a satellite directly invokes postMessage(),

it can only invoke RPCs that the trusted master frame already

allows. The postMessage() interface only exchanges im-

mutable strings, so it cannot be used to tamper with master

frame objects by reference. If a satellite disrupts Pivot’s

local scheduling framework, the satellite may disrupt its own

single-threaded execution semantics, but other frames will

not be affected.

Ideally, a mashup isolation system would provide syn-

chronous RPC semantics with pass-by-reference sharing.

Pivot provides the former by interposing on function calls

and translating cross-domain calls into generator yields.

However, Pivot uses postMessage() as its cross-domain

transport layer; since postMessage() exchanges im-

mutable strings, Pivot provides pass-by-value cross-domain

sharing. One could emulate pass-by-reference by interposing

on object property accesses, and translating each write to an

RPC that is reflected to the object’s “home” frame. However,

it seems difficult to make such a scheme fast.

IV. IMPLEMENTATION

Our client-side Pivot system consists of three li-

braries: Pivot-satellite.js, Pivot-master.js, and

pmLib.js, which implements a postMessage() RPC pro-

tocol that is used by the first two libraries. The three

libraries are 21 KB in total. To rewrite code, we use an

ANTLR [28] toolchain similar to the one used by Jigsaw.

The ANTLR parser translates JavaScript libraries into ASTs;

a custom Pivot rewriter modifies those libraries as described

in Section III and then converts the ASTs back to JavaScript.

V. EVALUATION

In this section, we compare Pivot to Jigsaw [22], a

state-of-the-art mashup framework that places all JavaScript

libraries in the same frame. Our evaluation demonstrates

three major points:

0

1000

2000

3000

4000

5000

Am
az

on AO
L

Bi
ng

Bl
og

Sp
ot

CN
N

Cr
ai

gs
lis

t
eB

ay
Fa

ce
bo

ok Go
Go

og
le

Li
nk

ed
In

Li
ve

M
SN

N
et

fli
x

Pi
nt

er
es

t
Tu

m
bl

r
Tw

itt
er

W
ik

ip
ed

ia
Ya

ho
o

Yo
uT

ub
e

Ed
ge

s 

Intra-Library Call Edges

Cross-Library Call Edges

Figure 13: Call graph edges in Alexa’s top 20 sites for the

US. A single edge represents one or more invocations of a

unique caller/callee pair.

• Using an empirical analysis of JavaScript call graphs

in real web applications, we demonstrate that the vast

majority of function calls do not cross library bound-

aries. Thus, Pivot’s trusted master/untrusted satellite

decomposition is a natural one (§V-A).

• Since Pivot places untrusted libraries in separate

frames, it does not need to rewrite those libraries if

they do not make synchronous RPC calls. In contrast,

Jigsaw must rewrite all libraries. By avoiding many

of the dynamic security checks associated with full

writing, Pivot RPCs are typically one to two orders of

magnitude faster than Jigsaw RPCs (§V-B). Overall, a

Pivot version of the Silo web application [20] is 12.6

times faster than an equivalent Jigsaw version.

• Firefox’s current implementation of yield is slow

(§V-C), so rewritten Pivot code is currently slower than

rewritten Jigsaw code (§V-E). However, Pivot rewrites

less code than Jigsaw, so overall, Pivot applications will

be faster.

We ran all experiments on a machine with two 2.67 GHz

processors and 4 GB of RAM. All web pages were loaded

in Firefox v18.0.2. Firefox is currently the only browser to

implement the yield keyword; however, this keyword is an

official part of the upcoming JavaScript v6 specification [9],

and other major browsers will soon implement the keyword.

For example, Chrome already provides the feature in devel-

oper builds of the browser (although the implementation still

has some bugs, which is why we do not present performance

graphs for Pivot on Chrome).

A. Cross-library Call Graphs

To determine how often web pages make cross-library

function calls, we visited the top 20 websites in the United

States as determined by Alexa. We interacted with those

pages as a normal user might, e.g., by scrolling down to

force the page to dynamically load below-the-fold images.

As we interacted with each page, we used Firefox’s built-

in JavaScript debugger to capture a call tree for each site.



Amazon

Function % cross-lib % cross-lib

callers callees

<anonymous>(*,*) 5.37% 0%

init(*, *, *) 0% 0%

c.Event(*, *) 0% 0%

H() 0% 0%

type(*) 0% 0%

CNN

Function % cross-lib % cross-lib

callers callees

this._methodized() 5.69% 0%

$A(*) 0% 0%

Object.extend(*, *) 1.22% 0%

D(*) 0% 0%

extend(*, *) 0% 0%

Figure 14: The top five most invoked functions on Ama-

zon.com and CNN.com: how often those functions were

called by external libraries, and how often those functions

called functions defined by external libraries. We omit results

for other sites due to space, but other sites had similar or

lower numbers of cross-library edges.

As Figure 13 shows, the vast majority of caller/callee edges

do not straddle library boundaries. Firefox’s debugger only

records unique caller/callee edges, not the number of times

a page traverses those edges, so Figure 13 still admits

the possibility that the small number of cross-library edges

are heavily traversed. To investigate this hypothesis, we

used a DynaTrace analytics web proxy [6] to instrument

each JavaScript function in each page and collect per-edge

traversal statistics. We found that cross-library calls are

exceedingly rare, as shown in Figure 14. Furthermore, the

cross-library edges almost always involved a caller residing

in core application “glue” code, and a callee residing in a

library like jQuery which is devoted to one task and which

rarely makes outcalls to the core application. Thus, Pivot’s

architecture (a small, trusted master and multiple untrusted

satellites) is a natural fit for how developers already design

web pages.

B. End-to-end RPC Latency

To test the end-to-end latencies of cross-domain RPCs, we

built a mashup application that integrated three untrusted

JavaScript libraries. We picked these particular libraries

because they were used to evaluate Jigsaw in the original

Jigsaw paper [22]. Our mashup application, called Shard,

is a privilege-separated implementation of the Silo applica-

tion [20]. The client-side Shard JavaScript collaborates with

a web server to layer a delta-encoding protocol atop HTTP.

When a user needs to fetch an HTML, JavaScript, or CSS

object, Shard downloads that object using an AJAX con-

nection. Shard then splits that object into chunks, calculates

Shard.js
(trusted)

Local disk

JsonRPC.js
(untrusted)

Web server

SHA1.js
(untrusted)

DomSQL.js
(untrusted)

Figure 15: Architecture of the Shard mashup: fetching data

from a web server, calculating the hash of the chunks, and

storing those chunks on the local disk.

a hash for each chunk, and stores each < hash, chunk >
pair in local DOM storage [33]. Later, if the user needs to

fetch the latest version of that object, Shard sends a list

of locally resident chunk ids to the server. If the object

has changed, the server only sends the new object chunks,

avoiding the cost of sending the entire object. Once Shard

has received the new chunks, it fetches the relevant old

chunks from DOM storage, reconstructs the new object, and

uses document.write() to insert the new object into the

page’s HTML.

As shown in Figure 15, Shard fetches objects using

the JsonRPC AJAX library [11]. Shard uses the Stanford

JavaScript Crypto Library [30] to calculate SHA1 chunk

ids, and Shard writes those chunks to DOM storage using

DomSQL [5], a JavaScript library which layers a SQL query

interface atop DOM storage.

We built two versions of Shard, one that used Pivot,

and another that used Jigsaw. The Pivot version placed

unrewritten library code in each satellite frame; the code in

the trusted master frame was rewritten to allow the master

to make synchronous RPCs to satellite-defined functions. In

the Jigsaw version of Shard, each library had to be rewritten

by the Jigsaw compiler; this ensured that it was safe to

place mutually untrusted libraries within the same frame.

As a performance baseline, we also implemented a version

of Shard which used standard JavaScript and which included

the unrewritten libraries in the same frame.

The first three results in Figure 16 compare the perfor-

mance of Shard RPCs in Jigsaw and Pivot. Results are

normalized with respect to the performance of the baseline

implementation. Note that, for the JsonRPC calls, Shard con-

tacted a localhost web server. This allowed us to minimize

networking costs and focus on the CPU overhead of the

isolation frameworks.

For RPCs to the SHA1 library and DomSQL, Pivot was

20.6x faster and 128.2x faster than Jigsaw. Because Jigsaw



1

10

100

SHA1 DomSQL JsonRPC Bubblemark

Re
la

tiv
e 

sl
ow

do
w

n 
of

 
re

w
rit

te
n 

co
de

 (l
og

 sc
al

e)
 

Jigsaw

Pivot

Figure 16: Normalized, end-to-end RPC latencies: Jigsaw

versus Pivot. RPC latency is defined as the time that elapses

between the invocation of an RPC and the reception of

the RPC result. Thus, RPC latency includes both message

transfer costs, and the computational costs of handling the

RPC request (e.g., issuing a DomSQL operation).

placed all libraries in the same frame, it had to inject costly

dynamic security checks into each library. Pivot avoided

those costs by placing unrewritten libraries in separate

frames. Jigsaw also had to virtualize the DOM interface,

presenting each library with a DOM emulation layer that

performed security checks before possibly accessing the real

DOM. Thus, when a Jigsaw library tried to access DOM

storage, it had to interact with an additional software layer

that Pivot applications did not have to traverse (each Pivot

satellite lived in its own frame and had private, isolated

DOM state).

Jigsaw virtualizes the XMLHttpRequest object, but Pivot

and Jigsaw had similar performance for JsonRPC calls

(1.15x slowdown versus 1.14x slowdown). This is because,

even though JsonRPC contacted a localhost server, the end-

to-end latency of the RPC was still dominated by HTTP

transfer costs.

The final result in Figure 16 shows the performance

of a simple mashup application that invoked RPCs on

Bubblemark [10], a DOM-intensive animation program. The

trusted application core issued commands to the Bubble-

mark library like “start animation,” “stop animation,” and

“increase the number of animated objects.” Pivot is much

faster than Jigsaw for Bubblemark RPCs, just like it is faster

for DomSQL RPCs, because Pivot does not incur DOM

virtualization costs.

C. Generator Overhead

If a library does not need to issue synchronous RPC

calls, then Pivot can place the unrewritten library in an

iframe and avoid the rewriting costs incurred by Jigsaw.

However, when rewriting is necessary (e.g., in a master

frame), Pivot leverages the JavaScript yield statement to

implement generator functions. Firefox’s current implemen-

tation of generators is very slow. Calling an unrewritten

null function required 0.03 microseconds. However, creating

a new generator took an order of magnitude longer (0.39

microseconds), and calling next() on a null generator

0.01

0.1

1

10

100

1000

M
ic

ro
se

co
nd

s p
er

 lo
ca

l c
al

l 
(lo

g 
sc

al
e)

 

Standard JavaScript
Jigsaw
Pivot

Figure 17: Invocation latencies for a local null function and

recursive local null functions, demonstrating the impact of

generator overhead.

was similarly slow (0.44 microseconds). We also found

that accessing an object property within a generator was

22 times slower than accessing an object property within

a regular function. There is no fundamental reason why

generator overhead must be this high, since there is prior

work from the programming languages community which

describes how to make generators fast [16]. Thus, we expect

generator performance to improve once the new JavaScript

specification is implemented in more browsers and there

is more developer pressure to make yield fast. Until that

happens, Pivot’s ability to safely integrate unrewritten code

is crucial for performance.

D. End-to-end Performance Improvement

To compare the end-to-end performance of our Shard

implementations, we measured the total time that an im-

plementation needed to fetch a 50 KB web object, split the

object into chunks, and store those chunks in DOM storage.

This end-to-end time captured both RPC latencies and the

computation time within the trusted application core and

the untrusted libraries. Overall, Shard on Pivot was 12.6

times faster than Shard on Jigsaw. Even though Pivot RPCs

can be 100 times faster than Jigsaw RPCs (Figure 16),

generator overhead within the rewritten master Shard frame

(Figure 17) can make rewritten Pivot code slower than

rewritten Jigsaw code. Nonetheless, end-to-end, Pivot is still

an order of magnitude faster than Jigsaw due to faster RPCs

and Pivot’s ability to selectively rewrite code. As yield
implementations get faster, we expect Pivot’s performance

advantage to grow.

E. RPC Communication Overheads

Figure 18 compares Jigsaw and Pivot, showing the end-to-

end latencies for a null RPC that immediately returns, and a

recursive null RPC that calls itself n times before returning

null. These tests isolate the raw cost of RPC invocation,

ignoring any computation that an RPC library might do.

Jigsaw’s function invocation overheads are 3–5 microsec-

onds across all tests. Pivot’s overheads are slower by two



1

10

100

1000

M
ic

ro
se

co
nd

s p
er

 R
PC

 
(lo

g 
sc

al
e)

 
Jigsaw (rw-sat)
Pivot (no-rw satellite)
Pivot (rw-satellite)

Figure 18: End-to-end RPC latencies for a null RPC and

recursive null RPCs: Jigsaw, Pivot with an unrewritten

satellite, and Pivot with a rewritten satellite.

0

20

40

60

80

SHA1 DomSQL JsonRPC Bubblemark

Re
w

rit
te

n 
co

de
 si

ze
 (K

B)
 Jigsaw

Pivot

Figure 19: Relative expansion of rewritten code: Jigsaw

versus Pivot.

orders of magnitude, ranging from 369–491 microseconds.

There are several sources for this overhead. First, each Pivot

RPC requires two postMessage() roundtrips (one between

the calling satellite and the master, and another between

the master and the responding satellite). These RTTs add

roughly 230 microseconds to each Pivot RPC. Second, as

explained in Section V-C, generator overhead grows as the

depth of the call chain increases. This explains why, in

Figure 18, the white bar slowly grows compared to the

striped bar.

An asynchronous postMessage() framework like Post-

Mash [4] incurs the postMessage() RTT costs described

above; however, such a framework avoids the additional gen-

erator latencies that Pivot introduces. If a particular mashup

application only requires asynchronous cross-domain com-

munication, then Pivot’s generators add unnecessary over-

head, and a framework like PostMash is more appropriate.

However, for applications that do require synchronous RPCs,

Pivot can provide order-of-magnitude performance improve-

ments over other synchronous frameworks (§V-D).

F. Size of Rewritten Code

Figure 19 depicts the size of fully rewritten libraries in

Jigsaw and Pivot. Pivot’s rewritten libraries are similar in

size to those of Jigsaw, so Pivot does not fundamentally

change the amount of code that a secure web application

must download. However, Pivot has the ability to safely

integrate unrewritten libraries as well, and such libraries are

typically 2–4 times smaller than the rewritten versions.

VI. RELATED WORK

Leveraging browser-provided isolation: TreeHouse [14]

and Privilege-separated JavaScript (PSJ) [3] use browser-

enforced protection domains. PSJ employs frames, and

TreeHouse uses web workers. Web workers are similar

to frames; each worker has a separate JavaScript runtime,

and communicates with other workers and frames using

postMessage(). The primary difference between a frame

and a web worker is that the latter does not have a DOM

tree.

Pivot, TreeHouse, and PSJ all use a trusted coordinator

frame to route messages and determine which sensitive

operations can be invoked by untrusted code. All three

systems also place a control stub in each untrusted frame.

However, Pivot and PSJ do not trust those control stubs,

whereas TreeHouse does. Since TreeHouse does not rewrite

untrusted code, malicious libraries can use attacks like

prototype poisoning (§II-A) to tamper with TreeHouse’s

control stubs.

Neither TreeHouse nor PSJ provide synchronous RPC

interfaces. Thus, porting legacy applications to TreeHouse

and PSJ will often require non-trivial refactoring to convert

synchronous code paths to asynchronous ones. Furthermore,

the standard DOM interface exposes many synchronous

methods, e.g., to access persistent storage, register event han-

dlers, and mutate the DOM tree. TreeHouse and PSJ expose

virtualized DOM interfaces, but these interfaces can only

export asynchronous methods. Thus, porting DOM-intensive

legacy applications to TreeHouse and PSJ is challenging,

and writing new applications for these frameworks requires

programmers to learn a new set of DOM semantics. In

contrast, Pivot’s synchronous interfaces make it easy to port

old applications and write new ones that use familiar browser

APIs. For example, the Pivot application from Section V-B

accesses DOM storage using the standard synchronous in-

terface.

PostMash [4] is another framework which uses frames

as isolation containers and postMessage() as the cross-

domain communication primitive. To include an untrusted

library, an integrator page includes a JavaScript stub written

by the library’s developer; this stub exports the library’s

API, and implements RPC requests and responses via

postMessage(). Since the stub runs in the integrator’s

frame, it must be trusted. In contrast, Pivot places all code

from untrusted libraries in external frames, meaning that

the integrating master frame does not need to trust any

code from the satellites. Pivot also provides synchronous

interfaces, unlike PostMash. However, PostMash does not

rewrite any code, so it avoids the overhead of the dynamic

checks that Pivot inserts at function call sites.

SMash [15] uses frames as isolation containers, but it

leverages fragment identifiers in URLs as the cross-frame

communication primitive. This communication channel



leverages the fact that, in older browsers, parent frames and

child frames could modify each other’s URLs, even if they

were from different origins. This technique was popular in

older browsers, before postMessage() was standardized.

However, fragment communication no longer works on

many popular browsers, and postMessage() is now the

standard mechanism for cross-frame communication.

Rewriting-based isolation: Caja [24] and Jigsaw [22] use

code rewriting to safely place mutually untrusting code

within the same frame. Like Pivot, both systems provide

synchronous RPCs. However, Section V shows that Pivot

can provide superior performance by selectively rewriting
code—only the synchronous application core needs to be

rewritten, and untrusted libraries that do not make syn-

chronous RPCs can be left unrewritten (and thus free of

slow, dynamic security checks).

Pivot only supports pass-by-value cross-domain sharing.

In contrast, Caja and Jigsaw provide a brokered form

of pass-by-reference in which a wrapper object mediates

untrusted accesses to a sensitive underlying object.

Converting asynchronous JavaScript to synchronous
JavaScript: Narrative JS [25] uses rewriting to transform

asynchronous JavaScript code into a pseudo-synchronous

form. However, Narrative JS requires programmers to use

a special syntax for asynchronous calls; more generally,

it requires developers to explicitly reason about how to

safely execute interleaved threads within the same frame.

This breaks the standard JavaScript programming model in

which each frame has only one thread. In contrast, Pivot’s

true synchronous interfaces avoid the race conditions that

are endemic to pseudo-synchronous frameworks [18], [22].

The Narrative JS compiler does not leverage the yield
statement that is built into the JavaScript engine, so it

has to manually generate JavaScript-level code to manage

generator state, and only top-level functions in call chains

can yield. Narrative JS is not a security framework, so it

does not provide features like cross-domain isolation or RPC

registration interfaces. Similar rewriting solutions include

jwacs [36] and StratifiedJS [27].

The task.js library uses the built-in yield statement to

provide a cooperatively multithreaded environment within

a single frame [26]. However, only the top-most function

in a call chain is allowed to yield; in contrast, Pivot uses

rewriting to allow any function in a call chain to be an

RPC. task.js requires programmers to explicitly insert yields

and use a special syntax to manage execution threads.

Pivot introduces no new keywords or concurrency semantics.

task.js provides no security mechanisms to isolate untrusted

code, nor does it provide performance isolation—since all

tasks run in the same frame, a buggy or malicious task can

launch a denial-of-service attack on other tasks by spin-

looping.

Other systems: Pivot runs on today’s commodity browsers,

leveraging frames, yield, and postMessage() to provide

synchronous, pass-by-value sharing between domains. The

resulting security model is simple, and a natural fit for

many applications. Other mashup systems provide more

complicated (but more expressive) policy languages. For

example, several frameworks modify the JavaScript engine

to support transactional JavaScript, such that, if untrusted

code violates a security policy, the effects of that code can

be rolled back [8], [29]. Mash-IF [17] uses an IFC approach,

associating each domain’s JavaScript objects with security

labels, and using a modified browser to track taint and

enforce disclosure policies. OMash [7], object views [18],

Embassies [13], and MashupOS [34] provide additional

models for expressing cross-domain security policies.

VII. CONCLUSIONS

Pivot is a new isolation framework for web applications.

Pivot uses iframes as isolation containers, but leverages

rewriting to provide synchronous cross-domain RPCs. To

provide synchronicity, Pivot translates a frame’s JavaScript

code into a generator function. These generators are explic-

itly invoked by Pivot’s distributed cross-frame scheduler; this

scheduler layers an RPC mechanism atop postMessage()
calls. Each satellite frame exposes a public interface by reg-

istering local function references with Pivot. When a satellite

issues an RPC, its generator yields to the Pivot scheduler,

which then sends a postMessage() to the satellite that

implements the RPC. When Pivot receives a response, it

restarts the caller’s generator function.
Using the built-in isolation mechanisms provided by

iframes, Pivot can avoid rewriting libraries that respond

to, but do not make, synchronous RPC calls. By only

rewriting an application’s small, trusted core, Pivot avoids

the performance penalties incurred by rewrite-everything

frameworks which have to modify all code to ensure safety.

Experiments show that Pivot RPCs are up to two orders

of magnitude faster than those of Jigsaw, a state-of-the-art

rewrite-everything framework. Compared to other rewriting

solutions that implement pseudo-synchronous RPCs, Pivot

provides true synchrony without forcing developers to use

special function call syntax, a restricted version of the

JavaScript language, or new concurrency semantics.

REFERENCES

[1] B. Adida, A. Barth, and C. Jackson. Rootkits for JavaScript
Environments. In Proceedings of the USENIX Workshop on
Offensive Technologies, Montreal, Canada, August 2009.

[2] A. Adya, J. Howell, M. Theimer, W. Bolosky, and J. Douceur.
Cooperative Task Management without Manual Stack Man-
agement. In Proceedings of USENIX ATC, Monterey, CA,
June 2002.

[3] D. Akhawe, P. Saxena, and D. Song. Privilege Separation in
HTML5 Applications. In Proceedings of USENIX Security,
Bellevue, WA, August 2012.



[4] A. Barth, C. Jackson, and W. Li. Attacks on JavaScript
Mashup Communication. In Proceedings of Web 2.0 Security
and Privacy, Oakland, CA, May 2009.

[5] P. Boere. DOM-Storage-Query-Language: A SQL-inspired
interface for DOM Storage. http://code.google.com/p/
dom-storage-query-language/, 2011.

[6] Compuware. Compuware AJAX Edition: Free Web Perfor-
mance Analysis and Debugging Tool. http://www.compuware.
com/en_us/application-performance-management/products/
ajax-free-edition/overview.html, 2014.

[7] S. Crites, F. Hsu, and H. Chen. OMash: Enabling Secure
Web Mashups via Object Abstractions. In Proceedings of
CCS, Alexandria, VA, October 2008.

[8] M. Dhawan, C.-C. Shan, and V. Ganapathy. Enhancing
JavaScript with Transactions. In Proceedings of the European
Conference on Object-Oriented Programming (ECOOP), Bei-
jing, China, June 2012.

[9] Ecma International. Draft ECMAScript 6 Specification:
Generators. http://wiki.ecmascript.org/doku.php?id=harmony:
generators, February 20, 2014.

[10] A. Gavrilov. Bubblemark animation test: Silverlight
(JavaScript and CLR) vs DHTML vs Flash (Flex) vs WPF
vs Apollo vs Java (Swing). http://bubblemark.com/, 2009.

[11] G. Gherardi. JsonRPCjs. https://github.com/gimmi/jsonrpcjs,
2012.

[12] Google. Google-Caja: Performance of cajoled code. http://
code.google.com/p/google-caja/wiki/Performance, October 4,
2011.

[13] J. Howell, B. Parno, and J. Douceur. Embassies: Radically
Refactoring the Web. In Proceedings of NSDI, Lombard, IL,
April 2013.

[14] L. Ingram and M. Walfish. TreeHouse: JavaScript Sandboxes
to Help Web Developers Help Themselves. In Proceedings
of USENIX ATC, Boston, MA, June 2012.

[15] F. D. Keukelaere, S. Bhola, M. Steiner, S. Chari, and S. Yoshi-
hama. SMash: Secure Component Model for Cross-Domain
Mashups on Unmodified Browsers. In Proceedings of WWW,
Beijing, China, April 2008.

[16] O. Kiselyov, S. Peyton-Jones, and A. Sabry. Lazy v. Yield: In-
cremental, Linear Pretty-printing. In Proceedings of APLAS,
Kyoto, Japan, December 2012.

[17] Z. Li, K. Zhang, and X. Wang. Mash-IF: Practical
Information-Flow Control within Client-side Mashups. In
Proceedings of DSN, Chicago, IL, June 2010.

[18] L. Meyerovich, A. Felt, and M. Miller. Object Views: Fine-
grained Sharing in Browsers. In Proceedings of WWW,
Raleigh, NC, April 2010. ACM.

[19] L. Meyerovich and B. Livshits. ConScript: Specifying and
Enforcing Fine-grained Security Policies for JavaScript in the
Browser. In Proceedings of the IEEE Symposium on Security
and Privacy, Oakland, CA, May 2010.

[20] J. Mickens. Silo: Exploiting JavaScript and DOM Storage
for Faster Page Loads. In Proceedings of USENIX WebApps,
Boston, MA, June 2010.

[21] J. Mickens. Rivet: Browser-agnostic Remote Debugging for
Web Applications. In Proceedings of USENIX ATC, Boston,
MA, June 2012.

[22] J. Mickens and M. Finifter. Jigsaw: Efficient, Low-effort
Mashup Isolation. In Proceedings of USENIX WebApps,
Boston, MA, June 2012.

[23] J. Mickens, J. Howell, and J. Elson. Mugshot: Deterministic
Capture and Replay for JavaScript Applications. In Proceed-
ings of NSDI, San Jose, CA, April 2010.

[24] M. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay.
Caja: Safe active content in sanitized JavaScript. Google
white paper. http://google-caja.googlecode.com/files/
caja-spec-2008-06-07.pdf, June 7, 2008.

[25] N. Mix. Narrative JavaScript. http://www.neilmix.com/
narrativejs, 2014.

[26] Mozilla. task.js: Beautiful Concurrency for JavaScript. https:
//github.com/mozilla/task.js, March 21, 2013.

[27] Oni Labs. StratifiedJS: JavaScript plus Structured Concur-
rency. http://onilabs.com/stratifiedjs, 2011.

[28] T. Parr. The Definitive ANTLR Reference. Pragmatic Book-
shelf, Raleigh, North Carolina, 2007.

[29] G. Richards, C. Hammer, F. Nardelli, S. Jagannathan, and
J. Vitek. Flexible Access Control for JavaScript. In Proceed-
ings of OOPSLA, Indianapolis, IN, October 2013.

[30] E. Stark, M. Hamburg, and D. Boneh. Symmetric Cryptog-
raphy in JavaScript. In Proceedings of the Annual Computer
Security Applications Conference (ACSAC), Honolulu, HI,
December 2009.

[31] D. Synodinos. ECMAScript 5, Caja and Retrofitting Security:
An Interview with Mark S. Miller. http://www.infoq.com/
interviews/ecmascript-5-caja-retrofitting-security, February
25, 2011.

[32] R. von Behren, J. Condit, F. Zhou, G. Necula, and E. Brewer.
Capriccio: Scalable Threads for Internet Services. In Proceed-
ings of SOSP, Lake George, NY, October 2003.

[33] W3C Web Apps Working Group. Web Storage: W3C Work-
ing Draft. http://www.w3.org/TR/webstorage/, July 30 2013.

[34] H. Wang, X. Fan, J. Howell, and C. Jackson. Protection and
Communication Abstractions for Web Browsers in Mashu-
pOS. In Proceedings of SOSP, Stevenson, WA, October 2007.

[35] Web Hypertext Application Technology Working Group
(WHATWG). HTML Living Standard, Section 4.8.2: The
iframe element. http://www.whatwg.org/specs/web-apps/
current-work/#attr-iframe-sandbox, March 13, 2014.

[36] J. Wright. jwacs: Javascript With Advanced Continuation
Support. http://chumsley.org/jwacs/, 2006.


