
Framing Signals—A Return to Portable Shellcode

Erik Bosman

Vrije Universiteit
Amsterdam

erik@minemu.org

Herbert Bos

Vrije Universiteit
Amsterdam

herbertb@cs.vu.nl

Abstract—Signal handling has been an integral part of
UNIX systems since the earliest implementation in the 1970s.
Nowadays, we find signals in all common flavors of UNIX
systems, including BSD, Linux, Solaris, Android, and Mac OS.
While each flavor handles signals in slightly different ways, the
implementations are very similar. In this paper, we show that
signal handling can be used as an attack method in exploits
and backdoors. The problem has been a part of UNIX from
the beginning, and now that advanced security measures like
ASLR, DEP and stack cookies have made simple exploitation
much harder, our technique is among the lowest hanging fruit
available to an attacker.

Specifically, we describe Sigreturn Oriented Programming
(SROP), a novel technique for exploits and backdoors in
UNIX-like systems. Like return-oriented programming (ROP),
sigreturn oriented programming constructs what is known as
a ‘weird machine’ that can be programmed by attackers to
change the behavior of a process. To program the machine,
attackers set up fake signal frames and initiate returns from
signals that the kernel never really delivered. This is possible,
because UNIX stores signal frames on the process’ stack.

Sigreturn oriented programming is interesting for attackers,
OS developers and academics. For attackers, the technique
is very versatile, with pre-conditions that are different from
those of existing exploitation techniques like ROP. Moreover,
unlike ROP, sigreturn oriented programming programs are
portable. For OS developers, the technique presents a problem
that has been present in one of the two main operating system
families from its inception, while the fixes (which we also
present) are non-trivial. From a more academic viewpoint, it
is also interesting because we show that sigreturn oriented
programming is Turing complete.

We demonstrate the usefulness of the technique in three
applications. First, we describe the exploitation of a vulnerable
web server on different Linux distributions. Second, we build a
very stealthy proof-of-concept backdoor. Third, we use SROP
to bypass Apple’s code signing and security vetting process by
building an app that can execute arbitrary system calls. Finally,
we discuss mitigation techniques.

I. INTRODUCTION

Signal handling has been an integral part of UNIX (and

UNIX-like) systems ever since the very first implemen-

tation by Dennis Ritchie in the early 1970s. Signals are

an extremely powerful mechanism to deliver asynchronous

notifications directly to a process or thread. They are used

to kill processes, to tell them that timers have expired, or to

notify them about exceptional behavior. The UNIX design

has spawned a plethora of UNIX-like “children” of which

GNU Linux, several flavours of BSD, Android, iOS/Mac OS

X, and Solaris are perhaps the best known ones in active use

today. While each flavor handles signals in slightly different

ways, the different implementations are all very similar.

We show that the implementation can be used as an

attack method in exploits and backdoors, much like return

oriented programming (ROP [24])—although the technique

is different. The problem has existed, to the best of our

knowledge undiscovered, for 40 years already. Moreover,

now that advanced security measures like ASLR, DEP and

stack cookies are making simple exploitation much harder,

it probably ranks among the lowest hanging fruit available

to an attacker.

In the tradition of ‘weird machines’ [7], we describe a

technique for executing attacker-provided code in otherwise

benign binaries. However, rather than executing shellcode

directly, returning into the C library, or piecing together a

program using ROP, we construct our weird machine by

means of fake returns from signals. The technique, which

we refer to as sigreturn oriented programming, is generic

and we can use it both for exploits, backdoors, and system

call proxies. Moreover, we prove that sigreturn oriented

programming is Turing complete.

The key idea behind sigreturn oriented programming is

that an attacker can abuse the way in which most UNIX

systems return from a signal handler.

When the kernel delivers a signal, it suspends the process’

normal execution and changes the user space CPU context

such that the appropriate signal handler is called with

the right arguments. When this signal handler returns, the

original user space CPU context is restored. Specifically,

a program returns from the handler using sigreturn, a

‘hidden system call’ on most UNIX-like systems, that reads

a signal frame (struct sigframe) from the stack, put

there by the kernel upon signal delivery. The frame contains

all information needed for a safe return: the values of the

registers, stack pointer, flags, etc.

The problem is that anyone who controls the stack is

able to set up such a signal frame. By calling sigreturn,

attackers may determine the next state for the program, and,

as we shall see, chain together sigreturn and other system

calls and to execute arbitrary code.

Like return-oriented programming (ROP), sigreturn ori-

ented programming (SROP) is a generic technique and we

will show how we used it in exploits, backdoors and system

call proxies, and across a wide variety of operating systems.

Compared to ROP, it has different preconditions that in

certain cases are simpler to satisfy. For instance, SROP

needs only a single gadget for the exploit and for several

Linux, Android, and BSD distributions that gadget is always

present, and better still, always located at a fixed location.

In that case, attackers need not even know in advance the

exact version of the executable and all the libraries, which

greatly simplifies the attack when detailed reconnaissance is

not possible.
For attackers, what is especially attractive about SROP

compared to ROP, is its re-usability. Unlike ROP code,

SROP programs are not very dependent on the content of the

executable. Like traditional shellcode, this makes it possible

to reuse the same SROP code across a host of applications.

Moreover, the technique works on widely different instruc-

tion set architectures and operating systems. For example,

we have implemented SROP successfully on 32 bit and

64 bit x86, as well as on ARM processors. Likewise, we

successfully tested the technique on Linux (different distri-

butions), Android, FreeBSD, OpenBSD, and Apple’s Mac

OS X/iOS. The program that we use to demonstrate Turing

completeness of sigreturn oriented programming works on

32 bit and 64 bit Linux.
Contributions: In this paper we will describe a new type

of weird machine and explain how to program it using

sigreturn oriented programming. Specifically, we introduce:

1) a new generic exploitation technique, known as si-

greturn oriented programming (SROP), that in some

cases requires no prior knowledge about the victim

application and yields reusable ‘shellcode’;

2) a novel and stealthy backdoor technique based on

SROP;

3) a system call proxy to bypass Apple’s iOS security

model;

4) a proof that SROP is Turing complete;

5) possible mitigation techniques.

Applications: We demonstrate the practicality of our

exploitation technique using a vulnerability found recently in

the Asterisk web server. We show that using SROP, we can

construct a single exploit which works for different versions

of the same program on different distributions of Linux,

including Debian Wheezy (released in May 2013), Ubuntu

LTS 12.04 (the latest Long Term Support version of Ubuntu,

released in 2012 and supported for five years), and Centos

6.3 (released in 2012 and supported for 10 years).
We then demonstrate the wider practical applicability of

the technique by means of a stealthy backdoor. The backdoor

is hard to find even with state of the art forensics tool. For

example, even a complete memory dump of the process will

not reveal any backdoor instructions, as all logic is hidden in

the data in the form of an SROP program. Finally, we show

how we can bypass Apple’s well-known security model that

consists of elaborate code vetting and prevents malicious

apps from making it into the App Store. In our case, there is

no need to add any malicious instructions to the application

whatsoever, so it will be extremely hard to detect. However,

provided with the right inputs, it will function as a system

call proxy that can be programmed using sigreturn oriented

programming.

Outline: The remainder of this paper is organized as

follows. In Section II, we place SROP in the context of

related work. In Section III, we discuss weird machines and

how to program them, as well as the role of return-oriented

programming. Signal handling is the topic of Section IV.

Section V discusses the SROP technique in detail. We

discuss our exploitation technique in Section VI, a stealthy

backdoor in Section VII, and our iOS system call proxy

in Section VIII. Turing completeness will be discussed in

Section IX. In Section X we discuss possible mitigation

techniques. Finally, we conclude in Section XI.

II. RELATED WORK

Our work fits in the general category of weird machines.

The term weird machine was originally coined by Sergey

Bratus and was quickly picked up by other researchers [7],

[30]. It is a generic term to describe systems in which

unwanted or unexpected powerful computations are found to

be possible. For instance, researchers have shown that that

it is possible to use weird machines constructed from arcane

parts, such as ELF symbol relocation logic in the dynamic

loader [26] and even the x86 virtual memory subsystem [9].

For this paper, Return-Oriented Programming (ROP) is

most relevant [24]. ROP is an exploitation technique that

allows attackers to execute code in the presence of security

measures like non-executable stacks and code signing. As a

precondition to a successful ROP exploit, the attacker needs

to gain control over the stack and obtain valid code pointers.

The attacker then manipulates the return address to jump to

a sequence of instructions that ends with a return. As the

attacker controls the stack, she can keep jumping to code

gadgets and thus string together a program.

A variant of the same technique, known as jump oriented

programming, uses jumps instead of returns [3]. Finding

the appropriate gadgets and stringing them together is hard,

but researchers have shown that it is possible to construct

ROP compilers [23], [13] to make this easier. Similarly,

modern protection mechanisms like address space random-

ization [20], [1], [25] make it hard to find the addresses of

the code snippets. On the other hand, given an initial code

pointer, it is often possible to extract the remaining code

pointers necessary for a successful exploit [27]. Also, in

Linux and Windows, executables with fixed load addresses,

and libraries incompatible with ASLR, may lead to parts of

the address space that are constant [22].

Since ROP and JOP have quickly become popular with

attackers, many research groups have tried to mitigate the

issues, for instance by trying to remove useful gadgets [11],

[17], permuting the order of functions [2], [10], or dy-

namic binary instrumentation [6], [5]. Also, researchers

have proposed to use in-place code randomization with low

overhead [19] and by monitoring branch histories [18]. Even

though none of these solutions have stopped attackers from

using ROP, they keep raising the bar. Many of the mitigations

do not work for SROP. For instance, the gadgets used by

SROP are essential for the functioning of the binary and

cannot be removed. We believe that SROP may be among the

most convenient methods of attack even against programs

that apply all common security measures.

At a superficial level, sigreturn oriented programming

shares some of the characteristics of ROP. We will see that

sigreturn oriented programming also requires setting up the

appropriate values on the stack and ‘returning’ to a value

determined by the attacker. But the technique is different.

Specifically, SROP uses fake signal frames and does not

really depend on finding gadgets and stringing them together.

For this reason also, SROP code has better re-usability.

The use of signals themselves in exploitation has been

thoroughly documented by Michael Zalewski in: "Delivering

signals for fun and profit" [32]. The author shows that

there are many pitfalls to consider when programming signal

handlers. The pre-emptive nature of signals can lead to the

use of data structures while they are in an inconsistent state,

corrupting them in the process, or to make an application do

unexpected things while in a state with elevated permissions.

Our work is different, in that we use fake signal frames as

partial instructions in a weird machine.

A user space call which is somewhat similar to the

sigreturn system call is longjmp. In "Bypassing stack-

guard and stackshield" [4], overwriting a pointer to a user

context subsequently used by longjmp is mentioned as an

exploitation vector. It is noted however, that the existence of

such a pointer in an exploitation context is extremely rare.

Microsoft Windows does not implement POSIX signals.

Its fault handling mechanism is designed to integrate well

with C++’s exception handling. Through a mechanism called

Structured Exception Handling (SEH), it allows functions to

unwind the stack and do some processing until the exception

is caught in an earlier stack frame. As exception handler

pointers are put on the stack, this has been a steadfast

overwrite target for stack buffer overflows on Windows [12]

and several mitigation techniques have been proposed and

implemented [15]. However, since SEH on Windows does

not return to the state before the handler was executed, they

cannot provide a mechanism for SROP-like exploits.

An independent effort to attack iOS devices that also

builds on benign apps becoming evil is provided by

Jekyll [31]. Like our work, the authors deliberately introduce

vulnerabilities in the app, so that they can easily change the

control flow later, by exploiting it by means of a ROP ex-

ploit. Likewise, we show that it is now easy to circumvent all

of iOS’s defensive mechanisms, including DEP [14], ALSR

[20], [1], sandboxing, app review and code signing. Unlike

Jekyll which needs to carry its own gadgets, the gadget

for sigreturn oriented programming is already present. Thus,

even detection techniques that specifically scan for Jekyll-

like functionality are no longer effective. Finally, we can

use sigreturn oriented programming in a post-exploitation

scenario. For instance, we can use the system call proxy

for a jailbreak—allowing attackers to jailbreak via a root

process that was not written by them.

In the next section, we will revisit the current trend among

attackers to move away from regular shellcode injection

toward attacks based on code reuse. We will argue that

because of this, exploitation is getting harder and that SROP

may be a useful new weapon in the hands of an attacker—

removing some of the obstacles that an attacker encounters

in modern systems.

III. ON THE CONSTRUCTION OF WEIRD MACHINES

(OR: WHY EXPLOITATION IS GETTING HARDER)

Sigreturn oriented programming is not unlike other ex-

ploitation techniques where attackers execute foreign ‘code’

in an existing program. Not so long ago, doing so was

relatively straightforward. Typically, attackers managed to

find a buffer overflow vulnerability on the stack which

allowed them to overwrite the return address. All they

needed to do was make the return address point to their

own machine code which would be stored in a buffer or

environment variable. As soon as the function returned, the

program would continue executing the attackers’ code.

1) Code reuse attacks (ROP, JOP, and ret-into-libc):
With modern protection measures, such traditional exploita-

tion of memory corruption bugs, where machine code is

injected by the attacker and directly executed, has become

rare. Specifically, data execution prevention (DEP [14])

features, present in practically all modern CPUs and oper-

ating systems, separate machine code and writable data. In

other words, attackers can no longer execute their shellcode

directly. To bypass such security measures, they must resort

to different exploitation techniques. Rather than injecting

regular machine code, modern attacks typically re-use logic

or code from the executable itself using ret-to-libc [28] or

return oriented programming [24]. In this way, attackers can

construct strange automata to do their bidding.

Constructing such an automaton is not easy. Over the past

few years, the security research community has especially

focused on generic techniques like return oriented program-
ming (ROP) [24] and jump oriented programming (JOP) [3].

These techniques make use of chunks of executable code

present in the program itself. Chained by indirect control

flow instructions, these chunks thread together a sequence

of low level instructions which do what the attacker wants.

An attacker that controls an application’s stack because of

a buffer overflow may look in the original application’s

binary for small sequences of instructions that do something

interesting and end with a return instruction. For instance,

a sequence to add two registers, or to load or store a

register, etc. These sequences are known as ‘gadgets’. If

the attacker manages to divert the control flow to one of

the gadgets, the gadget will execute the first small part

of the attacker’s code and then execute a return. Since

the attacker controls the stack, the address to return to is

also under the attacker’s control. So the attacker returns to

another gadget. By chaining together gadgets, the attacker

can execute arbitrary code, written for an instruction set that

consists of the gadgets and a stack pointer that functions as

a strange sort of program counter.
While such a procedure may sound straightforward, a

working ROP exploit is often highly complex. For instance,

a ROP attack may require an attacker to manipulate the state

of the program to prepare it for exploitation, by (1) making it

leak information about code pointers (for instance, by means

of a format string attack), (2) lining up heap objects in a

specific way to pave the way for a dangling pointer exploit

(using advanced heap feng shui [29]), (3) gathering enough

useful code gadgets from the binary to chain together the

attacker’s final program (which typically assumes that the

exact versions of the executable and libraries are known),

and (4) positioning the appropriate data on the stack, and

(5) diverting control to the first gadget.
The ability of a program to go beyond its specification

allows it to act as a weird machine [7], [30]. This machine

can thereafter be manipulated, programmed by an attacker

just like any other programmable machine. The attacker’s

input now serves as its (rather peculiar) machine code, giving

her control over the program’s execution, far beyond its

intended use.
What the attacker wants: Some techniques for program-

ming weird machines are very application specific. They

depend very much on the flaw(s) that make up a vulnerability

in a single application and cannot be re-used for the next

bug. Others, like heap feng-shui with Javascript [29], apply

to a whole class of applications and considerable effort is

spent on making them applicable across systems. Clearly,

reusable techniques are more valuable than a trick that can

be used only once.
From an attacker’s perspective, we therefore distill the

following objectives for the construction and use of weird

machines:

1) Re-usability: reusable techniques are better than one-

offs. Ideally, we would like to be able to reuse the same

exploits for multiple programs.

2) Simplicity: the less manipulation is needed a priori,
the better. If the list of manipulations is long and

complex, the attack may be difficult to pull off for some

programs.

3) Generality: a technique that can be used for exploits

is good, but it is even better if it can also be used for

backdoors and other purposes.

4) Variety: the more choice for exploiting a program, the

better. If we have more than one attack vector for a

program with different preconditions, the probability of

finding one that fits a target program increases.

As explained above, a typical exploit in reality consists of

a sequence of different techniques, where more application-

specific code gymnastics bootstrap more generic exploitation

methods such as ROP, and then possibly the attacker’s native

code. Again, the more generic the technique, the better the

exploit code can be re-used for other vulnerabilities.

2) ROP makes attacks harder: As we saw earlier, ex-

ploitation techniques have evolved in answer to the protec-

tion measures that are now employed on modern systems: di-

rect shellcode execution has become rare, and ROP exploits

have become popular. Unfortunately for attackers, ROP is

not such an easy drop-in solution as normal shellcode used

to be, because useful code-snippets and their addresses are

different for every new binary for which an exploit is being

written.

It is true that ROP compilers make it possible to automat-

ically generate a useful ROP chain for most target binaries,

but even with state-of-the-art ROP compilers, return-oriented

programming complicates the attacker’s life significantly.

With a traditional stack overflow and without data execution

prevention, the same exploit could very easily work across

multiple binaries with the same vulnerability. Now, however,

the attacker needs to know exactly which binary the victim

uses to feed it to a ROP compiler, or possibly even build

a ROP chain manually. It may be difficult to determine the

exact version of a binary because an application has had

several updates which may or may not have been installed. In

the worst case, the binary is a custom build with an unknown

compiler and unknown compile flags. Even if the attacker

can determine the version, it still is a lot of work to do this

for every binary.

The other pre-conditions for a successful ROP attack are

important as well. Besides control over the stack and an

initial control-flow diversion, the executable needs to leak

the address of a code pointer which, depending on the

application, may be hard.

In the remainder of this paper, we will see that sigreturn

oriented programming scores well on all of the above four

criteria. SROP code is portable [objective 1], the attack is

simple (e.g., it requires a minimal number of gadgets that

in quite a few systems can be found at fixed locations)

[objective 2], it has many applications [objective 3], and it

enlarges the attackers’ repertoire with different preconditions

[objective 4].

IV. SIGNAL DELIVERY ON UNIX SYSTEMS

Signals have been an integral part of UNIX systems

almost since its inception [21]. Initially little more than

a convenient abstraction around hardware interrupts, the

mechanism was later adapted as a generic system, able

to receive notifications both from the kernel and from

other processes. By registering a signal handler function,

a process can deal with asynchronous notifications outside

of its normal control flow.

Sigreturn oriented programming requires a thorough un-

derstanding of how signals are handled on UNIX systems.

In particular, we will zoom in on the way the system restores

the process state upon returning from a signal handler.

A. Delivering the signal

When a kernel delivers a signal to a process, the normal

execution flow of the process is temporarily suspended.

Specifically, the kernel changes the user space CPU context

such that a previously registered signal handler function is

called with the right arguments. When this signal handler

returns, the original user space CPU context is restored.

In true UNIX fashion, this is implemented in an elegant

way that requires no bookkeeping on the kernel side. The

suspended user context is simply saved on the process’

stack and restored from the stack when the signal handler

returns. Initially, this was done simply in the interrupt trap

handler (Fig. 1). But the introduction of virtual memory

and hardware memory protection made this impossible, as

a user-space signal handler could no longer directly return

to the interrupt routine. This led to the introduction of the

sigreturn system call in 4.3BSD. Sigreturn takes as

first argument a pointer to the user context to be restored.

A piece of trampoline code is placed in the user address

space which first calls the signal handler and then does a

sigreturn system call to signal the kernel it should restore

the old user space context.

Linux does something similar to the BSDs, except that

it executes the signal handler directly. When the signal

handler returns, it returns to an address written there by the

kernel. A stub at this address is then responsible for calling

sigreturn. Unlike on BSD (and iOS/Mac OS X), there is

no argument to sigreturn. The kernel simply loads the

user context from the stack.

Figure 2 shows the top of the stack of a 64 bit x86 Linux

process when a signal handler exits.

B. Sigreturn and Data Execution Prevention

The sigreturn calling trampoline has to be in user

space memory. It used to be custom for kernels to write

the trampoline code together with the user context on the

stack. A returning signal handler would just jump to this

code on the stack. However, this requires an executable

stack, allowing for easy shellcode injection on the stack.

Nowadays, depending on the architecture, the sigreturn

NSIG = 0

i n t e r r u p t v e c t o r
t v e c t :

mov r0 ,−(sp) ;
l o ad s i g n a l h a n d l e r f u n c t i o n
mov dve c t +[NSIG∗2] , r0 ;
b r 1 f ;
NSIG=NSIG+1
r e p e a t e d a t o t a l o f 20 t ime s (f o r 20 s i g n a l s)

. . .
1 :

push t h e r e g i s t e r s t a t e on t h e s t a c k
mov r1 ,−(sp)
mov r2 ,−(sp)
mov r3 ,−(sp)
mov r4 ,−(sp)
c a l l t h e s i g n a l h a n d l e r
j s r pc , (r0)
r e s t o r e r e g i s t e r s
mov (sp)+ , r4
mov (sp)+ , r3
mov (sp)+ , r2
mov (sp)+ , r1
mov (sp)+ , r0
r e t u r n from i n t e r r u p t
r t t

Figure 1. Excerpt from s5/signal.s, UNIX V6 interrupt routine (comments
added for clarity). We see that even in these early versions, the suspended
CPU state was stored on the stack.

trampoline code is either provided in an executable memory

page provided by the kernel, allowing the kernel to know its

location, or it resides somewhere in libc.

V. SIGRETURN ORIENTED PROGRAMMING

In this section, we discuss the key ideas behind sigreturn

oriented programming. To do so, we first introduce the way

Linux and other UNIX flavors return from signals in some

detail and then discuss how sigreturn is vulnerable to

abuse.

A. Signal delivery on Linux

At the new top of the stack, the kernel writes the code

address that will become the return address for the signal

handler. This code address points to a small stub which

does nothing more than invoke the sigreturn(0) system

call. This sigreturn() call undoes everything that was

done in order to invoke the signal handler (changing the

process’s signal mask, switching stacks). Thus, it restores

the process’s signal mask, switches stacks, and restores the

process’s context (registers, processor flags)—making the

process resume execution exactly at the point where it was

interrupted by the signal.

B. The sigreturn system call on Linux

While sigreturn is a system call, called like any other, it

is special in the sense that no user space program ever needs

to be aware of its ABI. The kernel is responsible for setting

up the user space stack in such a way that it is eventually

called.

As mentioned earlier, the trampoline code invoking si-

greturn used to be on the stack in the signal frame in

the pretcode field, but because executing this trampoline

requires an executable stack, it is no longer used on recent

kernels. Interestingly, vestiges still exist on Linux i386 to

help gdb identify the signal frame. In reality, however, the

stub has since moved to the virtual dynamic shared object
(vdso), a kernel-supplied piece of code mapped in every pro-

cess’ address space. On x86-64 Linux, the stub is present in

libc itself. It must be supplied to the kernel when registering

signals using the sigaction.se_restorer field. In both

cases, the sigreturn stub address is normally randomized

by ASLR [20], [25].

When sigreturn(0) is called, the kernel will use the

user space stack pointer to find the signal frame which it had

stored there previously and load the original user context

into the CPU’s registers. In this way, it restores the original

context for the interrupted process.

Figure 2 shows a signal frame that a 64 bit Linux

kernel would place on the stack. We see that the frame

contains register values, including the stack pointer (RSP),

the instruction pointer (RIP), the segment registers (CS, FS,

and GS) and the flags. The return address is at the top of

the frame, followed by the user context, and the registers.

The regular registers may hold arguments and we will use

them in this way also.

The floating point state pointer points to the saved floating

point unit state. It is only important if there is any floating

point state to restore, i.e., if there were any floating point

operations before the signal arrived. If the pointer is NULL,

on the other hand, the kernel assumes that there were no

such operations and ignore it.

Signal frames on other architectures look very similar,

albeit that the register context stores by definition other,

architecture-specific registers and values.

C. Sigreturn on other UNIX flavors

Different UNIX and UNIX-like systems implement re-

turning from signals in slightly different ways. On BSD,

Mac OSX and iOS, sigreturn is similar, except that it

is part of the ABI and that it takes the location of the

struct sigframe as first argument. On OpenSolaris there

is no sigreturn; restoring the original context happens

in user space and is handled completely by libc, which

provides a wrapper around signal handlers and restores

the user space context. While other operating systems also

provide interesting avenues for exploitation, we will restrict

ourselves to various flavors of Linux, BSD, and iOS in the

remainder of the paper, often using Linux as an illustrative

example.

��
�����	�
�����
	��

���
��������������

���
���
���
���

����������
���������	�
��	����

��	���
������������

���
���
���
� �

�!
�����	�
������"�
�����	�
������

����
	��

���
��#
��$
���

���%	�

�����	��

�
�%	�
���������
���

��
	��
���
�	�
� �

��$�
����
����
����

��&�
��'�
��#�
����

��(�
��)�
��*�
��+�
��,�
��-�
��!�
����

Figure 2. The signal frame as it looks like in Linux 86-64

D. Abusing sigreturn

Restoring the context of an interrupted process by loading

a previously saved stack frame is convenient because it

relinquishes the responsibility of the kernel to keep track

of the signals it delivered. However, it also has a major

drawback: the kernel does not keep track of the signals it

delivered. In other words, there is no way of telling whether

a sigreturn is legitimate.

By setting up a correct struct sigframe, loading the

right system call number, and executing a system call in-

struction, an attacker can trivially fool the kernel into acting

like a signal handler just finished. In that case, the kernel

will load a user space context constructed by an attacker

from the stack.

In the remainder of this paper we will explore the un-

intended consequences of being able to do a sigreturn on

arbitrary data.

VI. SROP FOR EXPLOITATION

As mentioned, attackers can use sigreturn oriented pro-

gramming for different purposes. First, we will outline two

exploitation techniques, a simple generic technique followed

by a more flexible method for 64 bit Linux processes. This

second method is more complicated, but has weaker pre-

conditions. In later sections, we discuss other uses of SROP.

A. A simple execve() SROP exploit

The final result of many UNIX exploits is often an

attacker controlled shell. In this section we will outline an

exploit which will call execve to start a shell with arbitrary

arguments.

For any exploitation to be successful, certain pre-

conditions have to be met. For instance, for direct shellcode

execution, attackers must be able to load their code in

executable memory and divert control to this buffer. ROP re-

quires code pointers, gadgets, control of the stack, a control

flow diversion, etc. Likewise, successful SROP exploitation

using this technique is possible if the attacker satisfies the

following pre-conditions:

1) The attacker should have control over the instruction

pointer (for example due to a return instruction on the

overwritten stack).

2) The stack pointer should be located on attacker con-

trolled data and NULL bytes must be allowed (e.g., in

an overflow). For BSD, Mac OS X and iOS, a function

pointer overwrite with a user-controlled buffer as first

argument is also a possibility. In this case there is no

need for any user controlled data on the stack.

3) The attacker knows the address of a piece of data

controlled by the attacker. This could be the overwritten

stack, but does not necessarily have to be the same

location.

4) The attacker knows the location of code calling

sigreturn, or syscall, in case the attacker can

control the CPU register which passes the system call

number.

B. Finding a sigreturn gadget

As with return oriented programming, SROP needs some

knowledge about the location of code in a process’ address

space. But unlike ROP, SROP really only needs to know the

location of a single gadget, namely, the call to sigreturn.

In our exploit we also make use of an extra gadget which

does arbitrary system calls, but this additional gadget is

contained in the sigreturn gadget. For this, we simply

skip the instruction where the system call is loaded. In some

cases we may be able to control the CPU register responsible

for passing the system call. In that case we don’t need a

sigreturn gadget, and a syscall gadget will suffice as

will be elaborated in our second exploitation technique.

As it turns out, it is surprisingly easy to find these gadgets

on some architectures. On FreeBSD 9.2 on x86-64, there

is a fixed memory page containing sigreturn. Linux on

ARM, before version 3.11 (this includes all current versions

of Android as well as the latest long term stable version

(3.10) has a fixed [vectors] map with sigreturn gadgets.

Furthermore, many versions of Linux on x86-64 have a fixed

[vsyscall] map at with a syscall & return gadget (see

Section VI-D).

If sigreturn is located in libc, and there are no known

gadgets beforehand, an attacker might need to leak libc code

addresses in order to obtain a sigreturn gadget. On systems

which do library pre-linking, sigreturn gadgets may be the

same system-wide, which allows local exploits to find the

right gadgets. Table I shows the location of useful gadgets

in various Operating Systems.

C. Executing system calls

As most architectures pass system call parameters to the

kernel through registers (a notable exception being BSD

Operating system Gadget Memory map

Linux i386 sigreturn [vdso]
Linux < 3.11ARM sigreturn [vectors] 0xffff0000
Linux < 3.3 x86-64 syscall & return [vsyscall] 0xffffffffff600000
Linux ≥ 3.3 x86-64 syscall & return Libc
Linux x86-64 sigreturn Libc
FreeBSD 9.2 x86-64 sigreturn 0x7ffffffff000
OpenBSD 9.2x86-64 sigreturn sigcode page
Mac OS X x86-64 sigreturn Libc
iOS ARM sigreturn Libsystem
iOS ARM syscall & return Libsystem

Table I
SIGRETURN AND SYSCALL GADGETS AND THEIR LOCATION

on i386), doing a sigreturn allows us to do an arbitrary

system call. By setting our stack frame’s instruction pointer

to the address of a syscall instruction and filling in the

registers that pass the system call number and its arguments

we effectively load a state in which a system call of our

choice gets executed.

Since we know the location of some data controlled by

the attacker, we can now do an execve system call to, say

/system/bin/sh on Android, using pointers to our data for

execve’s filename and argv parameters and using the fixed

sigreturn & syscall gadgets from the [vectors] page.

D. SROP exploitation on Linux x86-64 using a system call
chain

Up until now we have assumed that we knew about

memory locations with attacker controlled data and that

we had knowledge of a sigreturn gadget. For the next

exploitation method we won’t have to know exact locations

of attacker controlled data in the address space and we will

not require any knowledge about code from the application

itself. This exploitation technique is targeted at x86-64

systems running a Linux kernel older than version 3.3 and

using this method, we will exploit different versions of a

vulnerable Asterisk server using the exact same exploit on

different systems.

Our new pre-conditions are:

• The stack pointer should be located on attacker con-

trolled data and NULL bytes must be allowed (e.g., in

an overflow).

• The attacker should have some control over RAX.

Specifically, RAX should contain the value 15.
• The attacker should have control over the instruction

pointer RIP (for example due to a RET instruction on

the overwritten stack).

• The attacker should know the location of a (any!) single

writable page in memory. The location or content of the

binary’s code is not important. If the attacker manages

to leak a writable address, the executable can even be

position independent and the exact identity of the binary

completely unknown.

• The target’s system implements native vsyscall,

which is the default on pre-3.3 kernels such as those

��������	
����
�������
������������������	���
������������������	���
������������������	���
������������������	������������������������������������� !���"
��������������������������	����������������������#�������
������$���
��%��&�%�
����'(�#(�

���#�������
������$���
��%��&�%�
����'(�#(�

��������������������������	����������������������#�������
������$���
��%��&�%�
����'(�#(�

��������������������������	����������������������#�������
������$���
��%��&�%�
����'(�#(�

��������������������������	���������������������
��������������������������	����������������������##������
������$���
��%��&�%�
��'(�#(�

���������������������'����	���������������������
��������������������������	���������������������
��������������������������	����������������������##������
������$���
��%��&�%�
��'(�#(�

��������������������������	�������'��������������##������
������$���
��%��&�%�
��'(�#(�

��������������������������	���������������������
�������'������������������	����������������������������� ����)"
���������������������'����	����������������������������� *��
"
����������������������������������	��������������������� *�+���

"

Figure 3. Vsyscall is mapped in a process’ address space

�������������������������	
����������
���������������	������
��������������������������������
�������������������������������
��������������������������� ���
���!!!
������������������"������	
����������
��������������
������������������"�������������
������������������"������������
������������������"�������� ���
���!!!
������������������#������	
�������$ %�
�����������&'��
������������������#�������������
������������������#������������
������������������#�������� ���

!!!

Figure 4. The vsyscall page contains the syscall & ret gadget
multiple times

used on Debian 7.0 (2013), Ubuntu Long Term Support

(2012) and CentOS 6 (2012).

• The attacker controls data sent to a file or socket with

a known file descriptor number.

In general terms, the SROP attack works by repeatedly

setting up fake signal frames and returning from a “signal”

to regular system calls and back. To explain how this

is possible, we first describe the details of system call

execution.

1) Useful gadgets on Linux x86-64: vsyscall: Vsyscall

is a fast system call interface for 64 bit Linux. It was

created to speed up certain time-sensitive system calls.

Instead of using the syscall instruction, an application could

simply jump to static addresses in a static page set up

by the kernel (see Figure 3). The kernel provided user

space code at these addresses which implemented time(),
gettimeofday() and getcpu(). Any privileged data

needed for these system calls to complete (such as the

current time,) was provided by the kernel in data structures

in the same page.

This turned out to be a security nightmare, as it provides

attackers with a heap of useful gadgets for exploitation

at fixed addresses, identical for every running process.

These gadgets include syscall & ret: a syscall (0f 05)

followed by a return (c3). For this paper, we are particularly

interested in this syscall & ret gadget, because it allows

one to execute a system call of choice, provided we can set

the appropriate system call number in RAX (see Figure 4).

While gadgets seem to differ across distributions, useful
gadgets appear to stay the same after kernel security up-
dates. In other words, for systems running stock distribution

kernels, it should be easy to determine the addresses of

gadgets—even remotely! In addition, as the kernel keeps

track of wall-clock time in the same page as the executable

code, a patient attacker could just wait for the binary

representation of wall-clock time to contain a (small) gadget

of his/her choice and then jump to (the least significant bytes

of) the wall-clock time field.

Due to its security risks, vsyscall was deprecated in

Linux 3.1 and by default the fast user space routines now

just call their normal system call counterparts. While this

eliminated some harmful gadgets, due to its simplicity, it did

result in the remaining gadgets, such as syscall & ret

having stable addresses across all distributions. The reason

is that the C file containing vsyscall was replaced with an

assembly file that contains several syscall & ret gadgets.

The assembly file always generates the same binary.

At the same time, the Linux developers added a second

vsyscall emulation mode, which emulates vsyscalls using

a trap-based mechanism. As a result, we cannot make use

of the system call gadgets from this page. Note, however,

that for many kernels this is not the default configuration1.

Even if, there is no fixed location for system call gadgets,

we may still find one in the executable itself—after all,

we only need one small gadget. In that case, we lose the

property of not needing reconnaissance, but the exploit still

works. As a long-term release, the 3.2 kernel is present in

many distributions today, such as Debian 7.0 (released in

2013, supported for 10 years) and Ubuntu 12.04 Long Term

Support (released in 2012 and supported for 5 years)

E. Bootstrapping to arbitrary code execution

In this section, we show how the sigreturn can help

the attacker to execute arbitrary code. To do so, we make

use of a chain of system calls and sigreturns that serve as an

example. There may well be other sequences that an attacker

can use to achieve the same effect.

The first thing we do is create a fake signal frame and

trigger a sigreturn. We first explain what that first signal

frame looks like.

In order to execute a successful sigreturn system call,

we must ensure that the kernel does not trip over any bad

values in the signal frame. The first requirement is that the

code segment register is restored correctly. On x86-64, when

running in 64bit mode, the code segment register should

contain the value 0x33. The second requirement is that the

fpstate pointer is not a wild pointer. Fpstate points to the

saved floating point unit state and if its address not valid, or

the saved floating point state is not correct, our application

1It is certainly not default for all kernels prior to Linux 3.3. and even
post-3.3 kernels allow one to boot without emulated vsyscall.

will crash. This seems like a problem, since our assumption

is that we do not yet know of any attacker controlled data

on a known address. Luckily, when fpstate is NULL, Linux
assumes no floating point operations had been used before

the signal arrived. In this case, it clears the FPU state is and

sigreturn succeeds.

When we execute sigreturn, we have complete control

over the registers, as well as over the program counter

(RIP.) But we have also lost any chance of using any

ASLR information present in the registers as they have been

overwritten. This is why we need the address of a writable

page. We will point the stack pointer in our signal frame to

the bottom of this page. By filling in the necessary registers

and pointing the program counter to our syscall & ret

gadget, we can set up and subsequently execute any system

call we like (see also Figure 5).

We will use this power to set up a read() system call.

The read will read in attacker data and store it under the

stack pointer. When read finishes, the attacker’s data will

serve as the return address. In our case, the attacker points

it again to the syscall & ret gadget.

Steps 1 and 2: sigreturn and read
Summarizing, in our first two steps, we create a fake signal

frame on the attack, as explained above. In the signal frame

the RSP value will point to the writable page, the value for

RAX will be 0 (indicating a read system call), and there

will be appropriate values in the registers that serve as the

arguments to the read system call. Then, the attacker diverts

the program’s control flow to the syscall & ret gadget

to execute the system call and read the attacker’s data on the

new stack (the writable page). Because the attacker controls

the return address, he can simply return to the syscall &

ret gadget—not unlike what one would do in regular ROP.

At this point the attacker has no choice but to keep all

the system call arguments the same, as the kernel does not

change them during the execution of a system call. But RAX

will contain the number of bytes read. This is important

and the attacker uses it to select the next system call to

execute. As mentioned earlier, the RAX register indicates

which system call to execute.

Step 3: a necessary NOP
Specifically, the attacker chooses to read 306 bytes. Not

only does this give quite some data which is now at a

known location, but 306 also happens to be the system call

number for syncfs(int fd)—our third step in the exploit.

The syncfs() system call takes a file descriptor as first

argument and flushes all disks belonging to this descriptor.

Since our file descriptor is a socket, this will effectively be

a no-op returning 0 in RAX. The attacker again makes sure

to return to the syscall & ret gadget.

Step 4: another read to set RAX
On x86-64, the value 0 happens to be the system call number

for read, allowing the attacker to again read data onto the

new stack—our fourth step. This time the attacker makes

sure to send only 15 bytes, so that the value of RAX is now

15.

Steps 5 and 6: a sigreturn to execute anything we
like
As mentioned earlier, 15 is also the system call number for

sigreturn, so we are back to where we started, but with an

important difference: there is data controlled by the attacker

at a known address. The following sigreturn, our fifth

step, is again free to load an arbitrary system call into the

registers, which enables the attacker to do anything he wants.

For instance, he can execute an mprotect system call and

jump to traditional shellcode, or an execve with the right

arguments to spawn a shell.

F. Exploiting the Asterisk web server

We have tested our exploitation technique on a recent

version of Asterisk that is vulnerable due to an unbounded

stack allocation bug (CVE-2012-5976). The vulnerability

has been described in depth at EIP blog [8]. Our exploit

is entirely new and targets multiple binaries.

The unbounded stack allocation vulnerability occurs when

a pre-authentication HTTP POST request to Asterisk’s web

management console allocates HTTP post data on the stack.

It uses the content-length header sent by the client to

determine how much data should be allocated. Yet it does

not check whether this size is within reasonable bounds.

Specifying a content-length of about the size reserved

for the stack allows us to ’jump’ with our stack pointer to

the stack of a second thread in the asterisk process. Having

jumped to the second thread’s stack, we can start sending our

post data, which will promptly overwrite the second stack.

By making sure this second thread is also initiated by us,

we can overwrite this thread’s stack while it is waiting on

a blocking read, When we are done corrupting the stack,

we send 15 bytes to the thread with the corrupted stack and

when it returns to our syscall & ret gadget, it calls

sigreturn, setting in motion our bootstrap method from

Section VI-E.

We still need to fulfill our two remaining requirements:

we need to control a file descriptor and we need to know

a writable page. For the writable page we guessed a page

in the binary’s data section. By default, with non position

independent executables compiled with gcc, the data section

comes directly after the code section, and the code section

starts at a fixed offset of 0x40000. The size of the code

section does not vary much between different versions of

Asterisk compared to the absolute size of the data section,

therefore it is quite easy to guess a writable page in the

Asterisk binary.

In order to pick the right file descriptor, we open a large

number of connections to the vulnerable section and send

the same data over all sockets. By picking a high value for

the file descriptor we can be fairly sure that we have selected

a socket that we opened.

����������	�
��

���������
��

������������	�
��

�������
������������

���������������
���

���������
�����
���

���� �!��������
� �

�"�#����
�$��

�"�
���
#��
�%����"�#����
�$�

&���%#�
%�
����
��"���
�

���'%"#����%
�����
��

���'%"#����%
��������	�
��

�����
�� �����
��

������(������
��(� �!��)� �!
�%���%�
������"#�%������
��

��#��������)��

���"�������%�
�������"#

����������	�
��
����������	�
��
����������	�
��

�

�
*

���#%+�"�

'%"#�"#���%
,#%+#�����
�����,#%+#
���
���

+����##%�
�-�#����#�

��"���
�
�.��'��
��
���������#
�

+������"���%
��#���

%#�%/�
+
"���#�����,

� �

������(������
��(� �!��)��0

���"�������%��"�
���
#*

0

�"�
���
#��
�%����"�#����
�$�0

1111
222

������������	�
��

����03���.��/��

����45�"#5�-4��
���

�"�#����
�$��

5�"#5�-6�

!

�.��/��45�"#5�-4(�222�!

�%+�

���
�����

-"�-�

���
�����

Figure 5. Steps involved in the Linux x86-64 SROP exploit

We tested this exploit on three different vulnerable ver-

sions of the Asterisk program on different Linux distribu-

tions: Debian Wheezy (released in May 2013), Ubuntu LTS

12.04 (the latest Long Term Support version of Ubuntu,

released in 2012 and supported for five years), and Centos

6.3 (released in 2012 and supported for 10 years).

The exploit worked on all Linux distributions we tried.

Moreover, the re-usability of the exploit is hinted on some-

what by the fact that the code for all three versions was

almost exactly the same. The only difference, was that the

syscall & ret gadget at Centos was at a slightly different

location.

VII. SROP AS A BACKDOOR

Another possible use for sigreturn oriented programming

is as a stealthy backdoor. By injecting signal frames into a

process’ address space and by either creating an extra thread

in a process, or by simply replacing a process’ execution

with our own, it is possible to keep a presence on a system,

while appearing to have left.

Developers of backdoors are keen to avoid detection.

Unfortunately, injected shell code will look suspicious when

a memory dump is viewed with forensics tools. Hiding all

logic in data seems to be more stealthy. While in principle

this can also be done using ROP, we will show that for

sigreturn oriented programming it can be done in in a

completely generic way, which works for all processes and

requires no complex ROP compiler.

For our exploitation example, we assumed that the only

gadget available to us was syscall & ret and this was

provided to us as a non-ASLR gadget by the vsyscall page.

For our backdoor we will no longer be depending on the

vsyscall page. We will also no longer require the architecture

to be 64 bit x86 as we need not use the x86-64 specific

bootstrap method of going from one system call to another

which made the return values of one system call the system

call number of the next.

In our backdoor scenario the attacker uses ptrace()

to inject a weird machine into a victim process. With

ptrace() it is trivial to find a syscall & ret gadget as it

is possible to trap on system calls. We will also assume that

we have a complete sigreturn() gadget at our disposal.

The gadget first loads the sigreturn system call number

before it does a system call. This gadget can easily be

found by sending the traced process a signal for which it

has registered a handler, prompting the kernel to set up a

signal frame with the sigreturn() gadget at the top of

the stack.

Using our syscall & ret and sigreturn() gadgets

and by faking some signal frames, we can create a chain

of system calls. Each frame setting up the registers to do a

certain system call while pointing the stack pointer at the

next frame, each with a sigreturn() gadget at the top.

Just like with ROP, it is in a sense the stack pointer which

acts as an instruction pointer, only now the stack pointer

always points at a complete user context state. While all we

do is execute a number of system calls (possibly in a loop)

it is surprisingly simple to create complex behavior.

To demonstrate this, we have created a backdoor automa-

ton that waits for a given file to be accessed. This file could

for example be an obscure file on a publicly accessible

web server. When this file is read, a listener TCP socket

is created and if someone connects to this socket it spawns

a shell connected to this socket. If no-one connects within

5 seconds, the listener stops listening until the trigger file is

accessed again.

The assumption is that a remote party can easily cause the

system to do a read operation on a file that otherwise is rarely

read, for example a hidden file in a web document root.

Only after this file is accessed, it will be possible to make a

connection to the machine though a socket, something that

otherwise would be very easy to spot.

To construct our backdoor, we chain together a string of

signal frames executing system calls, relying on system call

blocking semantics for our logic, as shown on the left-hand-

side of Figure 6.

In particular, we make use of the inotify API. The

inotify API provides a mechanism for monitoring file system

events and allows one to detect accesses to individual files or

monitor directories. When a directory is monitored, inotify

will return events for the directory itself, and for files inside

the directory. To determine what events have occurred, an

application reads from the inotify file descriptor. If no events

have occurred, the read will block (until at least one event

occurs). The API allows us to wait for many events: reads,

writes, closes, changes in attributes, etc. For our backdoor,

we will wait for any read to the obscure file, but we can

easily wait for other events. Thus, to wait for a file being

accessed, the inotify API gives us a file descriptor with

the ability to do a blocking read which returns when a file

is read. This serves as our trigger.

When the read returns, we know that someone has

accessed the file, but we cannot be entirely sure that it was

our trigger or an unrelated event. To find out, we will spawn

a thread that waits for a remote party (the backdoor master)

to connect to our socket. If nobody connects, we assume that

the file access is unrelated, close the socket and go back to

monitoring file accesses. If there is a connection, we spawn

a shell.

To accomplish this, the SROP system call chain of our

backdoor follows the blocking read of the inotify file

descriptor with a clone() system call (last system call in

the leftmost column in Figure 6). This system call has a

useful property: using clone(), it is possible to assign a

different stack to the child process, pointing it to a different

state in our automaton. Thus, while the parent resumes

waiting for the trigger file, the child will be responsible for

the backdoor connection. The actions of the child are shown

in the two remaining columns of Figure 6. The child, sets

up an alarm() clock and listens on a socket, blocking on

accept(). If no-one connects, this process will be killed by

the alarm and we resume monitoring the file accesses of our

trigger file. If someone does connect, the alarm is reset and

through a series of further system calls, a shell is spawned.

We have implemented the backdoor and tested it on

several Linux distributions including the ones mentioned

earlier, but also 32 bit variants. As there is no shellcode

in memory, the backdoor is very hard to find for a security

scanner.

VIII. SROP TO CIRCUMVENT CODE SIGNING

While on Linux it is generally possible to use ROP or

SROP to bootstrap more traditional shellcode, other systems

like the Apple iPhone’s iOS allow only signed code to run

natively. Being able to run unsigned code on those systems

has become a goal in itself. The jailbreaking community

usually uses kernel vulnerabilities to disable the checks that

verify these signatures. A well tested method to get control

over the kernel is to exploit vulnerable system call interfaces.

This, however, does mean that these exploits themselves

have to be executed from processes running signed code.

In this section we will describe a technique for a system

call proxy using SROP. The technique provides a very

generic method of delivering kernel exploits from a process

running signed code.

A. Sigreturn on iOS

As a system call proxy is particularly useful for systems

requiring signed code, we have implemented this on iOS.

When it comes to signaling, iOS (just like Mac OS X) has a

small trampoline function from which they indirectly call a

signal handler. Upon returning from this signal handler, the

trampoline loads the signal frame address from the stack

into r0 (the first system call argument) and then calls

sigreturn. In iOS we can therefore immediately identify

three useful gadgets from the signal handling code:

1) Sigreturn with the signal frame pointer loaded from the

stack.

2) Sigreturn with the signal frame pointer in the first

function argument.

3) Syscall and return gadget svc 0 ; bx lr

The second gadget is useful in case of a function pointer

override. We will be using the first and the third gadget

for our system call proxy. It is good to note that, unlike

on Linux, the iOS/Mac OSX signal frame always contains

pointers, so blindly executing signal frames without knowing

the location of any data is hard.

B. A system call proxy

The goal of a system call proxy is to remotely control

the system calls executed by a process. In our system call

proxy automaton (Figure 7) we follow the same basic pattern

as described in Section VII of chaining system calls. To

bootstrap the automaton, an initial signal frame relocates

������� 	�		
��

�������

�������

��������

��������
���

������

��������

	���
���

��
���

	�		
��

��������

��������������

��������	����	�����

	�	���

�������

�������
�	����	
���������

�����	�����	��������������	�	�

Figure 6. Our example backdoor automaton. The main backdoor thread sets up an inotify watch list. When an attacker causes a file to be accessed,
a child thread spawns, allowing the attacker to connect to a backdoor shell.

������������		

	��
���
�����

��
�����

�����

����	������������
�����

	�	
������

���

	�	
���������

	�	
���������

	�	
���������

	�	
���������

	�	
���������

	�	
���������

���

���

	�������������
��������������
�����
��
������� �����!����� ��"�����	�#�$

����������

	%
�&�'�(����
�	�	
����'�������$

	��������)*�	��������

���
���

���
�

����������

����������

������� ��!	�	
��� ��$+

������� ��!���	 ��"�$+

���������� 	�	
���!��, , , , , ,$+

Figure 7. A syscall proxy controllable over a pipe/file/network socket. An initial signal frame sets up a read system call to read in a cyclic automaton
which alternates between reading a system call number and its arguments from a socket, and executing said system call.

the stack and issues a read system call on a file descriptor

controlled by the attacker, this could for example be a

network socket, or a file. This read loads the automaton

onto the new location of the stack. The automaton itself is a

loop of one or more signal frames doing read system calls

and one signal frame that will execute an arbitrary system

call. The read system calls are responsible for filling in

the system call number and their correct arguments in the

last signal frame, allowing the attacker to simply supply

the whole system call over a socket. System calls that use

pointers to data structures as arguments could be preceded

with calls to mmap and read.

IX. THE LINUX SYSTEM CALL INTERFACE MAKES SROP

TURING COMPLETE

While a simple automaton chaining together system calls

using sigreturn is enough for a backdoor to do its job,

attackers may want to encode more complex logic such as

obfuscation.

It is clear that if we keep the contents of the signal frames

in our automaton the same during execution, that the best we

can do is execute a static set of system calls, possibly in a

loop. But this changes when we allow our automaton to write

back into its own signal frames, changing computations to

come. In fact, using an automaton which modifies function

arguments and stack pointers in future stack frames, we can

construct an interpreter for a Turing-complete language.

Our language has a direct mapping to “brainfuck”, a well-

known Turing-complete language [16]. Conceptually, our

language makes use of three registers, the program counter

PC, the memory pointer P and a temporary register used

for 8-bit addition A. These registers are modeled as file

descriptors. The file they have open is /proc/self/mem,

which on Linux is a way of reading and writing to your

own address space. Adding and and subtracting to and from

these registers is done using lseek. The PC file descriptor

points to our interpreted language program in memory. Its

instructions are addresses of signal frames which implement

the following operations:

1) Jump (followed by an offset used by a relative lseek to

move the PC).

2) Pointer addition/subtraction (followed by an offset used

by a relative lseek to move P

3) 8-bit Addition/subtraction (followed by a constant to

add to the byte located at P

4) Conditional jump (the same as Jump, except that it only

happens if the byte at P is zero).

5) Getchar of the byte at P

6) Putchar of the byte at P

7) Exit

Figure 8 shows the control flow diagram of the entire state

machine. Structurally, it is shaped like a dispatcher, capable

of executing the language’s commands. Compared to the

original brainfuck, our language is a little richer. Instead of

increment and decrement, we offer a more generic add of

8 bit numbers.

Instruction dispatch happens by doing a read on PC, stor-

ing the value in the stack pointer of a dispatch signal frame.

When the automaton then proceeds to to a do sigreturn, it

will jump to the signal frame belonging to the instruction it

has just read.

Reading the immediates following the instructions is also

done simply by reading data from PC. For pointer addition

and for jumps, we use lseek with a SEEK_CUR argument

to move P and PC respectively.

Conditional jumps are implemented the same way as a

normal jump, with the exception that the byte value at P is

first read into the high byte of the file descriptor argument

for the lseek on PC. If the value at P is not 0, the lseek

will be done not on PC, but on a very high, non-existing file

descriptor, causing lseek to fail instead of seek, therefore

making the jump conditional.

The most complex operation turns out to be our 8 bit

addition of data in memory. For this we use a 512 byte

buffer, each byte filled with the modulo 256 of its index. For

an addition we do an absolute seek with our A register to the

start of the buffer, followed by 2 relative seeks given by the

current value at P and the current instruction’s immediate,

the result of the addition can now be read from A.

We have implemented an emulator for [16] which first

translates it to our machine language and then proceeds to

run it on our automaton.

X. MITIGATION

When implementing exploit mitigations, one has to con-

sider the trade-off between performance loss and security

gain.

We recognize that sigreturn oriented programming by

itself is not an exploitable vulnerability. Similar to ROP,

it is an exploitation method that can be used in the event

of a vulnerability. Often, ROP may be used instead of

SROP and vice versa. Also, some of the ’universal SROP’

variants we discovered in Linux on x86-64 and on ARM

have been mitigated in recent Linux kernels. On x86-64,

the default configuration now uses vsyscall emulation to

eliminate useful static gadgets and on ARM, sigreturn has

been removed from the static vectors page. However, this

does not stop sigreturn oriented programming from being

used as a generic stealthy backdoor. Also, if a syscall

& return gadget can be found inside the binary, using

a generic SROP exploit is still easier than using a binary

specific ROP chain. We see SROP as a low hanging fruit

for exploit writers, worthy of mitigation.

A possible approach to eliminate sigreturn oriented pro-

gramming as a viable exploitation method would be to

embed a kernel-supplied secret value in the sigreturn frame.

Upon returning from a signal, the kernel would check this

secret value against the value it had written earlier. If the

-�������	
��

��������	

��	����

����
��	
��� �	�	�	�	� ��	�	��	�	� ������������ �����������

��
��

����

Figure 8. Our Turing-complete interpreter

value is different, the kernel can opt to let the process

crash. This method is very similar to stack canaries which

have been widely adopted to protect against stack buffer

overflows. It also suffers from the same weakness: If an

attacker can leak this secret value, he or she can use that

to forge fake signal frames. This risk could possibly be

remedied by making the kernel zero out the secret value

during the sigreturn system call, so that the value is only

present in user space while the signal handler is running.

The signal canary could even be a cryptographic message

authentication code on the complete signal frame, to prevent

arbitrary modifications, even in the event of a memory leak.

A complimentary solution could be to keep a counter per

process in kernel space which keeps track of the number of

signal handlers currently executing. Upon signal delivery,

the counter is increased, while a sigreturn decreases the

counter. If the counter becomes negative, the process is

killed. While this should work fine with single threaded

processes, there could be complications with this scheme

in multi-threaded programs. Keeping a counter per thread

might break programs that use lightweight threads, which

may switch user space contexts between threads. This may

cause a signal to be delivered in one thread and return in

another. On the other hand, keeping a counter for the whole

thread group could lead to an overestimation of the number

of delivered signals when one of the threads does a fork(),

unsharing the address space with the other threads. This

seems to us as the lesser of two evils.

Ultimately, there’s the question whether we can change

the behaviour of sigreturn at all without breaking user space

applications. Kernels are supposed to have a stable ABI and

for that reason it is not done to change the behaviour of

system calls. User space programs might break when they

depend on previous behaviour. However, sigreturn seems

to be a special case. The only legitimate way of calling

sigreturn seems to be when user space has been set up by

the kernel to call it. Also, depending on the CPU features

the signal frame may differ, as for example, SSE and AVX

registers will be saved on platforms that support these

instruction sets. So, while the location of the general purpose

registers seems to be pretty stable and accessible from within

a signal handler, being able to manually create a stack frame

to return to should in our opinion not be considered part of

the ABI.

All things considered, we strongly feel that mitigation

against sigreturn oriented programming as an exploitation

method is needed.

XI. CONCLUSION

In this paper, we have discussed sigreturn oriented pro-

gramming, a novel, Turing complete technique for program-

ming a novel type of weird machine. Sigreturn oriented

programming is a generic technique, as we demonstrated

by using it for an exploit, a backdoor, and a code-signing

bypass. Moreover, it works on a wide variety of operating

systems and different architectures. For several of these

systems, sigreturn oriented programming permits exploita-

tion without any precise knowledge about the executable.

Moreover, the exploit is reusable, as it does not depend much

on the victim process at all.

Sigreturn oriented programming represents a convenient,

portable technique to program arbitrary code even in

strongly protected machines. The number of gadgets needed

is minimal and in many systems those gadgets are in a

fixed location. As such the technique ranks among the

lowest hanging fruit currently available to attackers on UNIX

systems. It is important to emphasize that even if kernels

are patched to eliminate these fixed-location gadgets, the

usefulness for backdoors is undiminished. In summary, we

believe that sigreturn oriented programming is a powerful

addition to the attackers’ arsenal.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their excellent

feedback. This work was supported by the ERC StG project

“Rosetta” and by the EU FP7 “SYSSEC” project.

REFERENCES

[1] Sandeep Bhatkar, R. Sekar, and Daniel C. DuVarney. Efficient
techniques for comprehensive protection from memory error
exploits. In Proceedings of the 14th conference on USENIX
Security Symposium, SSYM’05, 2005.

[2] Sandeep Bhatkar, R. Sekar, and Daniel C. DuVarney. Efficient
techniques for comprehensive protection from memory error
exploits. In Proceedings of the 14th conference on USENIX
Security Symposium - Volume 14, SSYM’05, pages 17–17,
Berkeley, CA, USA, 2005. USENIX Association.

[3] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai
Liang. Jump-oriented programming: a new class of code-
reuse attack. In Proceedings of the 6th ACM Symposium
on Information, Computer and Communications Security,
ASIACCS ’11, pages 30–40, New York, NY, USA, 2011.
ACM.

[4] Bulba and Kil3r. Bypassing StackGuard and Stack-
Shield. http://www.phrack.org/issues.html?issue=56&id=
5article, January 2000.

[5] Ping Chen, Hai Xiao, Xiaobin Shen, Xinchun Yin, Bing Mao,
and Li Xie. Drop: Detecting return-oriented programming
malicious code. In Proceedings of the 5th International Con-
ference on Information Systems Security, ICISS ’09, pages
163–177, Berlin, Heidelberg, 2009. Springer-Verlag.

[6] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy.
Ropdefender: a detection tool to defend against return-
oriented programming attacks. In Proceedings of the 6th ACM
Symposium on Information, Computer and Communications
Security, ASIACCS ’11, pages 40–51, New York, NY, USA,
2011. ACM.

[7] Thomas Dullien. Exploitation and state machines: Program-
ming the ’weird machine’, revisited. In Infiltrate Conference,
Miami, FLA, April 2011.

[8] Brandon Edwards. Dos? then who was phone? (asterisk
exploit related to cve-2012-5976). http://blog.exodusintel.
com/tag/asterisk-exploit/.

[9] Sergey Bratus Julian Bangert. Page fault liberation army
or gained in translation. http://events.ccc.de/congress/2012/
Fahrplan/events/5265.en.html.

[10] Chongkyung Kil, Jinsuk Jun, Christopher Bookholt, Jun Xu,
and Peng Ning. Address space layout permutation (aslp): To-
wards fine-grained randomization of commodity software. In
Proceedings of the 22nd Annual Computer Security Applica-
tions Conference, ACSAC ’06, pages 339–348, Washington,
DC, USA, 2006. IEEE Computer Society.

[11] Jinku Li, Zhi Wang, Xuxian Jiang, Michael Grace, and Sina
Bahram. Defeating return-oriented rootkits with "return-less"
kernels. In Proceedings of the 5th European conference on
Computer systems, EuroSys ’10, pages 195–208, New York,
NY, USA, 2010. ACM.

[12] David Litchfield. Defeating the stack based buffer overflow
prevention mechanism of microsoft windows 2003 server.
2003.

[13] Vincenzo Lozzo, Tim Kornau, and Ralf-Philipp Weinmann.
Everybody be cool, this is a roppery! In Proceedings of
BlackHat USA, Las Vegas, USA, 2010.

[14] Microsoft. Data execution prevention.

[15] Matt Miller. Preventing the exploitation of seh overwrites.
Uninformed Journal, 5, 2006.

[16] Urban Müller. Brainfuck–an eight-instruction turing-complete
programming language. Available at the Internet address
http://www.muppetlabs.com/ breadbox/bf/, 1993.

[17] Kaan Onarlioglu, Leyla Bilge, Andrea Lanzi, Davide
Balzarotti, and Engin Kirda. G-free: defeating return-oriented
programming through gadget-less binaries. In Proceedings of
the 26th Annual Computer Security Applications Conference
(ACSAC), ACSAC ’10, pages 49–58. ACM, December 2010.

[18] Vasilis Pappas. kbouncer: EïňČcient and transparent rop
mitigation. In Usenix Security, Microsoft BlueHat Prize
winner., 2013.

[19] Vasilis Pappas, Michalis Polychronakis, and Angelos D.
Keromytis. Smashing the gadgets: Hindering return-oriented
programming using in-place code randomization. In Proceed-
ings of the 2012 IEEE Symposium on Security and Privacy,
SP ’12, pages 601–615, Washington, DC, USA, 2012. IEEE
Computer Society.

[20] PaX Project. Address Space Layout Randomization. http:
//pax.grsecurity.net/docs/aslr.txt, 2001.

[21] Dennis Ritchie. Unix version 6 – signal.s. http://minnie.tuhs.
org/cgi-bin/utree.pl?file=V6/usr/source/s5/signal.s, 1975.

[22] Giampaolo Fresi Roglia, Lorenzo Martignoni, Roberto
Paleari, and Danilo Bruschi. Surgically returning to random-
ized lib(c). In Proceedings of the 2009 Annual Computer
Security Applications Conference, ACSAC ’09, pages 60–69,
Washington, DC, USA, 2009. IEEE Computer Society.

[23] Edward J Schwartz, Thanassis Avgerinos, and David Brum-
ley. Q: Exploit hardening made easy. In Proceedings of the
20th USENIX Security Symposium, 2011.

[24] Hovav Shacham. The geometry of innocent flesh on the
bone: return-into-libc without function calls (on the x86). In
Proceedings of the 14th ACM conference on Computer and
communications security, CCS’07, 2007.

[25] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh,
Nagendra Modadugu, and Dan Boneh. On the effectiveness
of address-space randomization. In Proceedings of the 11th
ACM conference on Computer and communications security
(CCS’04), 2004.

[26] Rebecca Shapiro. The care and feeding of weird machines
found in executable metadata. http://events.ccc.de/congress/
2012/Fahrplan/events/5195.en.html.

[27] Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra
Dmitrienko, Christopher Liebchen, and Ahmad-Reza Sadeghi.
Just-in-time code reuse: On the effectiveness of fine-grained
address space layout randomization. In Proceedings of the
2013 IEEE Symposium on Security and Privacy, SP ’13,
pages 574–588, Washington, DC, USA, 2013. IEEE Com-
puter Society.

[28] Solar Designer. Getting around non-executable stack (and
fix). http://seclists.org/bugtraq/1997/Aug/63, August 1997.

[29] Alexander Sotirov. Heap feng shui in javascript. Black Hat
Europe, 2007.

[30] Julien Vanegue. The automated exploitation grand challenge,
tales of weird machines. In H2C2 conference, Sao Paulo,
Brazil, October 2013.

[31] Tielei Wang, Kangjie Lu, Long Lu, Simon Chung, and Wenke
Lee. Jekyll on ios: when benign apps become evil. In
Proceedings of the 22nd USENIX conference on Security,
SEC’13, pages 559–572, Berkeley, CA, USA, 2013. USENIX
Association.

[32] Michal Zalewski. "delivering signals for fun and profit". http:
//lcamtuf.coredump.cx/signals.txt, 2001.

