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Abstract—Compromised websites that redirect web traffic to
malicious hosts play a critical role in organized web crimes,
serving as doorways to all kinds of malicious web activities
(e.g., drive-by downloads, phishing etc.). They are also among
the most elusive components of a malicious web infrastructure
and extremely difficult to hunt down, due to the simplicity of
redirect operations, which also happen on legitimate sites, and
extensive use of cloaking techniques. Making the detection even
more challenging is the recent trend of injecting redirect scripts
into JavaScript (JS) files, as those files are not indexed by search
engines and their infections are therefore more difficult to catch.
In our research, we look at the problem from a unique angle:
the adversary’s strategy and constraints for deploying redirect
scripts quickly and stealthily. Specifically, we found that such
scripts are often blindly injected into both JS and HTML files
for a rapid deployment, changes to the infected JS files are
often made minimum to evade detection and also many JS files
are actually JS libraries (JS-libs) whose uninfected versions are
publicly available. Based upon those observations, we developed
JsRED, a new technique for the automatic detection of unknown
redirect-script injections. Our approach analyzes the difference
between a suspicious JS-lib file and its clean counterpart to
identify malicious redirect scripts and further searches for similar
scripts in other JS and HTML files. This simple, lightweight
approach is found to work effectively against redirect injection
campaigns: our evaluation shows that JsRED captured most of
compromised websites with almost no false positives, significantly
outperforming a commercial detection service in terms of finding
unknown JS infections. Based upon the compromised websites
reported by JsRED, we further conducted a measurement study
that reveals interesting features of redirect payloads and a
new Peer-to-Peer network the adversary constructed to evade
detection.

I. INTRODUCTION

For years, the Internet community has been haunted by
increasingly sophisticated and organized cybercrimes, ranging
from exploits on vulnerable systems (e.g., drive-by downloads)
to all kinds of frauds and social engineering. Such criminal
activities have developed into mass underground businesses,
costing the world hundreds of billions of dollars every year
and victimizing hundreds of millions of Internet users [44].
Crucial to their operations is the existence of a large number
of vulnerable websites, which can be easily compromised on a
large scale and converted into web redirectors. These redirec-
tors serve as doorways for a complicated web infrastructure
that delivers malicious payloads to victims [42], playing a
critical role in hiding more expensive criminal assets (e.g.,
exploit servers) in the shadow.

The “Red Fox”. Timely detection and recovery of those

compromised websites deprives cybercriminals of their major
resources for luring visitors, and can potentially disrupt this
portion of the underground business. Development of effective
techniques for this purpose, however, is a daunting tasks in
fighting cybercrimes. Different from the web servers hosting
malicious content such as exploit kits, those redirectors are
just ordinary websites with a few injected redirect scripts,
which can also appear on legitimate sites. Existing ways to
detect them rely on tracking a redirection chain that ultimately
hits malicious content providers [27], a process that is often
interrupted by cloaking [47]. Further complicating this effort
is the trend that the criminals increasingly place their redirect
scripts within JavaScript (JS) files on a compromised site,
which are different from other web documents like HTML,
are not indexed by Google and other search engines [15], and
thus the infections on them are even more difficult to find.
Most importantly, those redirectors are easy to collect and
often expendable to the attackers, rendering any heavyweight
detection technique hard to catch up with the pace that new
sites are recruited. As a result, even though progress continues
to be made in analyzing and detecting malicious content
hosts [27], compromised web redirectors remain to be an
elusive “red fox” difficult to hunt down.

In our research, we looked at the problem from a new
perspective - the strategies those criminals adopt to inject
redirect scripts, which underline the constraints they face.
Through inspecting 436,869 infected files collected recently,
we found that the “red fox” indeed has several unique, pre-
viously unknown features. In particular, to deploy his redirect
scripts quickly, the attacker tends to inject them blindly into
various files (JS files as well as HTMLs) on a compromised
site. This needs to be done carefully, avoiding any interference
with the website’s normal operations to hide the presence of
the malicious code. Also, a significant portion of infected JS
files are public JS libraries (JS-libs), due to their dominant
presence on legitimate websites (at least 60% web sites use
JS-libs [46]), which web developers either do not change at
all or modify in a way completely different from what the
attacker does.

Detection and findings. Leveraging those unique features, we
developed a new, lightweight technique for catching this red
fox. Our solution, called JsRED, is designed to automatically
detect unknown redirect scripts on a large scale. Our idea is
based upon the observation that in a mass redirect-injection
campaign, similar scripts are blindly inserted into JS-libs, other
JS files, HTMLs, etc. on compromised web servers. Among
them, the clean versions of the JS-libs are publicly available,



often unchanged by the website developer or customized by
adjusting just a few parameters. Therefore, we can compare
a JS-lib file (e.g., jQuery [38]) crawled from a website with
its clean references1 to extract the difference, and further
analyze it statically and dynamically to determine whether the
difference is actually a redirect script. Given the fact that it is
extremely rare in a legitimate customization of a JS-lib to add
just redirect code, a script identified this way is almost certain
to be malicious. With the blind injection strategy the attacker
takes to make his campaign scalable, the detected code can
then be generalized into a template for scanning non-lib JS
files, HTMLs and other content to catch their infections. In
this way, we can identify infected websites on a large scale,
even when their infections have never been seen before.

We implemented JsRED and evaluated it over 1,129,988 JS
and HTML files we collected. The new approach was found
to be highly effective: it outperformed Microsoft Security
Essentials [31], a commercial malware detection service, by
nearly 100% in terms of detected JS-file infections, and did
not result in any false positives on data collected recently
over three months. The approach has also achieved high
performance and is capable of analyzing 255,082 JS files to
generate signatures within one day and scanning all 1,129,988
files in only two hours using the signatures, on a single desktop
machine. We further conducted a measurement study on the
infected JS and HTML files JsRED detected, which reveals
the attacker’s strategies such as the effort they made to conceal
their redirect scripts. Of particular interest is the discovery of a
structured peer-to-peer (P2P) redirection network built entirely
on compromised sites: a visitor to any of such compromised
doorways will be redirected to other sites, which are also
compromised legitimate websites, before being forwarded to
attack hosts. This network provides further cover for the web
redirectors and we studied this network and report its unique
features like dynamic selection of redirect targets, cloaking
strategies and long life time (over 285 days) in Section V-B.

Contributions. We summarize the contributions of the paper
as follows:

• New technique. We developed a lightweight yet effective
technique for fully-automated detection of unknown redirect
scripts. Our approach leverages new observations of the at-
tacker’s strategy and exploits his limitations, identifying new
redirect code through a simple differential analysis. Our study
shows that the technique works particularly well on infected
JS files, outperforms commercial tools and incurs almost no
false positive.

• New discoveries. We performed an in-depth measurement
study on compromised web redirectors. Our study helps better
understand how the attacker covers injected code and deploys it
on a large scale. We also looked into the P2P redirect networks
we discovered, which is a new strategy the attacker utilizes to
protect compromised doorways.

Roadmap. The rest of the paper is organized as follows:
Section II presents the background information about the
redirect-injection attack and its unique features we observed;

1There can be many versions for a specific library: e.g., jQuery has 38
versions.

Section III elaborates the design, implementation and evalua-
tion of JsRED; Section V reports the findings of a measurement
study on the compromised websites caught by JsRED; Sec-
tion VI discusses the limitations of our technique and potential
future research; Section VII reviews related prior research and
Section VIII concludes the whole paper.

II. MASS REDIRECT-SCRIPT INJECTIONS

A. Background and Adversary Model

As discussed before, compromising a large number of
vulnerable websites is the adversary’s dominant strategy to
find potential victims and deliver malicious web content. As
evidence, WebSense recently reports that 85% of malicious
links detected this year have been found on compromised
hosts [49]. On these hosts, web pages were altered to either
directly serve malicious content, which attacks visitors through
drive-by downloads or phishing, or redirect the visitors to other
hosts set up by the adversary. By comparison, the redirection
approach is much stealthier, as it does not directly expose
the web content involving attack vectors (e.g., exploiting a
vulnerability within the visitor’s browser) and thus is less
likely to be identified. Indeed, according to a recent study by
Sucuri [42], over 70% of such compromised sites are used
as redirectors, referring their visitors to other compromised or
malicious servers. The redirections here are performed through
injecting HTML tags like <iframe> to HTML files or redirect
scripts into JS or HTML files. Such scripts later set the client’s
browser location or dynamically create HTML tags to cause
malicious web content to be downloaded to the browser. Given
the fact that JS files are increasingly utilized by websites and
not indexed by search engines (which make it harder to locate
them in the first place), they are becoming a popular targets
for the redirect-code injections. We focus on this new type of
threats.

Redirect-script injection. Here we show how such at-
tacks work using an example in Figure 1, which illus-
trates a redirect-script injection campaign [43]. After com-
promising a vulnerable host and acquiring its root ac-
cess, the adversary uploads an encoded redirect script to
/usr/share/php/a.control.bin on the host and
modifies its system file /etc/httpd/conf.d/php.conf,
which configures all the PHP applications on the Apache
server, to intercept requests delivered to the server. As a result,
the adversary gets a chance to inject the script each time when
the server responds to a request. Specifically, whenever a client
asks for a JS file from the compromised site, the redirect
script kept under /usr/share/php/a.control.bin is
decoded and attached to the original JS file, and then executed
within the browser. The injected code, once executed together
with the JS file within the client’s browser, creates hidden
iframes within an HTML file to redirect the browser, which
finally reaches the exploit server installing RedKit [19], a
popular exploit kit for drive-by downloads.

Detecting this type of attacks on a large scale is challeng-
ing. On the one hand, through port scanning or searching with
Google dorks [29], the adversary can easily discover hundreds
of thousands of vulnerable web servers and quickly turn them
into web redirectors using automatic tools [12]. Therefore,
an effective control on the injection campaign cannot rely on
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Fig. 1. An example of malicious campaign that compromises web servers
and injects redirect scripts.

heavyweight, slow approaches such as tracking down redirec-
tion chains to expose exploit servers, which often requires a
lot of effort when infected or malicious hosts cloak, moving
onto the next hop on the chain only if certain conditions (e.g.,
“IE only”) are satisfied. On the other hand, the parties that
perform the detection, such as Google, typically do not have
access to the server-side code of hosts and have to rely on
the content they export to the client to find out infections.
Such information can be scant, as the redirection code on the
client side can be very simple when cloaking is performed
on the server side and also popular on clean, legitimate
websites. Actually, without a well-thought-out approach, it can
be difficult to detect such infected redirectors even manually
(see the example in Figure 2), not to mention extracting their
signatures for an efficient online scan.

1 v a r temp = ” ” ,
2 i , c = 0 ,
3 o u t = ” ” ;
4 v a r s t r = ” 6 0 ! 1 0 2 ! . . . 1 1 6 ! 6 2 ! ” ;
5 l = s t r . l e n g t h ;
6 whi le ( c <= s t r . l e n g t h − 1) {
7 whi le ( s t r . c h a r A t ( c ) != ’ ! ’ )
8 temp = temp + s t r . c ha r A t ( c + + ) ;
9 c ++;

10 o u t = o u t + S t r i n g . fromCharCode ( temp ) ;
11 temp = ” ” ;
12 }
13 document . w r i t e ( o u t ) ;

(a) A redirect script discovered in the wild.

1 document . w r i t e (
2 ’<f r a m e s e t rows =”100%” c o l s =”100%”>
3 <f rame s r c =” h t t p : / / b−muj . ru / ? k =3258” n o r e s i z e />
4 </ f r a m e s e t>’
5 ) ;

(b) The redirect script after deobfuscation.

Fig. 2. Redirect script sample.

As an example, let us look at a redirect script in Fig-
ure 2, which we discovered in our research. The script
was injected into HTML pages and redirected a visitor’s
browser to http://b-muj.ru/?k=3258 through frame
tag, a web page that was malicious at the time we crawled.
The original code was extensively obfuscated. After de-
obfuscation, we found that the script includes a single JS API

document.write, which is very common and frequently
used by clean, legitimate web sites. In this case, even a
manual inspection of the code (without further analyzing the
redirection target) may not be able to conclusively identify
the infection. To address this problem, we came up with a
different approach based upon unique features of the threats,
as elaborated in Section II-B and Section III.

Adversary model. We consider an adversary who intends to
extensively deploy his redirect scripts to a lot of vulnerable
hosts within a short period of time and also wants such code
to operate stealthily, without undermining the functionalities of
the original websites. This is exactly what a real-world attacker
does. To attain these goals, the adversary has to work under
some constraints. Particularly, he cannot deliberately avoid JS
libs, as they are used by the majority of web sites (above 60%).
He cannot even modify the name of a JS lib, whose references
are scattered across the whole website. Therefore, any name
change will force the adversary to touch many files and run the
risk of being caught or disrupting the way the website works.

B. Features

To find a better way to detect redirectors and thwart a large-
scale injection campaign, we need an in-depth understanding
of the attack to identify its weak spots. To this end, we
analyzed a large number of web files (both malicious and
legitimate) crawled from the web. Our study brought to light a
set of interesting features that uniquely characterize the attack,
including (1) the adversary’s blind injection strategy, (2) the
prevalence of JS-libs among all JS files and (3) the way that
the adversary modifies a JS-lib. Below we first explain how
we collected the data for the study and then get to the details
of our findings.

Data collection. As discussed above, the data used in our study
was crawled from the web. For this purpose, we implemented
a crawler as a Firefox extension and deployed it to 20 Virtual
Machines (VMs) . The crawler is designed to explore all URLs
it finds, starting from a set of “feeds”. For each URL it visits,
it renders the web page the URL points to and executes all the
dynamic content on the page, like JS code. Then, it dumps all
the HTML and JS files discovered during the visit to a database
shared among all crawlers. This approach works much more
effectively than a static crawler, which just collects web content
but never runs it, as new redirections and new web content are
increasingly generated through execution of dynamic content
such as scripts.

In our study, we ran our crawler over two data feeds.
Specifically, we generated the Alexa feed by collecting the list
of Alexa top one million sites from 2012/07/16 to 2012/07/17.
Also we got the bad feed from Microsoft on a daily basis
between 2012/07/15 and 2012/08/30. The bad feed was derived
from the pages indexed by Bing search engine and was
confirmed by Microsoft. The web pages discovered through
crawling those feeds were further processed and classified into
two datasets, Bad set and Good set, as described below:

• Bad set: This dataset contains infected redirector pages.
They were crawled from the bad feed containing 1,558,690
doorway URLs and further scanned using Microsoft Security
Essentials [31], a leading malware detection service, to



identify those infected with redirect scripts, for example, those
marked with Trojan:JS/Iframe.AA 2. In this way, we
gathered 436,869 unique compromised files (associated with
474,600 URLs), composed of 70,119 JS files (113,729 URLs)
and 366,750 HTML files (360,871 URL).

• Good set: The dataset contains 396,223 files (associated with
491,171 URLs), including 151,188 JS files (319,269 URLs)
and 245,035 HTML files (171,902 URLs) considered to be
clean. They were crawled between 2012/07/16 and 2012/07/17,
using 69,864 doorway URLs randomly selected from the Alexa
feed. To remove infected web content, all the pages we crawled
were scanned with Security Essentials in May 2013, which was
supposed to filter out the vast majority (if not all) of the files
infected one year ago.

Over those datasets, we analyzed the redirect-script injec-
tion attacks, as follows.

Blind injection. We first studied the adversary’s script in-
jection strategy using the Bad set. All 436,869 files in the
set were classified by Security Essentials into 316 different
classes of redirect payloads. Among them, some contained
only a few URLs discovered by our crawler. To avoid drawing
any conclusion based upon such a small sample size, we
ignored those with less than 10 unique URLs, which left us
213 types. We found that more than half of them, 115 out of
213 (53.99%), infected both HTML and JS files, 24 (11.27%)
only appeared within JS files and 74 (34.74%) were HTML
only. Since each malware type labeled by Security Essentials
is a cluster of similar scripts, the above result indicates that
the adversary tends to blindly inject similar redirect scripts to
both HTML and JS files. Actually, even on one compromised
host, oftentimes multiple files (HTML or JS) were injected
with same redirect scripts. Figure 3 shows one such site,
i-globalsolutions.com, which was compromised and
both its HTML page (?page_id=146) and JS files (e.g.,
cufon-yui.js) included the same redirect payload. Appar-
ently, the adversary utilizes this strategy to broadly disseminate
his redirect code within a short period of time and make it more
likely for a visitor to trigger the redirections.
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/jquery.form.js 
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Fig. 3. An example showing a malicious redirect script injected into multiple
files on one compromised site.

JS-libs. We further inspected the infected JS files. Some
of them appeared to be JS-libs, such as jQuery. To un-
derstand how pervasive such JS-libs are, we need to iden-
tify them from the Bad set. To this end, we first normal-

2We did not use VirusTotal [45] to scan the files because there is a limit
on the number of files that can be uploaded in a day. In our case, we have
around one million files and therefore we could not use this service for the
initial labeling. Instead, it is used to verify the new findings (see Section IV-B).

ized JS file names through removing all their version num-
bers (consecutive numbers separated by ‘.’) and descriptive
terms such as ‘min’, ‘compress’ and ‘pack’. For example,
jquery-1.3.2.min.js was converted to jquery.js.
Then, we clustered all the files with the same normalized
names and ranked these clusters according to the numbers of
URLs they included. On such a ranked list, top 20 clusters
(i.e., normalized names) account for 33.29% of all the URLs
within the Bad set. Through manual check (including search
for them on the Internet and inspection of their file content),
we found that 18 of them are third party JS-libs. Figure 4
illustrates the top 20 clusters and the JS-libs we discovered.
These libraries are also extensively used by clean, legitimate
websites: from the Good set, 99,140 (31.11%) URLs are
associated with the 18 libraries. Moreover, the site owners
prefer to use the local copies instead of linking to the remote
copies maintained by library developers: among the 99,140
URLs, 70,749 (71.1%) pages use the libraries served by the
legitimate sites themselves. While the remote copies save the
site owners from maintaining the library code, they could cause
performance overhead and incompatibility issues if the code
is updated.

JS-file infections. To understand how the adversary alters
files and implants redirect code, we took a close look at
the infected JS-libs. We focused on those libraries due to
the availability of their clean copies, which can be used
to compare with the compromised versions to identify their
infections (i.e., malicious code). Note that this cannot be done
using commercial-off-the-shelf malware detectors like Security
Essentials, since they just raise alarms and do not pinpoint
malicious code. Specifically, we performed this differential
analysis on 100 JS files randomly sampled from the Bad set.
Each of these files was within one of the aforementioned 18
name clusters: that is, it was supposed to be a JS-lib. However,
we found that 11 of them turned out to be HTML documents3.
Among the remaining 89 files, 4 contained the redirect code
that was used to replace some of the original code within the
libraries, 3 had the scripts placed right in front of their library
code and 82 carried the malicious payload appended to their
legitimate programs. It becomes pretty clear that the adversary
tends to carefully arrange his script around the original library
code to avoid interfering with a JS-lib’s normal operations.

On the other hand, legitimate web developers could also
adjust the content of those JS-libs. The question is how
such changes differ from what the adversary makes. In our
research, we randomly sampled from the Good set 100 files
apparently to be the JS-libs, according to their file names
(within the 18 clusters). Among these samples, 4 were HTML
files (similar to what we found from the Bad set) and 17
utilized very old versions of JS-libs whose original copies
were no longer available on their official websites. For the
remaining 79 files, 47 were identical to their original copies,
24 contained only very small changes (revised comments,
one additional statement, etc.), and only 8 had been modified
significantly. We further looked into those 8 samples, and
found that 6 of them were just original versions of the libraries
compressed by known packers (e.g., [13]) and only 2 files
carried some serious semantic changes. Most importantly, all

3All these files were full of error messages, which we suspect could be
used to respond to the request for the JS-libs the host did not serve.
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Fig. 4. The top 20 file names discovered in Bad set. Except “script” and “scripts”, all the remaining file names are related to 3rd-party JS libraries.

the content adjustments observed from those clean, legitimate
JS-libs are very different from the infection code injected to
compromised files: we did not find that any of them would
lead to redirections.

Summary. Our study brings to light some intriguing observa-
tions related to the redirect-script injection attacks. First, we
found that there are a significant portion of these attacks aiming
at either HTML and JS files or JS only. For those working
on HTML and JS, the adversary tends to inject malicious
redirect scripts blindly to both types of files, presumably for the
purpose of deploying redirect payloads widely and efficiently.
Second, many JS files are JS-libs, whose original versions can
be found from their official websites. From the adversary’s
viewpoint, deliberately avoiding these libraries not only is
time-consuming (for identifying them) but also makes his
attack much less effective, given the fact that such libraries
make up an important portion of all JS files. Third, legitimate
users of those JS-libs tend to keep their original versions and
when they have to change those files, they only make minor
adjustments most of time and rarely introduce any redirect
code. This is completely different from what the adversary
does, whose sole purpose is to inject redirect scripts.

III. AUTOMATIC DETECTION OF UNKNOWN

REDIRECT-SCRIPT INFECTIONS

The features we discovered from mass redirect-injection
campaigns (Section II-B) offer an opportunity to detect those
attacks in a lightweight and effective way. In this section, we
present the design, implementation and evaluation of such a
new technique, called JsRED, for automatic identification of
unknown redirect-script infections.

A. Overview

The idea. As described in Section II-B, the adversary tends to
blindly inject same or similar redirect scripts into both JS and
HTML files in a campaign. Since a significant portion of these
JS files are third party JS-libs and their clean versions are pub-
licly available (e.g., on their official websites), our approach
exploits those relatively “soft” targets through a differential
analysis, extracting the script code from the difference between

a JS-lib and its clean reference (i.e., its official version), and
then extends what we learn to other JS and HTML files, using
the detected script code to catch their infections. This makes
it possible to quickly detect a large number of compromised
websites, even a whole campaign, even when the malicious
redirect script involved has never been seen before.

More specifically, unknown redirect code can be revealed
by checking the output of the differential analysis. Given the
observation that a legitimate customization of JS-libs rarely
brings in just redirect code, JsRED detects infections by simply
determining whether the difference part is a redirect script
(redirector4), based upon a combination of static and dynamic
analyses. All the redirectors captured in this way are further
generalized into signatures for scanning other suspicious JS
and HTML files.

Design. In Figure 5, we illustrate the design of JsRED. It has a
mechanism that gathers a set of clean JS-libs (which is meant
to be as complete as possible) as references. Each of such
references is then compared with every JS file crawled from
the web, using a scalable Bloom-filter inclusion analysis that
measures the proportion of the reference present in the JS file
(Section III-B). When most part of the reference is found, we
further run google-diff-match-patch [14], a code-diff tool, to
extract the difference part of the code (diff for short) from
the JS file. The diff obtained this way is sent to a verifier
module that analyzes the code both statically and dynamically:
once it is found to be a redirector, we believe that a malicious
script is detected (Section III-C). All such scripts are then
grouped using the Hierarchical Clustering algorithm [21] and
a signature is generated for each such cluster. Those signatures
are used to scan other crawled web content, HTML as well as
JS, to identify other infected files.

JsRED works fully automatically and is designed to detect
zero-day redirect infections. With the lightweight technique
it is built upon, Bloom-filter based differential analysis in
particular, the approach can efficiently analyze a large number
of suspicious web content, detecting most infected JS files with

4For simplicity of presentation, here we overload the term, which also refers
to compromised websites doing redirections.
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Fig. 5. The framework of JsRED.

almost no false positive (Section IV). In the following, we
present the design of individual components.

B. Suspicious Content Extraction

As discussed before, JsRED detects zero-day redirect
scripts through a differential analysis on suspicious JS files. To
this end, we need to build a reference set, perform an automatic
similarity analysis on references and suspicious JS files, and
extract the diffs from a subset of them for further analyses, as
elaborated below.

Reference collection. Finding clean versions for JS-libs turns
out to be more complicated than it appears to be. The challenge
here is how to make the list of references as complete as
possible. Although one can always enumerate a few most
famous libraries such as jQuery [38], there are thousands
more less popular ones, not to mention even more plug-ins
for individual JS-libs (over a thousand for jQuery, such as
jQuery slider, jQuery selecter, etc.) designed to enrich the
functionalities of the original libraries. In our research, we
utilized the JS-lib repository maintained by Google (Google
hosted libraries [17]) to get popular references, which gave us
totally 249 libraries.

To acquire clean references for less popular library files
and a large number of JS-lib plug-ins, we crawled 602,243
doorway URLs randomly selected from Alexa top one million
sites between 2012/07/01 and 2012/07/15 and 382,814 JS files
were collected in this process. Note that all these files were
scanned by Security Essentials one year later, which ensured
that they were all clean. Then, we picked up references from
those JS files based on whether individual files were associated
with at least two different doorway hosts. In other words, this
means that any JS file used by at least two different websites
was treated as a JS-lib. The rationale here is that non-lib JS
files are rarely utilized by two different sites. Also, even when
this aggressive strategy indeed brings in some non-lib files,
they could cause the inclusion analysis (see below) to happen
when it is unnecessary but will not affect JsRED’s effectiveness
in detecting malicious scripts. All together, we got 53,339
references (including 249 from Google) in this way.

Inclusion analysis. With the reference set, we are ready to
perform a differential analysis to identify malicious scripts
included in JS files. A problem is that simply comparing
every single JS file crawled from the web (which we call
suspicious file) with every single reference using a precise
code-diff tool turns out to be too heavyweight. A single run
of google-diff-match-patch on two files could take seconds
or even minutes, while here we are talking about 50,000

reference files and hundreds of thousands of suspicious JS
files. To make this analysis scalable, JsRED first utilizes
file names to pair a suspicious file with its references. As
discussed before, the names for JS-libs are less likely to
be changed by the adversary on a compromised website, as
this requires modifications of all the code linked to these
libs on the site. Directly searching the names across the site
files and replacing the occurrences does not work, simply
because legitimate websites often dynamically generate the
JS-lib name (e.g. using eval) when referring to it. Therefore, a
heavyweight code analysis is needed here, which does not scale
well. We can map suspicious JS files to their corresponding
references based on their normalized file names, as described
in Section II-B. We have to normalize file names because a
lot of web developers change the names of the JS-libs they
download, for example, from jquery-1.3.2.min.js to
jquery.js, for convenience of use on their websites. By
matching the normalized names, our approach automatically
categorizes suspicious files to different subsets of references
they need to be compared with.

Even with this classification, we may still need to work on
too many references for each suspicious file. As a prominent
example, our reference set contains hundreds of different
jQuery versions, all of which have to be analyzed against a
jquery.js crawled from the web. To efficiently go through
all these references, our idea is to quickly identify the reference
closest to the suspicious file: when these two files are identical,
the suspicious JS-lib is exonerated; otherwise, when most
part of the reference has been included in the suspicious
file, our approach extracts their diff for a further analysis
(Section III-C). Note that in the case that the JS file fails
to contain a significant portion of any matched reference
(according to their normalized names), most likely we do
not have its right reference or it has been compressed by an
unknown packer. When this happens, JsRED can either skip
the file (which may cause a false negative) or send a notice to
the website, suggesting an inspection of the file’s integrity.

Our design quickly identifies unmodified copies of the
references from the set of suspicious JS files by checking
their MD5 checksums and removes them from the set. More
challenging here is a lightweight inclusion analysis that deter-
mines the proportion of reference code within a suspicious file.
Intuitively, when the file contains most or all of the reference
content but is still different from the reference, the reference’s
complement part within the suspicious file (the code not in the
reference) should be carefully checked to determine whether it
is an injected redirect script. In our research, we implemented
a simple inclusion-ratio measurement based on n-grams, as
elaborated below:



I For both suspicious files and references, our approach
first removes comments, new lines and redundant spaces
using an open-source tool JSCompressor [50]. Note that
during this normalization step, we still preserve non-
ASCII characters, which the adversary may use to encode
his malicious payload [39], and restrain from lowering
letters, which may break JS syntax.

II Then, JsRED breaks the code within individual files into
tokens using a set of delimiters, including ‘”, ‘”’, ‘;’,
whitespace, ‘\n’, ‘\t’, ‘\r’, ‘(’, ‘)’, ‘{’, ‘}’, ‘[’, ‘]’. Over
each token stream, we slide a window of size n to extract
n-gram token sequences. In our implementation, n = 4.

III After that, our approach compares the n-gram token se-
quences from a reference and a suspicious file to calculate
their inclusion ratio: given the set of n-grams for the
reference R and that for the suspicious JS file S, we have

their ratio d(S,R) = |S∩R|
|R| .

Since the references are used to scan all suspicious files
crawled online, we normalized them beforehand in our imple-
mentation and built Bloom filters to store their n-gram token
sequences for high-performance online comparisons. Specif-
ically, for each reference, we ran k random hash functions
on its n-grams, mapping them onto a bit array. Given a
suspicious file that needs to be compared with the reference,
all its n-grams are then tested using the hash functions to
determine their memberships within the reference. Based upon
this membership test, our approach calculates the inclusion
ratio between the file j and the reference i, d(Sj , Ri). If for
all the references associated with the file, maxi d(Sj , Ri) > θ,
the diff between the file and every reference whose inclusion
ratio goes above this threshold θ is extracted for a further
analysis. The threshold θ can be adjusted to strike a balance
between the coverage of the detection and its performance (the
lower it becomes, the more files we need to check). Also note
that though Bloom filter is known to introduce one-sided error
(false positive), this will not be an issue for our approach, since
JsRED further analyzes the diff to confirm that it is indeed
redirect code (Section III-C).

Diff extraction. As discussed above, when a suspicious JS
file is not identical to a reference but contains most or all
of its content, JsRED needs to inspect the diff from the file
(with regards to the reference). To this end, we incorporated
google-diff-match-patch [14], an open-source code diff tool,
into our implementation to identify all the code within the
suspicious JS files not present in the reference. This tool
utilizes the classical Myer’s diff algorithm [34] to report a list
of code segments related to the following editing operations:
INSERT that injects a block of new code somewhere within
the original program (the reference) and DELETE that removes
part of the original code. JsRED then extracts the code blocks
added to the suspicious file and after preprocessing them,
runs its verification module to analyze these blocks. Our
current implementation does not inspect the relations among
different code blocks (called excerpts) and instead checks them
separately. This treatment is based upon our observation that
the code of an injected script tends to stay together without
mixing with legitimate code, since otherwise the adversary
needs to make efforts to understand each JS he compromises to
avoid messing up its original program logic. Of course, we can
always enhance our current technique, using more heavyweight

information-flow analysis to link different excerpts together
when there is a need for doing that. Figure 6 illustrates an
example for this diff extraction operation.

Our approach further processes those code excerpts before
handing them over for a more heavyweight analysis (Sec-
tion III-C). Specifically, it first drops those most likely caused
by legitimate customizations (by the website’s developer). As
discussed in Section II-B, such customizations typically lead
to only minor changes to the reference (the original version
of a JS-lib). On the other hand, a malicious redirect script
needs to include enough code for doing its job stealthily.
Leveraging this observation, JsRED simply removes all short
code excerpts whose size are below α bytes. For the remaining
long excerpts, we further search them in the reference dataset
and take out those found in any clean, legitimate JS-lib. This
operation avoids further inspections of the customizations that
merge partial code from two JS-libs together. Finally, our
approach discards repeated code excerpts and for every block
that consists of repeated strings, we just keep one of them. This
cleans individual excerpts of repeated infections (in which the
adversary injects the same code multiple times to a JS file).

//script.aculo.us v1.8.1 
var Scriptaculous = { 
Version: '1.8.1', 
REQUIRED_PROTOTYPE: 
'1.6.0', 
 
load: function() {…} 
 
Scriptaculous.load(); 

scriptaculous.js scriptaculous_1.js 

Excerpts 

//script.aculo.us v1.8.1 
var Scriptaculous = { 
Version: '1.8.1', 
REQUIRED_PROTOTYPE:  
'1.6.0',  
 
document.writeln(…); 
 
load: function() {…} 
 
Scriptaculous.load(); 
 
document.write(…); 

Fig. 6. An example showing how diff is extracted.

C. Verification and Extension

For an excerpt taken from a suspicious JS file, we need to
find out whether it is indeed a redirect script. If so, the code is
considered to be an infection instance and a signature will be
generated from it and other similar instances. Such a signature
is then “extended” to other files for detecting other instances
within non-lib JS files and HTML files. In this section, we
elaborate how these operations are performed by JsRED.

Redirector identification. As demonstrated by our study on
redirect scripts (Section II-B), a legitimate customization of
JS-libs, which itself does not happen often, rarely introduces
redirect scripts. Therefore, whenever a suspicious excerpt is
confirmed to be a redirector, it is almost certain to be an
infection. Based on this observation, what JsRED does is a
combination of static and dynamic analyses on every suspi-
cious excerpt, in an attempt to catch its redirection operations.

To perform a redirection, a script must either directly set
some fields within DOM objects to a target URL or invoke
JS APIs (document.write or document.writeln) to
change these fields or inject HTML tags. Table I lists all such
standard APIs and DOM object fields. Therefore, the first thing
JsRED does to an excerpt is checking its code statically to
detect the presence of any of these APIs or fields. Specifically,



No. Type API or Field Input Parameter Pattern

1
Invoke API

document.write <script|iframe|frame src=*> or
2 document.writeln <meta http-equiv=”refresh” content=”\d+; url=*”>
3

Set field

window.location

*
4 document.location
5 [script element].src
6 [iframe element].src
7 [frame element].src

TABLE I. STANDARD APIS AND DOM OBJECTS’ FIELDS RELEVANT TO REDIRECTION.

our implementation parses the code into an Abstract Syntax
Tree (AST), using Mozilla’s SpiderMonkey JS engine [33],
and searches for the occurrences of the APIs and objects
in Table I over the AST. If any of them has been found,
JsRED further inspects its parameters to detect the patterns
that conform with those of a redirect operation (see Table I).
This step helps us quickly identify the valid redirector that has
not been obfuscated.

A potential concern is that this treatment will miss the
attackers’ injected excerpts that contain syntactic errors and
therefore cannot be parsed properly. However, such code
cannot be executed correctly either and therefore will not
cause any damage to the user. Another trouble comes from
google-diff-match-patch, the diff tool our implementation was
built upon. This simple tool extracts all the diffs between two
documents without looking at their syntactic correctness. For
example, given a statement x=3 in a JS-lib and its counterpart
x=4 in the reference, a fragment “3” will be reported as part
of the code excerpt identified. This only happens when the
JS-lib has been customized by a website’s developer, as all
the injected infections we observed just include complete new
statements and never touch existing statements. As a result,
such fragments will not be introduced during an analysis on the
library files that do not include any legitimate modifications.
In the case that a customized JS-lib gets infected, which is
rare (due to the fact that websites tend to keep such library
files intact), some fragments produced could still be parsed
by our JS engine (such as “3” in the above example), and
therefore an AST can still be correctly built and the follow-up
dynamic analysis can still proceed. On the other hand, when a
fragment indeed brings in a serious syntactic error that cannot
be managed by our current implementation, the analysis can be
disrupted. In our experiment (see Section IV), we found that
among all the 10,901 excerpts discovered in the bad set, 2,080
(19.08%) triggered syntactic errors during the static analysis.
However, a close look at the those problematic excerpts,
based upon 50 samples randomly selected, reveals that the
vast majority of them (90%) were related to the syntactic
problems already there, within either malicious injections or
legitimate customization code, and only 10% of them were
caused by the fragments introduced by the diff tool. This
indicates that even the simple diff tool works well in practice.
Of course, we can always improve the accuracy of this diff
extraction by switching to a more sophisticated diff tool such
as SemanticMerge [5], which allows us to include the whole
statement into an excerpt whenever part of it differs from its
reference counterpart.

Certainly, static analysis alone is insufficient for catch-
ing all the redirect scripts, as it can be circumvented by
different obfuscation tricks. Examples include programmati-
cally specifying the objects for the src attribute (script,

iframe or frame) or even constructing the attribute itself
(e.g., document["wr"+"ite"]()), and utilizing eval
and setTimeout to unfold redirect code on the fly [11].
When this happens, we need to perform a dynamic analysis to
determine the presence of redirect behavior. For this purpose,
JsRED uses an instrumented Firefox browser to run each
suspicious JS excerpt, in an attempt to find out what it does.
Specifically, this dynamic analyzer closely monitors the oper-
ations on the src attribute under the DOM objects script,
iframe and frame, and the location property of the
global DOM objects document and window, and reports any
changes to their content, which is considered to be a redirection
(3-7 in Table I). Also, it intercepts all calls to the DOM
functions document.write and document.writeln to
inspect their parameters (which can be formed programmat-
ically, during the excerpt’s runtime) against the redirection
patterns (1-2 in Table I).

This static and dynamic combination works effectively
against redirect scripts (Section IV), which typically do not
contain complicated program logic. However, there are sit-
uations where a redirect script could pull some cloaking
stunts, stopping its execution when certain conditions are not
satisfied. Most prominent examples for such conditions are
the client’s user agent and the party that refers the client
to a compromised website. To address the cloaking, JsRED
configures the dynamic analyzer in a way that most likely
triggers the script’s redirect activities: particularly, the user-
agent of the analyzer is set to IE-6, the most popular target of
web attacks, a Referral of “http://www.google.com/”
is given to the excerpt whenever it queries the content of this
field, and the cookie of each execution is always cleaned before
running the next script to detect those that only work on new
visitors.

This dynamic analysis can be heavyweight. However, we
do not need to use it all the time, given the fact that most
websites are legitimate and our techniques are designed to drop
the vast majority of them through the differential analysis and
preprocessing. In the end, the chance that excerpts move to
the verification stage and go through the dynamic analysis is
relatively low. In Section IV, we show that only 4.62% of the
JS files inspected by JsRED were analyzed within the Firefox
browser.

Extension. Once a redirect script is found, it can then be used
to identify the infections in other files, including non-lib JS and
HTML content. An issue here is the adjustments the adversary
may make on different instances of an infection. To catch
such instances, JsRED automatically generates a signature for
a group of redirectors with similar structures. Specifically, our
approach first breaks the code of each script into tokens in the
way described in Section III, and then clusters them based on



the Jaccard distance between each pair of the scripts. Given
the token set T1 for one script and the set T2 for the other, the

distance is calculated as 1− |T1∩T2|
|T1∪T2| . An issue here is duplicated

tokens: for example, a small script can look similar to a large
one in terms of this Jaccard distance, when the latter contains
many duplicated tokens also in the former. To handle this
complexity, we also consider the total number of tokens in each
script during the clustering and require that the difference in
the token number between two scripts does not exceed a given
threshold (set to 2 in our experiment). Alternatively, we could
use edit distance for the clustering purpose, which, however,
is more heavyweight. Based upon such pair-wise distances,
JsRED further runs the single-linkage hierarchical clustering
algorithm [21] to merge scripts into clusters using a distance
threshold β. Over each cluster, we identify the longest common
token sequence across all its members: that is, the largest set
of JS statement tokens (see Section III-B) in a given order
that are included in every script within the cluster. This can
be done through dynamic programming. If this sequence is
sufficiently long (no less than 4) and does not match any text in
the JS-libs from reference dataset, it then serves as a signature
for detecting other infection instances. Figure 7 illustrates an
example.

[x1, x2, x3, x4, x5, x6] [y1, x1, x2, y2, x4, x5] 

[x1, x2, *, x4, x5] 

[x1, x2, z1, x4, x5] 

Token sequences 
of redirectors 

Signature derived from longest 
common token sequence 

New redirector captured 
through extension 

Fig. 7. An example about extension step.

With the signature, we can easily extend what we discover
from JS-libs to other files: JsRED simply searches for the
token sequence (the signature) within non-lib JS files and
HTMLs crawled from the web to find out whether they are
also infected. Note that such a scan is a linear-time operation.
With its simplicity, this approach works effectively against
real-world redirect infections: in Section IV, we show that
the extension stage helps to detect around 60% more JS files,
without introducing any false positive.

IV. EVALUATION

A. Experiment settings

In our experiments, we ran JsRED on a few datasets
crawled from the web to detect their infected web content.
Such analyses and detection were conducted on a desktop with
intel i7-4770 3.40GHz CPU and 32 GB memory. Here we
describe the data used in this evaluation and the parameters of
our prototype system.

Datasets. Our experiments were conducted on three datasets:
the Bad set and the Good set as described in Section II-B and
an Unknown set collected recently. The Unknown set was used
to evaluate JsRED’s effectiveness in catching unknown infec-
tions. To build this set, we crawled all Alexa top one million
sites during 05/01/2013 and 08/30/2013 and then ran blacklist-
based filtering on the web content discovered to identify a

smaller group of websites more likely to be compromised or
malicious than a randomly selected site. This is a standard way
to collect a test dataset with a high “toxicity” level [20] for
a content analysis under the constraint of limited computing
power. In our study, we utilized Google Safebrowsing [16] for
this purpose, as did in prior research (Rozzle [24]). From the
blacklisted websites, we got 33,775 unique JS files (41,311
URLs) and 263,121 unique HTML files (49,879 URLs) for
the Unknown set.

Parameter settings. As discussed in Section III, JsRED
includes a set of parameters, which were configured as follows
in our study:

• Inclusion ratio threshold (θ). This parameter determines
when the proportion of a reference file included in a suspicious
JS file is significant enough to trigger the differential analysis
and its follow-up dynamic verification. Making it too high
misses the infected JS files with only small changes to original
JS-lib code while making it too low increases the computation
burden for analyzing a large number of suspicious files. In our
experiments, we set this parameter according to the distribution
of the inclusion ratios between confirmed infected JS files and
their closest references (see Figure 8). Using the files sampled
from the Bad set, we found that a cutoff of 0.95 covers 45.4%
of all compromised files.
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Fig. 8. CDF of inclusion ratio.

• Minimum size of code excerpt (α). As explained in Sec-
tion III-B, the JS excerpts from suspicious files need to have
enough content to be considered as a possible redirect script.
We checked the lengths of the redirect code extracted from 100
files randomly sampled from the Bad set (see Section II-B) and
found their sizes vary from 83 bytes to 27175 bytes. We chose
50 as the threshold, as all the samples were longer than that.

• Maximum distance for clustering(β). To make the clustering
approach (Section III-C) work, a distance threshold needs to
be determined. In our study, this parameter was set to 0.12,
based upon the distances between the malicious scripts of the
same type (classified by Security Essentials) and similar sizes
randomly sampled from the Bad set. Figure 9 illustrates the
distribution of such distances. We found that a larger threshold
significantly increases the chance of including unrelated scripts
in a cluster.

B. Effectiveness

Coverage. We first studied JsRED’s coverage over the Bad
set (see Table II). From the JS files within the dataset, our
implementation extracted 10,901 excerpts suspected of causing
malicious redirections and performed the dynamic analysis
on them. Among these excerpts, 3,514 were confirmed to



Source Target #Exceprts #Redirectors #JS Files I #JS URLs I #Signatures #JS Files II #JS URLs II #HTML Files II #HTML URLs II

Bad Bad 10,901 3,514 30,141 52,812 1,394 47,735 70,796 63,912 70,476
Good Good 8,980 31 37 40 30 42 45 0 0
Bad Good - - - - 1,394 6 6 6 6

TABLE II. DETECTION RESULTS ON BAD AND GOOD DATASETS. “SOURCE” DENOTES THE DATASET WE USE TO GENERATE SIGNATURES. “TARGET”
DENOTES THE DATASET ON WHICH WE EXTEND THE SIGNATURES. “#JS FILES I” AND “#JS URLS I” MEANS THE NUMBER OF JS FILES/URLS CONTAINING

REDIRECTORS IDENTIFIED THROUGH DIFFERENTIAL ANALYSIS. “#JS FILES II”, “#JS URLS II”, “#HTML FILES II” AND “#HTML URLS II” MEANS THE

NUMBER OF ALL DETECTED JS/HTML FILES/URLS.
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Fig. 9. CDF of distances between different bad redirectors.

be redirectors, contained in 30,141 JS-lib files. Clustering
these detected, our approach produced 1,394 signatures. These
signatures were found to be very effective in detecting redirect
infections: scanning non-lib JS files with them, we captured
another 17,594 infections, which increases our total detection
counts to 47,735 JS files (70,796 URLs) covering 68.07%
of all the JS files within the Bad set (62.24% URLs). This
“extension” step also netted 63,912 HTML files (70,476 URLs)
infected by redirect scripts, 17.81% of the total HTML files
(19.53% URLs) within the Bad set. The results indicate that
some attackers indeed inject similar malicious redirectors into
both JS and HTML files to efficiently deploy their infection
vector in a large scale. This blind injection strategy is exploited
by our approach to catch the infections within both types of
files. On the other hand, its coverage on the HTML files can
be limited, given that some attacks aim specifically at HTML
files, using iframe and other redirection tags instead of JS
code, which JsRED cannot detect. With JS-based injections
becoming increasingly popular (due to their stealthiness under
search engines), JsRED can serve to complement existing
detection techniques that target at HTMLs (e.g., [6]).

False positive. Over the Good set, we assessed JsRED’s false
positive rate (FPR). False positives can be brought in by
the differential analysis on JS-libs and the extension of the
signatures generated thereby on other files. In our study, we
analyzed the FPRs at both stages. Specifically, from 151,188
JS files (319,269 URLs) within the Good set, JsRED only
reported 37 of them as infections through inspecting JS-libs,
and generated 30 signatures. Interestingly, even though all
these 37 files were supposed to be false positives, given they
were found from the Good set, 11 of them turned out to be true
positives. They actually contained infections that slipped under
the radar of Security Essentials when we scanned the dataset,
but were later caught by VirusTotal [45]. Those 30 signatures
further led to the discovery of 5 more JS files, 2 of them were
confirmed to be true positives. Therefore, JsRED only caused
a FPR of 0.019% (29 out of 151,188) among all JS files and
a negligible 0.0073% among JS and HTMLs together, as our
implementation was never found to mistakenly incriminate any
HTMLs. Such a low FPR comes from the fact that legitimate

users tend to avoid modifying JS libs and even when they do,
they rarely introduce redirections.

We further applied the 1,394 signatures generated from the
Bad set to the Good set, in an attempt to understand the FPR of
those signatures. In the end, 6 JS files and 6 HTML files, with
one URL each, were reported. A close look at them, however,
discovered that all of them were actually true positives. Again,
those 12 scripts were missed by Security Essentials but were
caught by our approach. In other words, JsRED did not cause
any false positives in this case.

New detections. Finally, we studied JsRED’s potential to
detect previously unknown malicious redirectors. To this end,
we tested it against the Unknown set, which includes 33,775
JS files (41,311 URLs) and 263,121 HTML files (49,879
URLs) crawled recently. From the JS-lib files among them,
our implementation identified 1,562 suspicious excerpts and
confirmed the presence of redirect scripts in 266 of them.
These findings were further utilized to generate 90 signatures,
which matched 143 additional JS files. Altogether, our ap-
proach captured 409 infected JS files (with 277 URLs). All of
them were confirmed through VirusTotal and manual analysis,
without any false positives. By comparison, Microsoft Security
Essentials only detected 207 JS files (141 URLs). Most of them
(169 JS files associated with 118 URLs) had also been caught
by JsRED, while most infections alarmed by our approach
(240 JS files associated with 159 URLs) were not found
by Security Essentials. In other words, JsRED outperformed
Security Essentials by nearly 100% in detecting unknown
JS redirect infections5. We also scanned the HTML files in
Unknown set using the 90 signatures and 264 HTML files (39
URLs) were detected, among which 78 files (9 URLs) were
new findings. In the meantime, Security Essentials detected
1677 HTML files (205 URLs). Again, we have to point out
here that JsRED is not designed to replace existing anti-virus
systems. Instead, it is meant to serve as a complement to them,
helping them fare better against the emerging large-scale JS file
injection campaigns.

#JS Files #JS URLs #HTML Files #HTML URLs

JsRED 409 277 264 39
SE 207 141 1677 205
JsRED -SE 240 159 78 9
SE - JsRED 38 23 1491 175

TABLE III. COMPARISON OF THE DETECTION RESULTS: JSRED VS.
SE (SECURITY ESSENTIALS).

C. Performance

Latency. To understand the performance of JsRED, we mea-
sured the time it spent on suspicious content extraction and

5Note that in the coverage part, we ran Security Essentials to detect the
infections one year before (Section II-B), which were already known.



verification, which involves the differential analysis as well as
the static and dynamic analyses, and extension of detection
outcomes to find other infections. The results are presented
in Figure IV. For the first stage, excerpt extraction and static
analysis only took 17.48 ms and 2.12 ms on average, respec-
tively, to process one JS file, but dynamic analysis is much
more expensive - 5042 ms on average for working on one
excerpt. However, this heavyweight operation does not need
to be invoked often. In our research, we studied the frequency
with which the dynamic analysis needs to be run using the
Unknown datasets. Among all the JS files, only 4.62% of them
were analyzed dynamically, while the others all went through
the fast channel. Also for the extension stage, scanning each
file with all signatures generated from the Bad set (1,394 in
total) took 6.15 ms on average.

Stage Avg Latency (ms) Std Deviation (ms)

Excerpt Extraction 17.48 89.22
Static Analysis 2.12 1.63
Dynamic Analysis 5042 5860
Extension 6.15 12.31

TABLE IV. LATENCIES AT DIFFERENT STAGES.

Throughput. We further measured the throughput of JsRED
using the single desktop described in Section IV-A. JsRED
was found to take 19.5 hours to analyze all 255,082 JS files
from the Bad, Good and Unknown sets together and generate
signatures, and just 2.1 hours to scan all 1,129,988 JS and
HTML files using the signatures. With this throughput (roughly
16 file per second), our analyzer can catch up with the web
crawler in processing web files. Again, all those results were
got from a single desktop. This throughput will go up linearly
with the number of machines added to the system.

V. MEASUREMENT AND DISCOVERIES

Based upon what was discovered by JsRED, we further
conducted a measurement study that sheds light on the ad-
versary’s techniques and strategy in a large-scale redirector
injection campaign. Specifically, our study reveals extensive
use of blind injection, the evasion tricks the adversary plays on
their redirect scripts and the infrastructure of such an injection
campaign. Most interesting here is our discovery of a struc-
tured P2P redirect network built entirely upon compromised
websites in a unique hierarchical way.

A. Analysis of Injected Redirectors

Altogether, JsRED generated 1,541 signatures from the
Bad, Good and Unknown sets. Those signatures were used
to identify 5,071 unique redirect scripts from 129,997 unique
URLs (on 29,881 hosts). We further studied the target URLs
the scripts redirected the browser to: all the infected URLs led
to 4,923 redirection targets with 3,771 hostnames.

What the data tells us is that not only did the adversary
inject similar scripts to many websites, but oftentimes he sim-
ply copied the same code to compromised websites, without
being bothered to change its content. For example, a redirect
script captured by JsRED appeared across 19,819 URLs. Also,
clearly a large number of websites were compromised in a
mass injection campaign to serve just a handful of malicious

hosts, as indicated by the ratio between the infected URLs and
the target URLs.

We further analyzed the detected redirect code, in an
attempt to better understand the techniques the adversary
typically employs to construct redirections and evade detection.
Here are what we found:

Redirections. We measured different types of redirect strate-
gies, as illustrated in Table V, built into the injected scripts.
The results are presented in Table V. Apparently, injecting
HTML tags was much more popular than changing DOM’s
location field. This is possibly due to the former’s stealth-
iness to the web user: a new URL set to the location field
will show up in the browser, which could attract unwanted
attention to the redirection, while an HTML tag silently
moves the browser to a malicious website without causing
any visual effect. Among such tags, script was used more
often than others, as the code injected to the hosting page is
granted unlimited access to the web content on the page. Also
interesting here is the way hidden iframes were used by the
adversary. They have been considered to be a major avenue
to bring in malicious content and even serve as a detection
feature [6]6. However, among all 821 iframes identified in our
research, 340 were not hidden. This suggests that the adversary
might have adjusted their strategy to evade such hidden-iframe-
based detection.

Redirection Techniques # Redirectors

Change Location 583
Inject frame tag 148
Inject iframe tag 821
Inject script tag 3837

TABLE V. THE NUMBER OF REDIRECTORS USING DIFFERENT

REDIRECTION TECHNIQUES.

Also, we found that a few redirectors made a lot of
redirections: among all 5,071 scripts, 863 triggered 2 to
staggering 105 redirections each. This turned out to be the
result of repeated infections. In these cases, the script detected
by JsRED is actually a collection of the redirectors left by
multiple injections.

Obfuscation and evasion. Prior research shows that ob-
fuscation has been extensively used by malware to evade
detection [18]. In our research, we also took a look at the ways
those detected redirect scripts were obfuscated. Specifically,
we considered a script to be obfuscated if its redirection URL
was not present together with its code in plaintext. Among
all 5,071 redirectors, 1,815 did not fit such descriptions. In
other words, they exposed their redirection targets in their
code. Such an observation is interesting, as apparently, the
adversary was not bothered to protect more than a third of the
malicious redirectors we detected. For those obfuscated, we
found that 22 scripts utilized a standard packer developed by
Dean Edwards [13]. Interestingly, one of these scripts was first
caught by Security Essentials in July 2012 and later repacked.
This obfuscated version remained undetected (by VirusTotal)
until October 2013.

In addition to obfuscation, which works against a static
analysis, those redirect scripts also employed an array of

6They classify an iframe as hidden as if its width and length are no more
than 15 pixels.



cloaking tricks to impede a dynamic analysis, as illustrated in
Table VI. Most popular here is hiding code within exception
handlers [23], possibly because malware detection often hap-
pens when exception handling is turned off for performance
reasons. We also discovered a new evasion technique, called
parseInt0, which has never been reported before. The trick here
is to exploit an unexpected behavior of the JS API parseInt
in IE6: when the API’s input is a string starting with 0, IE 6
will parse it with the octal radix, while other browsers still
use the default decimal radix. As a result, the script can
call parseInt to parse an input to determine whether it is
running inside IE6 before unleashing its redirect payload.

Keywords # Payload Description

try/catch 2253 Payload is carried in catch block
onmousemove 446 Payload is not executed until the user moves mouse
navigator 887 Cloaking to specific user agent
cookie 916 Using cookie to prevent revisiting
referrer 1237 Cloaking to certain referrer fields
parseInt0 500 Profiling IE6
setTimeout 715 Delayed execution of malicious code

TABLE VI. THE EVASION TECHNIQUES.

In total, 2,883 scripts (56.9%) have evasion techniques built
in. Furthermore, we found that many redirect scripts were
armed with multiple evasion techniques. Figure 10 illustrates
the number of the techniques discovered in individual scripts:
27.8% utilized more than one trick and 14.2% even employed
as many as five techniques. A dynamic analyzer needs to be
carefully designed to capture their redirection activities.
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Fig. 10. The number of redirectors Vs. the number of used evasion techniques.

B. P2P Redirect Infrastructures

The most surprising finding of our measurement study is a
P2P redirect infrastructure the adversary built through injecting
scripts into compromised sites. A malicious web infrastructure
typically contains entities of different roles, including compro-
mised sites (i.e. point of entry), dedicated malicious redirectors
(e.g., Traffic Direction Systems [27]) and target destinations
(e.g. drive by download sites). In our study, we observed a
new twist, in which the full malicious infrastructure up to and
including the target destinations was built on top of a network
of compromised websites. The compromised sites here are
utilized not just for their traditional role, that is, serving as
a traffic source, but rather a more advanced one in which they
perform multiple layers of redirections to other compromised
sites until leading the victim to the final destination which
could be another compromised site used to deliver malware.
Such layered redirections through compromised sites make
the infrastructure much harder to detect due to the absence
of dedicated malicious sites. Up to our knowledge, only a

recent online post reports a similar observation [19] based
upon the data apparently collected later than what were used in
our research. Most importantly, our research brought to light
several key features of this new attack network that have never
been reported before, including its dynamic target selection,
cloaking strategy and the lifetime of the network. Below we
elaborate this study and our findings.

Constructing redirect networks. Our study is based upon
a dataset of HTTP traffic collected by our dynamic crawler
(Section II-B). This dataset contains the redirection paths
discovered by crawling a feed of suspicious URLs provided
by Microsoft, which covers the period between April 1st, 2012
and February 28th, 2013 (11 months in total) 7. Comparing
this dataset with the list of compromised URLs and hosts
discovered by JsRED (Section IV-B), we extracted redirection
paths that include at least one compromised URL (from
JsRED) and one other compromised host (the one serving
the URLs and files detected by JsRED)8 to examine the
compromised networks they form. This process resulted in
a subset of redirection paths that cover 1,760 (5.89%) of
the compromised hosts found by JsRED (Section IV-B) as
illustrated in Table VII.

# Unique URL to URL paths 47,363

# Host to host paths (host paths) 5,238

Average path length 4

# Compromised hosts 1,760 (5.89%)

# Clusters by payload signatures 63

TABLE VII. OVERVIEW OF COMPROMISED NETWORKS DISCOVERED.

We further clustered those redirection paths using the sig-
natures generated from the malicious scripts caught by JsRED
(Section IV-B), which resulted in 63 clusters with the most
prevalent cluster covering 68% of all the 1,760 compromised
hosts. Those hosts were found to be infected with the scripts
part of RedKit [3], a drive-by download toolkit. Therefore, we
call the whole attack network the “RedKit network”. We further
inspected this network by studying its structure, evolution and
lifetimes of the compromised sites.

Network structure. We found that this RedKit network was
built through script-based iframe injections. An example of the
redirect payload (i.e., the script) is shown in Figure 11, where
ifrm.src points to another compromised site. We observed
this redirect network to mimic the behavior of a P2P network
where the compromised hosts had one of three roles: relay
nodes (i.e., redirectors), exit nodes and target nodes.

In the network, relay nodes bounced a visitor either to
another relay node or to an exit node. Exit nodes, which were
also relay nodes, had an additional functionality of leading
the victim out of the network by dynamically selecting a
target destination and subsequently directing the victim to it,
as depicted by Figure 12. The target destinations were also
compromised sites but used by the network to deliver malware.

Using discovered redirection paths, we found that relay
hosts often replied to a visitor with an HTTP response

7The details of the data feed and the technique for generating redirection
paths are described in [27].

8Here we did not require a path to have two compromised URLs, since this
can be too specific. In our research, we manually sampled those paths and
confirmed that they were all malicious.



1 f u n c t i o n frmAdd ( ) {
2 v a r i f r m = document . c r e a t e E l e m e n t ( ’ i f r ame ’ ) ;
3 i f r m . s t y l e . p o s i t i o n = ’ a b s o l u t e ’ ;
4 i f r m . s t y l e . t o p =’−999em ’ ;
5 i f r m . s t y l e . l e f t =’−999em ’ ;
6 i f r m . s r c = ” h t t p : / / www. s c u o l a a r t e d a n z a . n e t / wp−admin /
7 t e m p l a t e . php ” ;
8 i f r m . i d = ’ frmId ’ ;
9 document . body . appendCh i ld ( i f r m ) ;

10 } ;
11 window . on lo ad = frmAdd ;

Fig. 11. Example of a payload used by the RedKit Network.
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Fig. 12. A diagram depicting the operation of the RedKit Network.

containing the aforementioned iframe injection, while exit
hosts when acting as exits always responded with an HTTP
redirection (302 or 303). This strategy could serve the purpose
of protecting the exit nodes, as the Referral field observed to
the visitor only showed the relay node.

In our study, we were able to identify 37 exit nodes that
cover 60% of this network’s paths in our dataset. On the
other hand, since the compromised hosts here (Section IV-B)
were all caught by their injected redirect scripts, it is possible
that our dataset failed to include the exit hosts that did not
serve as relays (i.e., redirectors), which could contribute to the
remaining 40% of the paths.

Network evolution and redirection strategies. We further
investigated the evolution of this RedKit network and its
redirection strategies. Figure 13a illustrates the number of
new exit hosts and relays appearing every day during a five-
month period. As we can see here, in the first two months,
the network was pretty dynamic, with new members joining it
on daily base. Interestingly, the set of exit nodes were rather
stable, barely changing during the network’s whole life time.
By comparison, those relay nodes apparently came and left
quickly. This indicates that the exits indeed served as the center
of the network with relay nodes all directing traffic to them.
Also, apparently the network did a good job in protecting those
exit hosts, given the fact that their total number was relatively
stable during the period.

We then took a close look at the patterns of the URLs that
served as target destinations, that is, to where the exit hosts
redirect the visitors. Those URLs were all found to belong to
the RedKit exploit kit [3]. In total we discovered 1,340 such
target URLs associated with 473 host names with an average
of 3 URLs per host. The evolution of these target hosts and
URLs is illustrated in Figure 13b. This time, the redirection
targets (the URLs and the hosts) change dramatically in the

figure, which indicates that the exit hosts frequently modified
the URLs and hosts they led the visitor to. Table VIII shows
the top 5 exit hosts in the network and their coverage of the
target URLs and hosts. All the observations point to a strategy
that leverages a large set of expendable relay hosts to funnel
traffic to a set of relatively stable, well protected exits, which
further dynamically select exploit servers for individual visits
from the victims. We also found that the target hosts were
shared among the exit nodes while the same target URL was
never reused by another node.

Also, part of the adversary’s strategy is the way those com-
promised hosts cloak. Figure 13 shows the network activities
slowed down dramatically around the middle of September
and then started up again late December in 2012. By ana-
lyzing the redirection paths during this period (September to
December), we found the exit nodes redirecting our crawler to
google.com or google.com/robots.txt. This clearly
indicates that the network blacklisted our crawler and at-
tempted to cloak. Interestingly, our crawler again received
attack payloads in late December, which coincides with the
network’s structural change, as discussed below.

From December 29th, 2012, the RedKit network started
moving onto a new structure and strategy. We found that new
redirect scripts were introduced and as a result, only the first
relay responded with a redirect script to the visitor while the
subsequent relay and exit nodes all replied with an HTTP
redirection command.
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Fig. 13. The RedKit Network activity.

Lifetime. To understand how successful such a network was
in surviving detection, we investigated its lifetime. Our data
set shows that the RedKit network had been there at least
from August 4th, 2012 to Jan 16th, 2013 (around 5.5 months).
We further estimated the lower bounds for its individual
hosts’ compromise lifetimes, that is, the time period during



# Exit Host % Host Paths % Target URLs % Target Hosts

1 scuolaartedanza.net 19.9% 21.27% 44.82%
2 mamagre.it 11.5% 13.36% 26.64%
3 olm-torino.it 8.9% 9.33% 20.93%
4 santantonionovoli.it 7% 8.28% 15.22%
5 gynetech.it 7.6% 8.21% 17.97%

TABLE VIII. TOP 5 EXIT HOSTS AND THEIR COVERAGE OF PATHS AND

TARGETS.

which those hosts contained infections. For this purpose, we
utilized the results of daily scans by Security Essentials and
Safebrowsing: a host’s lifetime here was estimated by simply
counting the number of days in which it was alarmed by either
Security Essentials or Safebrowsing as being infected. Note
that this estimate is considered to be a lower bound because
most hosts in question had not been visited by our crawler on a
daily basis. From the dataset, we found an average compromise
period of 15 days with a standard deviation of 20 days, a
median of 8 days and the maximum of 162 days. Similarly, a
study on search-redirection attack [26] shows that the infection
lifetime of compromised sites can be as long as 192 days.

Apparently, the adversary built the redirect network to
protect compromised hosts from being detected. To find out
the effectiveness of this strategy, we compare those on the
RedKit network with other compromised hosts, in terms of
the lengths of their infections, as observed in our research.
The results are presented in Figure 14, which shows that those
on the RedKit network indeed stayed longer than those not.

Finally, we re-scanned all the compromised hosts we
detected on October 29th, 2013 and found that 9.4% of those
on the RedKit network still had not been cleaned up. In
contrast, only 1.9% of the compromised hosts not participating
in the P2P network were still infected. This indicates that
such a network indeed protects compromised hosts against
detection. By combining the re-scanning result, we found that
the infection period for some hosts (i.e., compromise lifetimes)
can be as long as 285 days (8.5 months).
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Fig. 14. CDF comparison of the compromise lifetimes of the RedKit Network
hosts Vs. compromised hosts not participating in P2P networks.

Hosting providers. We inspected the IP addresses and the
corresponding Autonomous System Numbers (ASN) of the
compromised hosts. Table IX illustrates the top 5 ASNs
observed, which include cloud and hosting providers. Our
research shows that many compromised sites were hosted on
the same autonomous systems. Upon inspecting the compro-
mised sites, we found that most of those websites were built

with a number of website generation platforms known to be
vulnerable, such as Wordpress [4], Joomla [2] and Plesk [35].

To discover more compromised sites associated with those
ASNs, we performed a reverse lookup on a passive DNS
database [1] using those ASN’s IP prefixes. This search gave
us over 1.5 million hostnames. Scanning these hostnames with
Safebrowsing further discovered 2,696 compromised websites,
many of which were found to be still accommodated by the
same hosting provider on October 29th 2013 as shown in
Table IX.

VI. DISCUSSION

Redirect script detection. Our research shows that JsRED
works effectively on detecting redirect script injection cam-
paigns. This new technique is designed to complement, rather
than replace, existing techniques for identifying compromised
HTML files [6]. Although the adversary can always choose
to avoid JS files in his campaign, this strategy can make the
attack less stealthy, given the fact that HTML and other files
are often indexed by search engines and thus are easier to find,
while JS files are not. Also, attackers can force compromised
sites to redirect visitors through HTTP redirection (302 or
303), without leaving any compromised file (JS or HTML) to
crawlers. Again, this strategy is less stealthy as the location of
browser is changed. In fact, we found this type of redirection
is not prevalent after sampling the Bad set.

Our approach is based on the observation that the adversary
tends to blindly inject redirect scripts to JS files, with most
of them being JS-libs, and wants to avoid the complexity in
substantially modifying those files. To evade our detector, the
adversary may choose not to infect JS-libs. However, this ren-
ders the adversary more difficult to get traffic, as many JS files
are actually JS-libs (Section II-B). Also, substantial changes
to the infected JS files require more in-depth understanding of
their content, which increases the adversary’s cost and slows
him down in propagating his attack payload. If the customized
packers are used for this purpose, the obfuscated JS-lib file will
look very different from what it is supposed to be, which could
raise the attention from the website owner JsRED contacts. On
the other hand, further research is needed to better understand
JsRED’s capability to handle those evasion attacks.

P2P redirect network. Our study reveals a P2P redirect
infrastructure built entirely upon compromised sites, and made
a first step toward understanding its unique features. However,
what has been done just scratches the surface of this new
attack strategy. Many important issues remain unclear (e.g.,
how the adversary controls/manages the network), and need
further research effort.

Ethical issues. The large number of compromised sites de-
tected (in our case, around 30k) and the challenge in finding
right parties to talk to make it difficult for us to inform
the owners of the websites found to be compromised in our
research, as also happened in related prior research [22], [6].
Actually, most of the compromised sites (99.76%) are part
of a ground truth set provided by Microsoft and as such we
believe that the affected parties have already been notified
when necessary. The remaining sites (0.24%) were all found
to be on the blacklist provided by Google Safebrowsing at the



# ASN# ASN Description Country # Compromised Hosts # Compromised Hosts Identified by Reverse Lookup

1 31034 Aruba - Shared Hosting and Mail services IT 70 35
2 26496 GoDaddy US 47 332
3 21844 ThePlanet.com Internet Services US 47 2
4 36351 WEBSITEWELCOME.com US 36 64
5 16276 OVH Dedicated servers US 34 17

TABLE IX. TOP 5 ASNS HOSTING THE REDKIT COMPROMISED HOSTS.

time when they were identified in our research. The site owners
should already be aware of the infections if they queried the
blacklist.

VII. RELATED WORK

Detecting compromised websites. A lot of work has been
done to understand and detect compromised websites. Prior
research investigated the activities of exploiting vulnerable
websites using a network of honeypots [7], and web hosting
providers’ capability to detect those malicious activities [8].
Also studied were how vulnerable websites are exploited for
the purposes of phishing [32] and black-hat search engine
optimization [22]. Different from those prior studies, which
mainly work on the infected websites delivering attack pay-
loads (e.g., malware, phishing content, etc.), our research
focused on compromised sites serving as redirectors, which are
known to be hard to detect. Parallel to our work, a recent study
[6] reports a new technique that monitors the changes made
in compromised sites and further identifies malicious content
injected in HTML files using external oracles (i.e., detection
services provided by others). By comparison, our research aims
at understanding redirector injections that happen to JS files, a
much stealthier attack, and our differential analysis on JS-lib
files is shown to be capable of detecting zero-day malicious
scripts automatically.

Redirection chain analysis. Redirection chain analysis has
been performed in multiple prior research to understand or
detect malicious web infrastructures [27], [28], [30], [25],
[41]. However, those approaches are not designed to capture
compromised redirector websites, which are very difficult
to differentiate from legitimate websites. Also, once those
websites cloak, the whole redirect chain is interrupted and
such analyses can no longer move forward. Our approach,
however, is built to detect compromised redirect websites and
can identify them even in the presence of cloaking.

Code analysis. A typical way to detect compromised websites
is through program analysis, such as static analysis [10], [9],
dynamic analysis [48], [40] or their combination [11], [24],
[36]. These prior approaches are found to work well on drive-
by downloads, phishing, etc., but less effective on compro-
mised redirect websites. As described before (Section II),
without inspecting redirection targets, it is very difficult to
determine whether a piece of redirection code is malicious.
We addressed this problem by exploiting unique features of
redirect injection attacks and the adversary’s constraints, using
a simple differential analysis to extract redirect scripts.

Detecting changes in web files. Our detector identifies the
injected payloads by comparing the crawled web files with
their clean references, which is apparently similar to Web
Tripwires [37], a technique for detecting changes that happen
to web files. However, Web Tripwires needs to be deployed

by a website’s owner, who knows the clean versions of the
files under protection. While JsRED is meant to be operated
by a third party, who has no idea about the clean versions
of each website, except the JS-libs that ordinary users rarely
change. Our new approach is about how to leverage this
type of references to detect redirection code injection, without
incriminating authorized changes made to those sites.

VIII. CONCLUSION

Detecting compromised websites that serve as malicious
redirectors is challenging, due to the generality of redirect
scripts injected into these sites and the cloaking techniques
they may utilize to disrupt a redirection chain before it hits
exploit servers. In our research, we studied this problem by
looking at the adversary’s strategy and constraints. Particularly,
he has to inject redirect scripts blindly into a large amount of
web content, JS files as well as HTMLs, for a rapid deployment
and avoid substantial modifications on the compromised files
to evade detection. Also, many infected JS files are actually
JS libs, whose clean copies are publicly available. Based upon
those observations, we developed JsRED, a new detection tech-
nique that automatically identifies unknown redirect scripts.
JsRED compares a JS-lib file with its clean reference to extract
their diff, which is almost certain to be malicious if it is a
redirector. From those scripts, we further generate a signature
and run it against other JS files and HTLM files to detect
infected files. This simple technique turns out to be highly
effective, detecting most compromised websites with almost
no false positive. It also outperformed commercial malware
scan service in terms of detected JS infections. Using the
compromised sites JsRED reported, we further performed a
measurement study on the properties of such script injection
attacks, and discovered a new P2P redirect network built
upon compromised websites. Our study brought to light a few
important features of such a network that have never been
known before.
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