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Abstract—Dynamic Searchable Symmetric Encryption allows
a client to store a dynamic collection of encrypted documents with
a server, and later quickly carry out keyword searches on these
encrypted documents, while revealing minimal information to the
server. In this paper we present a new dynamic SSE scheme that is
simpler and more efficient than existing schemes while revealing
less information to the server than prior schemes, achieving fully
adaptive security against honest-but-curious servers.

We implemented a prototype of our scheme and demonstrated
its efficiency on datasets from prior work. Apart from its concrete
efficiency, our scheme is also simpler: in particular, it does not
require the server to support any operation other than upload and
download of data. Thus the server in our scheme can be based
solely on a cloud storage service, rather than a cloud computation
service as well, as in prior work.

In building our dynamic SSE scheme, we introduce a new
primitive called Blind Storage, which allows a client to store a set
of files on a remote server in such a way that the server does not
learn how many files are stored, or the lengths of the individual
files; as each file is retrieved, the server learns about its existence
(and can notice the same file being downloaded subsequently), but
the file’s name and contents are not revealed. This is a primitive
with several applications other than SSE, and is of independent
interest.

I. INTRODUCTION

In recent years, searchable symmetric encryption (SSE)
has emerged as an important problem at the intersection of
cryptography, cloud storage, and cloud computing. SSE allows
a client to store a large collection of encrypted documents with
a server, and later quickly carry out keyword searches on these
encrypted documents. The server is required to not learn any
more information from this interaction, beyond certain patterns
(if two searches involve the same keyword, and if the same
document appears in the result of multiple searches, but not
the actual keywords or the contents of the documents).

A long line of recent work has investigated SSE with
improved security, more flexible functionality and better ef-
ficiency [23], [10], [18], [17], [6]. The techniques in all
these works build on the early work of [10], [9]. In this
work we present a radically different approach that achieves
stronger security guarantees and flexibility, with significant
performance improvements. In particular, our construction
enjoys the following features:

• Dynamic SSE, which supports adding and removing docu-
ments at any point during the life-time of the system.

• The server is “computation free”. Indeed, the only opera-
tions that need to be supported by the server are uploading
and downloading blocks of data, if possible, parallelly. This
makes our system highly scalable, and any optimizations in
these operations (e.g., using a content delivery network) will
be directly reflected in the performance of the system.

• The information revealed to the server (“leakage functions”)
is strictly lesser than in all prior Dynamic SSE schemes
except [24]. Scheme of [24] reveals less information to the
server at the expense of poly-logarithmic overhead on top of
Dynamic SSE overhead of other schemes (including ours).

• Satisfies a fully adaptive security definition, allowing for
the possibility that the search queries can be adversarially
influenced based on the information revealed to the server
by prior searches.

• Security is in the standard model, rather than the heuristic
Random Oracle Model; relies only on the security of block
ciphers and collision resistant hash functions.

• Optional document-set privacy. The number of documents
in the system and their lengths can be kept secret, revealing
the existence of a document only when it is accessed by
the client (typically after learning that a keyword appears
in that document). This allows one, for instance, to archive
e-mail with support for keyword searching, while keeping
the number and lengths of e-mails hidden from the server
(until each one is retrieved).

A simple prototype has been implemented to demonstrate the
efficiency of the system.

Blind Storage. An important contribution of this work is to
identify a more basic primitive that we call Blind Storage, on
which our Dynamic SSE scheme is based. A Blind Storage
scheme allows a client to store a set of files on a remote
server in such a way that the server does not learn how many
files are stored, or the lengths of the individual files; as each
file is retrieved, the server learns about its existence (and can
notice the same file being downloaded subsequently), but the
file’s name and contents are not revealed. Our Blind Storage
scheme also supports adding new files and updating or deleting
existing files. Further, though not needed for the Dynamic SSE
construction, our Blind Storage scheme can be used so that the
actual operation — whether it is reading, writing, deleting or
updating — is hidden from the server.

Though not the focus of this work, we remark that a
Blind Storage system would have direct applications in itself,
rather than as a tool in constructing flexible and efficient
Dynamic SSE schemes. As our Blind Storage scheme does
not make requirements on the server other than storage, it can
be used with commodity storage systems such as Dropbox.
This enables a wide range of simple applications that can
take advantage of modular privacy protections to operate at a
large scale and low expense but with strong privacy guarantees.
Applications can range from backing up a laptop to archiving
patient records at a hospital. Further, in our dynamic SSE
scheme, document set privacy with relatively low overhead is
made possible because we can simply store all the documents
in the same Blind Storage system that is used to implement
the SSE scheme.



II. RELATED WORK

The problem of searching on encrypted data has received
increasing attention from the security and cryptography com-
munity, with the growing importance of cloud storage and
cloud computation. One of the major hurdles in outsourcing
data storage and management for businesses has been security
and privacy concerns [15], [21], [3]. Theoretical cryptography
literature offers an extremely powerful and highly secure
solution in the form of Oblivious Random Access Memory
(ORAM) [20], [13], which addresses almost all of the security
concerns related to storing data in an untrusted server. How-
ever, this solution remains very inefficient for several important
applications, despite significant recent improvements [22],
[26], [25]. The notion of Symmetric Searchable Encryption
(SSE) — investigated in a long line of works including [23],
[11], [7], [10], [27], [8], [19], [18], [17], [24], among others
— attempts to strike a different balance between efficiency
and security, by letting the server learn just the pattern of
data access (and ideally, nothing more), in return for a simpler
and faster construction; further, one often settles for security
against passively corrupt (honest-but-curious) servers. The
scheme of [24] also provides a notion of forward privacy,
which prevents leaking whether a newly added document
contains the keywords the user has already searched for.

The approach in [10] formed the basis for many subsequent
works. The basic idea is to use an index that maps each search
keyword to the list of documents that contains it. This list is
kept as an encrypted linked list, with each node containing the
key to decrypt next node. The nodes of all the linked lists are
kept together, randomly sorted. Until the head of a linked list is
decrypted, it is virtually invisible to the server; in particular, the
number of linked lists and their lengths remain hidden from
the server. This construction provided non-adaptive security
(which assumes that all the search queries are generated at
once); efficiently achieving adaptive security has been the
subject of much research starting with [10].

An important aspect of SSE is whether it is dynamic or not:
i.e., whether the client can update the document collection after
starting to search on it. Dynamic SSE schemes were presented
in [11], [27], [18], [17], [5], [24].

Finally, we mention a few variants of the SSE problem that
are not considered in this work. One could require security
against actively corrupt servers, rather than just honest-but-
curious servers. Another variant requires more expressive
searches, involving multiple keywords (e.g., [14], [6], [5]).
One could also require that many clients can perform searches
on a document collection created by a single data-owner
[16]. While we do not consider these problems in this work,
the main new tool we build — namely, a Blind Storage
system — is a general-purpose tool and is likely to be useful
for expressive search queries. Indeed, it could be used to
implement components like the “T-sets” of [6] more efficiently.
These and other extensions are subject of on going work.

III. TECHNICAL OVERVIEW

In this section, we briefly discuss our techniques and the
advantages of our scheme compared to prior SSE construc-
tions. Most of the advantages follow from the simplicity of
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Fig. 1: Contrasting the architecture of existing SSE Schemes (on the
left) with that of the proposed scheme.

our scheme, and in particular, as depicted in Figure 1, from
the fact that our server is computation free.

Techniques. Our main construction is that of a versatile tool
called Blind Storage, which is then used to build a full-fledged
SSE scheme. A Blind Storage scheme lets the client keep all
information — including the number and size — about files
secret from the server storing them, until they are accessed. In
building the SSE scheme, the search index entries for all the
keywords are stored as individual files in the Blind Storage
scheme (with care taken to facilitate updates).

Our Blind Storage scheme, called SCATTERSTORE, is
constructed using a simple, yet powerful technique: each file is
stored as a collection of blocks that are kept in pseudorandom
locations; the server sees only a super-set of the locations
where the file’s blocks are kept, and not the exact set of
locations.1 The key security property this yields us is that, from
the point of view of the server, each file is associated with a
set of locations independent of the other files in the system.
(Indeed, the sets of locations for two files can overlap.)

A rigorous probabilistic analysis shows that for appropriate
choice of parameters, the probability that any information
about files not yet accessed is leaked to the server can be
made negligible (say, 2−40 or 2−80), with a modest blow-up
in the storage and communication costs (e.g., by a factor of 4)
over unprotected storage.

The only cryptographic tools used in our scheme are block
ciphers (used for standard symmetric key encryption as well as
for generating pseudorandom locations where the data blocks
are kept) and collision resistant hash functions. The security
parameters for these tools are chosen independently of the
other parameters in the scheme.

Architecture. Most of the previous SSE schemes were pre-
sented as using a dedicated server, that performed both storage
and computation. (See Figure 1.) The computation typically
involved an (unparallelizable) sequence of decryptions. To
deploy such a scheme using commodity services, one would
need to rely not only on cloud storage services, but also
cloud computation services. This presents several limitations.
Firstly, this limits the choice of service providers available to a
user: one could use Amazon EC2 for computation, combined
with Amazon S3 for storage; however, it is not viable to
use Dropbox for persistent storage and Amazon EC2 for
computation, as this would incur high costs for communication
between these two services. Storage and compute clusters are
physically separated in modern data centers. This would add
additional latency in all dynamic SSE schemes except ours, as
data needs to be transmitted from storage nodes to compute
nodes over the data center network. In contrast, our system

1To the extent that extra blocks are read, our scheme is similar to existing
Oblivious RAM constructions. However, in our case, the overhead of extra
blocks is bounded by a constant factor.



can be easily implemented using Dropbox or other similar
services which provide only storage. Secondly, relying on
cloud computation makes the deployment less flexible, as it
is harder to change choices like that of the operating system
(due to pricing changes or technical support, for instance).

Another important issue in existing schemes is that one
relies on availability and trust assumptions (e.g., honest-but-
curious) for both computation and storage. Clearly, it is desir-
able to trust storage alone, as is the case in our scheme. Fur-
ther, in ongoing work, we consider obtaining security against
actively corrupt (rather than honest-but-curious) servers; this is
easier and more efficient to achieve starting from our scheme,
since we need to enforce honest behavior on part of a server
that provides storage alone.

Finally, it is significantly cheaper to rely on a cloud-storage
service alone than on cloud computation (plus persistent stor-
age).

Security definition. An important feature of our schemes
is the stronger and easier to understand security guarantees.
All the information leaked to the server is fully captured
in relatively simple functionalities. For the Blind Storage
scheme, as shown in Figure 2, each time a file is accessed,
the functionality FSTORE reveals just a triple (op, j, size) to the
server, where op specifies what the access operation is (read,
write, update or delete), j specifies the last time, if any, the
same file was accessed, and size specifies the size of the file.

The functionality FSSE (shown in Figure 7) specifies all the
information revealed by our SSE scheme. It is slightly more
complex, partly because it allows the client to reuse document
IDs. Further, it offers a higher level of secrecy for documents
that are originally in the system, compared to those added later
during the operation of the system.

Fully Adaptive Security. As mentioned in Section I, we
achieve fully adaptive security, without relying on heuristics
like the random oracle model. Technically, this is a conse-
quence of the fact that the server does not carry out any
decryptions. We point out that achieving adaptive security by
making the client do decryptions for the server would not be
viable in existing SSE schemes because a long sequence of
decryptions (that cannot be parallelized) need to be carried
out; several rounds of communication (with attendant network
delays) would be necessary if the client carries out these
decryptions for the server. Nevertheless, a similar approach
was mentioned in [6] as a theoretical solution to avoid the
Random Oracle Model and retain adaptive security.

The price we pay for the improved security, greater com-
putational efficiency, parallelizability and simpler architecture
is that the server storage and communication costs are possibly
higher than that of some of the existing schemes (e.g., a factor
of 2 to 4 over unprotected storage, which is in fact, comparable
to overheads incurred in some other schemes like that of
[6]). Also our SSE scheme could, in principle, involve up to
three rounds of communication for retrieving the documents
(this happens if the keyword has a large number of matching
documents). In contrast, many existing schemes involve only
two rounds (one to retrieve encrypted list of documents, and
one to retrieve the documents themselves).

Comparative Performance. The most natural prior work
for us to compare against is [18] (though, unlike this work,
it uses the Random Oracle Model). We remark that the
more recent work of [6] augments the functionality of [18]
(but without support for dynamic updates), and provides a
highly streamlined implementation over very large scale data;
however, for the task of simple keyword searches, its algorithm
remains comparable to [18]. Since [18] reports performance of
a prototype implemented in a comparable environment as ours
(conservative comparison: we use a laptop and they used a
server), we compare with it. Asymptotically, the client-side
storage and computation in our system is same as [18], but
the constants for our scheme are much better, and is reflected
in the performance measured. Our scheme completely avoids
server-side computation (which is quite significant in [18]).

IV. BLIND STORAGE

As mentioned in Section I, an important contribution of this
paper is to identify a versatile primitive called Blind Storage.
It allows a client to store a set of files with a remote server,
revealing to the server neither the number nor the sizes of the
files. The server would learn about the existence of a file (and
its size, but not the name used by the client to refer to the
file, or its contents) only when the client retrieves it later. We
also allow the client to add new files, and to update or delete
existing files. The client’s local storage should be independent
of the total amount of data stored in the system.

In this section, first we present the definition of a
Blind Storage system, followed by an efficient construction
SCATTERSTORE, and a proof of security. Later, in Sec-
tion V-B, we show how to build a Dynamic SSE scheme using
a Blind Storage system.

A. Definition

Below, first we define the syntax of a Blind Storage system
(and the infrastructure it needs), followed by the security
requirements on it.

The Syntax. A blind storage system consists of a client and a
“dumb” storage server. The server is expected to provide only
two operations, download and upload. The data is represented
as an array of blocks; the download operation is allowed to
specify a list of indices of blocks to be downloaded; similarly,
the upload operation is allowed to specify a list of data blocks
and indices for those blocks.

A blind storage system is defined by three polynomial-time
algorithms on the client-side: BSTORE.Keygen, BSTORE.Build
and BSTORE.Access. Of these, BSTORE.Access is an interactive
protocol.

• BSTORE.Keygen takes security parameter as an input and
outputs a key KBSTORE (typically a collection of keys for the
various cryptographic primitives used). Note that KBSTORE,
which the client is required to retain throughout the lifetime
of the system, is required to be independent of the data to
be stored.

• BSTORE.Build takes as input (KBSTORE, d0, {idi, datai}ti=1,
where KBSTORE is a key, d0 is an upperbound on the total
number of data blocks to be stored in the system, (idi, datai)
are the id and data of the files that the system to be initialized



• On receiving the command FSTORE.Build from the client:

◦ FSTORE accepts input (d0, {idi, datai}ti=1) from the client (where d0 is an upperbound on the total number of data blocks to be stored
in the system at any time, and the rest specify files to be stored in the system initially); it internally stores the specified files.

◦ Build Leakage: In addition, FSTORE sends d0 to the server.

• On receiving the command FSTORE.Access(id, op) from the client:

◦ If no file matching the identifier id exists, and the operation op ∈ {read, delete}, FSTORE returns a status message to the client indicating
so. Else, if op = read, FSTORE returns the file with identifier id; if op = delete, it is removed. If op = write, the content data for the
file is also accepted from the client, and the file is created or its content replaced with data. If op = update, FSTORE interacts with
the client as follows:

FSTORE returns the current size of the file (in blocks – possibly 0, if the file does not exist) to the client.
FSTORE accepts the size of the updated file from the client.
FSTORE returns the current contents of the file to the client.
FSTORE accepts the updated contents of the file from the client. The file stored internally is updated with this.

◦ Access Leakage: In addition, FSTORE sends the tuple (op, j, size) to the server where:

op specifies what the current access operation is,a

j is the last instance when the same file was accessed (j = 0 means that this file was not accessed before)
size is the size (in number of blocks) of the file being accessed. For the update operation, size is the larger of the sizes before and
after the update.

aA refined version of Blind-Storage would require the operation to be not revealed. See Section IV-B3.

Fig. 2: The FSTORE functionality: all the information leaked to the server in our Blind Storage scheme is specified here.

with; it outputs an array of blocks D to be uploaded to the
server.

• BSTORE.Access takes as input a key KBSTORE, a file id id,
an operation specifier op ∈ {read,write, update, delete},
and optionally data data (if op is write or update). Then
it interacts with the server (through the upload/download
interface) and returns a status message and optionally file
data (for the read and update operations). For the update
operation, BSTORE.Access allows more flexibility:2 first it
requires only id as input, and outputs the current size of the
file with that ID; then it accepts as input (an upperbound
on) what the size of the file will be after update; then it
outputs the current file data, and only then requires the new
data with which the file will be updated.

Security Requirement. We specify the security requirement
of a blind-storage system following the “real/ideal” paradigm
that is standard for secure multi-party computation (as opposed
to using specific game-based security definitions used in some
of the earlier literature on SSE). This includes specifying
an adversary model and an “ideal functionality,” as detailed
below. The formal security requirement we shall require is
that of Universally Composable security [4] (but restricted to
our adversary model).3

In the adversary model we consider, the adversary is
allowed to corrupt only the server passively — i.e., as an
honest-but-curious adversary. (If the client is corrupt, we need
not provide any security guarantees.)

The ideal functionality is specified as a virtual trusted
third party FSTORE that mediates between the client and
the server (modeling the information leaked to the server).
FSTORE accepts two commands from the client: FSTORE.Build
and FSTORE.Access, along with inputs to these commands

2One can always use a read followed by a write to get the effect of an
update, but this is less efficient and potentially reveals more information.

3We remark that for our setting of passive adversaries, UC security is
a conceptually simpler notion than for the setting of active adversaries.
Nevertheless, for the sake of concreteness, we use the UC security model,
which automatically ensures security even when the inputs to the client are
adaptively chosen under adversarial influence.

(which are identical to the inputs to BSTORE.Build and
BSTORE.Access as described above, except for the key
KBSTORE). In this ideal model, it is FSTORE which maintains the
collection of files, and performs all the operations specified by
the FSTORE.Build and FSTORE.Access commands. In addition,
it reveals limited information to the server as specified in
Figure 2.

We stress that all the information revealed to the server by
our blind-storage scheme is captured by the FSTORE functional-
ity. Note that the information leaked (during FSTORE.Build and
FSTORE.Access) is limited and simple to specify. This simplicity
is one of the important contributions of this work.

Remark. Even when using the ideal FSTORE functionality, an
adversary can learn some statistics about the files and accesses
by analyzing the patterns in the information revealed to it.
Such information could indeed be sensitive, and it is up to
the higher-level application that uses a blind-storage system to
ensure that this is not the case. The cryptographic construction
seeks to only match the guarantees given by FSTORE.

B. Our Construction

Our Blind Storage construction is called SCATTERSTORE.
First, we shall present a simplified version, called
SCATTERSTORE-LITE, which already involves most of
the critical components in the full construction. The only
drawback of the simplified construction is that the client is
required to maintain a data structure to map each file-name to
a small piece of information. This solution is well-suited for
a scenario when the system consists of a moderate number
of large files. In our final construction, we show how to
avoid this local data structure, so that the client’s storage is
of constant size, independent of the number of files in the
system.

1) Simplified Construction: SCATTERSTORE-LITE: In this
section, we present a sketch of SCATTERSTORE-LITE, our
simplified Blind-Storage construction. We defer a formal
description to the next section where we present the full
construction.



The construction relies on the following primitives:

– a full-domain collision resistant hash function (CRHF), H ,
– a pseudorandom function (PRF), Φ,
– a full-domain pseudorandom function (FD-PRF), Ψ (implemented by applying Φ to the output of H),
– a pseudorandom generator (PRG), Γ.

(In our prototype, as described in Section VI, the implementation of Φ, Ψ and Γ all rely on the AES block-cipher; H is implemented using
SHA-256.) The security parameter k is an implicit input to all the cryptographic primitives used in the construction. The other parameters
in the construction are the size parameters nD, mD, an expansion parameter α > 1, and the minimum number of blocks communicated in
each transaction, κ.

• BSTORE.Keygen: A key KΦ for the PRF Φ, and a key KID for the FD-PRF Ψ are generated; KBSTORE is set to be the pair (KΦ,KID).
• BSTORE.Build(F,KBSTORE): F is a list of files f = (idf , dataf). Below sizef denotes the number of blocks in an encoding of dataf ; each

block has two short header fields containing a version number initialized to 0, and H(idf); the latter is not allowed to be all 0s, which
is reserved to indicate a free block. In addition, the first block has a header field that records sizef . (It will be convenient to keep the
version number field at an extreme end of the block, as it needs to kept unencrypted, whereas the rest of the block will be encrypted at
the end of this phase.)

◦ Let D be an array of nD blocks of mD bits each.
◦ Initialize every block in D with all 0s (to be encrypted later).
◦ For each file f in F,

1) Generate a pseudorandom subset Sf ⊆ [nD], of size |Sf | = max(�α · sizef�, κ) as follows.

a) Generate a seed σf = ΨKID(idf) for the PRG Γ.
b) Let Sf be the set of integers in the sequence Λ[σf , |Sf |]. Here Λ[σ, �] denotes a sequence of � integers obtained as follows.

Generate a (sufficiently long) output from the PRG Γ, with seed σ, and parse it as a sequence of integers in the range [nD].
Λ[σ, �] is the first � distinct integers in this sequence.

2) Check if the following two conditions hold:

at least sizef blocks in D that are indexed by the numbers in Sf are free;
at least one block in D that is indexed by the numbers in S0

f is free.

If either condition does not hold, abort. By the choice of our parameters, this will happen only with negligible probability.

3) Pick a pseudorandom subset ̂Sf ⊆ Sf of size |̂Sf | = sizef , such that the blocks in D that are indexed by the numbers in ̂Sf are
all free. For convenience, we shall rely on the fact that the numbers in the sequence used to generate Sf are in a pseudorandom

order; we pick the shortest prefix of this sequence that contains sizef numbers indexing free blocks, and let ̂Sf be the set of these
sizef numbers.

4) Write the sizef blocks of dataf onto the blocks in D that are indexed by the numbers in ̂Sf (in increasing order). These blocks get
marked as not free.

◦ Encrypt each block of D using the PRF Φ and the key KΦ. The version number field is left unencrypted, while the rest is encrypted
using the version number (initialized to 0) and the index number of the block as IV. More precisely, for the ith block D[i], we split it
as vi||B[i] (vi being the version number), and then update B[i] to B[i]⊕ ΦKΦ(vi||i).
(If the block-size of the PRF is less than the size of the block B[i], then a few lower-order bits of the IV are reserved for use as a
counter, to obtain multiple blocks from the PRF for a single block in D.)

Fig. 3: SCATTERSTORE: A Blind-Storage Scheme (continued on next page)

In our construction, each file in the blind storage system
is kept in a large array D of encrypted blocks, at positions
indexed by a pseudorandom set. This set is defined by a
short seed and the size of the set: the seed can be used to
generate a (virtually infinite) pseudorandom sequence, and the
size specifies the length of the prefix of this sequence that
defines Sf . In our simplified construction, the client stores this
information in a data-structure that maps the file-names to the
descriptor of the pseudorandom set.4

The main security property that we need to ensure is that
the location of the blocks of one file does not reveal any
information about the blocks of the other files, or even the
proportion of occupied and free blocks in D.5 However, clearly,
we cannot choose the positions to store blocks of one file
independent of the blocks of the other files, since two files
must not occupy the same block. A naïve solution would be to

4Only the size of the pseudorandom set needs to be stored. The seed for
the set can be derived by applying a (full-domain) pseudorandom function to
the file-name. See next section.

5This property manifests itself in the simulation based proof of security,
since the simulator will pick the locations of blocks of a file being accessed
independent of the number and size of files that are not yet accessed.

use a large D, to reduce the probability that the blocks chosen
for one file do not overlap with that for any other file. But
this is problematic, because to reduce the probability of such
a collision to a small quantity (say, negligible in the security
parameter), size of D needs to be enormously larger (i.e., a
super-polynomial factor larger) than the actual amount of data
stored.

We overcome this inherent tension between collision proba-
bility and wasted space as follows. To store a file f of n blocks,
we choose a pseudorandom subset Sf of not n blocks, but say
(for a typical setting of parameters), 2n blocks. This subset of
2n blocks will be chosen independent of the other files in the
system (and it is this subset that the server sees when the client

accesses this file). Within this set we choose a subset Ŝf ⊆ Sf

of n blocks, where the actual data is stored. The set Ŝf is of
course, selected depending on the other blocks used by other
files, to avoid collisions. However, since the contents of the
blocks are kept encrypted, the server does not learn anything

about Ŝf (except its size).

This, it turns out, allows D to be only a small constant
factor larger than the total data to be stored in the system.



• BSTORE.Access(idf , op,KBSTORE): We describe the case when op = update, and mention how the other operations differ from it.

1) First, compute σf = ΨKID(idf), and define the set S0
f of size κ, to consist of the numbers in the sequence Λ[σf , κ]. Retrieve the

blocks indexed by S0
f from D.

2) Decrypt the blocks of D[S0
f ] (where D[i] = (vi||B[i]) is decrypted as B[i]⊕ΦKΦ(vi||i)), in the order in which they appear in Λ[σf , κ],

until a block which is marked as belonging to idf is encountered. If no such block is encountered the file is not present in the system.
In this case, set sizef = 0.

3) Otherwise (if a block marked as belonging to idf is found), this is the first block of the file with identifier idf : recover the size of
the file sizef from the header of this block.

4) Output sizef to the client and accept as input size′f , the size of the file after update.
5) Let � = �α ·max(sizef , size′f)�. If � ≤ κ, let Sf = S0

f . Else, let Sf be the set of numbers in Λ[σf , �]. In this case, retrieve the blocks
indexed by Sf \ S0

f from the server.
6) Some of the blocks indexed by Sf would have already been decrypted in Step 2 above. Decrypt the remaining blocks indexed by Sf ,

as well.
7) Identify ̂Sf as the set of indices of blocks belonging to the file being accessed (by checking if their headers match idf ). If ̂Sf is not

empty, combine these blocks together (in increasing order of their indices) to recover the entire contents of the file, and output it.
8) Accept as input new contents data′ encoded as size′f blocks.

9) Identify a subset ̂S′f ⊆ Sf of size size′f as follows. Find the shortest prefix of the sequence Λ[σf , �] which contains size′f blocks that

are either marked as belonging to idf (i.e., in ̂Sf ) or are free.
If no such prefix exists, or if the first of the size′f blocks identified is not within Λ[σf , κ] (this can happen only when sizef = 0), then
abort; again, by the choice of our parameters, this will happen only with negligible probability.

Note that if size′f < sizef , then ̂S′f ⊆ ̂Sf ; else, ̂Sf ⊆ ̂S′f ⊆ Sf .

10) Then update the blocks indexed by ̂S′f with the blocks of data′. If size′f < sizef mark as free the blocks indexed by ̂Sf \ ̂S′f .
11) Encrypt all the blocks indexed by Sf using the IV vi||i as described in the BSTORE.Build step, but after incrementing vi for each

block.
12) Upload the newly reencrypted blocks back to the server. Note that all the blocks that were downloaded, i.e., D[Sf ], are uploaded

back, with their version numbers incremented by 1, and reencrypted.

• When op = read, the Steps 1 through 7 from above are carried out, but setting size′f = 0.
• When op = write, the behavior is the same as when op = update, except that the new file data is taken as input upfront, and no data

is returned.
• When op = delete, the behavior is the same as when op = write, except that it takes size′f = 0.

Fig. 4: SCATTERSTORE: A Blind-Storage Scheme (continued from Figure 3)

A typical parameter setting would be to let D have 4 times
as many blocks as total data blocks to be stored. Then, we
can drive the information leaked to the server to a negligible
quantity with only small constant factor overheads in the
storage and communication.6

An important feature of our pseudorandom set construction,
compared to linked-list based construction of related work
in the literature, is that the server need not carry out any
decryptions. In linked-list based constructions, each node in
the list is progressively revealed; even if the server were to
take the help of the client in decrypting each node, several
rounds of communication will be required.7 In contrast, our
construction allows the server to be “crypto-free” and still have
only constant number of rounds of interaction.

This simplicity leads to another advantage: our construction
meets a fully adaptive security definition for blind storage (and
for searchable encryption) against honest-but-curious servers.
Here, adaptive security refers to the fact that the choice of
which files the client needs to access can be adversarially
influenced, after the system has been deployed. Prior work re-
quired less efficient and more complicated schemes to achieve
adaptive security, and often employed the Random Oracle

6We note that the pseudorandom set Sf would have to be at least a minimum
size κ (say, κ = 80 blocks); when accessing small files which are just a few
blocks long (i.e., n is small), 2n will be less than this minimum. For such
files, the communication involves an additive overhead equal to this minimum.

However, the number of blocks occupied in D, i.e., size of ̂Sf , is always n,
irrespective of n being small or large.

7In our full construction, the server does take the help of the client to carry
out a decryption and to recover the description of the pseudorandom set; but
this involves only one round of communication.

heuristics [18], [10]. We use only standard primitives (PRFs
and collision-resistant hash functions) and obtain security in
the standard model (i.e., not in the Random Oracle model).

Finally, our pseudorandom set construction easily supports
a dynamic blind-storage scheme. We sketch the update opera-
tion (creating and deleting a file are essentially special cases
of the update operation). To update a file, the client retrieves
the encrypted blocks corresponding to the file’s pseudorandom

set Sf , decrypts them, updates the subset of blocks Ŝf where
the file’s blocks are present, reencrypts all of the downloaded
blocks (i.e., all of Sf ), and uploads them back to the server.
There are two details worth highlighting:

• Encryption of each block is carried out by XOR-ing the
contents of the block with the output of a PRF, which keyed
using a fixed secret key, but whose inputs depend on the
block: this input consists of the block’s index in D and its
current version number. (The version number is specific to
each block, and it is kept unencrypted in the block.) Initially,
all blocks have version number 0, and when reencrypting a
block, its version number is incremented.

• In the above process, the updated file may need fewer or
more blocks than the original file. We let the size of the
set Sf that is retrieved to correspond to the longer of the
two versions of the file. If the updated version needs fewer
blocks than the original file (in which case Sf corresponds
to the original file), the extra blocks are marked as free. If
the updated file needs more blocks, then the subset Sf that is
retrieved corresponds to the size of the file after the update;

then, additional empty blocks are located in Sf to extend Ŝf

to be large enough for the updated file. In either case, the



server sees the size of the larger of the two versions.

2) Full Construction: SCATTERSTORE: We present the
details of our final Blind Storage scheme in Figure 3 and
Figure 4. Here we give a brief sketch of the main ideas.

In the simpler scheme above, we allowed the client to
maintain a data-structure mapping a file-identifier idf to a
descriptor of the pseudorandom set Sf . This is not desirable
if the system would store a large number of small files; then
the size of this data structure is comparable to that of the
entire collection of files. We would like our client to store only
a constant number of cryptographic keys, so that its storage
requirement does not grow with the size of the entire set of
files stored in the system.

For this, recall that the two pieces of information needed to
define a pseudorandom set Sf are a seed and the size of the set.
The seed itself can be obtained by applying a full-domain PRF
to the file-identifier. (A full-domain PRF can be implemented
using a full-domain collision resistant function (CRHF) and a
normal PRF: an arbitrary-length file-identifier is first hashed
to a fixed-length input for the PRF using the CRHF.) If the
client knew the size of Sf as well, there will be no need to
store this map at all. We exploit this to use a two-level access
to a file, as follows.

For each file, the first block consists of a header that stores
the size (number of blocks) of the file. To retrieve a file
idf , the client assumes that the file is “small” and retrieves
a pseudorandom set S0

f with the smallest possible number of
blocks, i.e., κ. After recovering the first block of the file from
the blocks in S0

f , the client computes the actual size of Sf

and if it is larger than κ, then retrieves the rest of Sf from
the server. (Note that Sf is simply a superset of S0

f , obtained
from a longer pseudorandom sequence.) We remark that it is
important for security that when |Sf | > κ the client performs
this second access, even if the entire file happened to fit within
the blocks in S0

f .

The update functionality as we have defined, fits well into
this two-level access. To update a file idf , first the client is
allowed to learn the current size of the file before providing any
information about the update; this size information is retrieved
after the first level of access and returned to the client. (Note
that we could have in fact provided the client with the first few
blocks of the current file too, but for simplicity we omit this
from the specification of the functionality.) Next, before the
second level of access, the larger of the current file size and
updated file size needs to be known. So at this point, we require
the client to submit the size of the updated file. Then the size
of the set Sf to be retrieved is defined by the larger of the
current and updated sizes. If this set has more than κ blocks,
the second level of access retrieves the remaining blocks; then,
as in the simpler construction, all the retrieved blocks will be
reencrypted (with a subset of them having updated contents)
and uploaded back on the server.

3) Variations and Enhancements: There are several opti-
mizations and variations to this construction that would be of
interest. We mention a few.

• The time taken for the read operation can be significantly
improved as follows. As presented above, in reading file, the
client retrieves a pseudorandom subset of blocks from the

server, and decrypts all of them. Of these, the blocks that
actually contain data from this file are identified from each
block’s header. Since decryption is the most computationally
intensive operation, if we can avoid decrypting the blocks
not belonging to the file being read, we can speed up
the operation by a constant factor (namely, α, a parameter
discussed later). This is indeed possible by storing the
relevant information in the first block of the file. Note that
we still need to sequentially decrypt a few blocks (for our
choice of parameters, up to four blocks, in expectation)
before the first block of the file is encountered.

• Almost all our operations — especially the computationally
intensive parts involving encryption and decryption — are
“embarrassingly parallel.” For instance, a set of blocks
received from the server can be decrypted in parallel and
assembled together using an array pre-allocated to hold all
the blocks in the file.

• Our construction can be easily extended to meet a stronger
security requirement, that the server does not learn the kind
of operation (read, write or update) performed by the client
(beyond what it can infer from the access pattern). For
this, we shall use the update operation in place of every
operation, since it offers the facility of reading and writing.
(If this is used for actual updates — which allow read and
write in the same operation — and if the data being written
depends on the date being read, then care should be taken
to avoid observable delays that can lead to a timing attack.)

C. Security Analysis

We sketch a proof of security that our construction is a se-
cure realization of the deal blind storage functionality FSTORE,
for the adversary model in which the server is corrupted only
passively. The proof follows the standard real/ideal paradigm
in cryptography (see [12], for instance), and uses some of the
standard conventions and terminology.

Roughly, the proof involves demonstrating a simulator S
which interacts with a client only via the ideal functionality
FSTORE (the ideal experiment), yet can simulate the view of the
server in an actual interaction with the client in an instance of
our scheme (the real experiment). The simulated view would
be indistinguishable from the real view of the server, even
when combined with the inputs to the client. Further — and
this is the adaptive nature of our security guarantee — the
inputs to the client at any point in either experiment can be
arbitrarily influenced by the view of the server till then.

Before describing our simulator, we describe the main
reason for security. Suppose the client makes a read access to a
file f for the first time. In the ideal experiment, the server learns
this file’s size from FSTORE, and nothing about the other files.
In the real experiment, the server sees one or two downloads
from D— a set of κ blocks S0

f and a set of blocks Sf \ S0
f

(with the possibility that Sf = S0
f , in which case there is only

one download). Thanks to the encryption, it is easy to enforce
that the contents of these downloaded blocks give virtually
no information to the server (beyond the size of f). But we
need to ensure that the location of these blocks also do not
reveal anything more. For instance, it should not reveal how
many other files are present in the system. In our construction,
this is ensured by the fact that the pseudorandom subsets S0

f
and Sf are determined by a process that is independent of the



The simulator S interacts with the functionality FSTORE on the one hand, and interacts with the server on the other, translating each message
it receives from FSTORE into a set of simulated messages in the interaction between the client and the server in our scheme.

1) When it receives the initial message from FSTORE with the system parameters, S can calculate the size of D; it simulates the contents
of the blocks in D by picking uniformly random bit strings, with the version number in each block set to 0.

2) S initializes a map with entries of the form (j; Λj , sizej), which maps an integer j (indicating the sequence number of accesses) to a
sequence of blocks in D and the size of the file accessed (in blocks).
The maps are initialized to be empty, and is filled up as FSTORE reports file accesses to S .

3) For access number j∗, first the table entry (j∗; Λj∗ , sizej∗) is created as described below.
Let the triple reported by FSTORE to S for access number j∗ be (op, j, size). Recall that if j > 0, then the file being accessed has already
been accessed (as the j th access).

a) If op = delete, then let sizej∗ = 0. Else, set sizej∗ = size. Let � = max(�α · sizej∗�, κ).
b) If j = 0, then S samples a random sequence of � distinct integers in the range [nD], uniformly randomly, and sets Λj∗ to be this

sequence.
c) Else (j > 0), if |Λj | ≥ �, set Λj∗ = Λj ; else (j > 0, and |Λj | < �), extend Λj to a sequence of length � uniformly at random

(without duplicates). Set Λj∗ to be this extended sequence.

4) Next, S creates the simulated view in which first the server gets a request to download κ blocks indexed by the first κ entries of Λj∗ ;
if � > κ, this is followed by a request to download blocks indexed by the next � − κ entries of Λj∗ . For operations other than read,
this is followed by an upload consisting of new versions (with the blocks’ version numbers incremented, and with fresh random strings
as contents) of the blocks indexed by the first � entries of Λj∗ .

Fig. 5: Description of the simulator S used in the proof of Theorem 1.

other files in the system – they are chosen randomly (or rather,
pseudorandomly) for each file independently. The other files in

the system influence the subset Ŝf ⊆ Sf of blocks that actually
carries the data (because these blocks must not be shared with
the data-carrying blocks of any other file). However, due to

the encryption, the server does not learn anything about Ŝf

(beyond the fact that it must be a subset of Sf ).

Formally, a simulator can simulate the view of the adver-
sary randomly, based only on the size of the file f being
accessed. The only difference between this simulation and
the real execution (beyond what is hidden by the encryption
and the security of pseudorandomness) is the following: in
the real execution, there is a small probability that an update
could fail, if there are not enough free blocks within the
pseudorandom subset S0

f or Sf . In the simulation, no failure
occurs. Thus the crucial argument in proving security is to
show that it is only with negligible probability that the client
would be left without adequate number of free blocks in such
a pseudorandom set, forcing it to abort the protocol. We will
give a standard probabilistic argument to prove that this is
indeed the case.

In the proof below we describe our simulator S more
formally, and then discuss the main combinatorial argument
used to show that the simulation is indistinguishable from the
real execution. For the sake of clarity, we leave out some of
the routine details of this proof, and focus on aspects specific
to our construction.

The following theorem statement is in terms of the “storage
slack ratio” in a Blind Storage system, which is the ratio of the
number of blocks nD in the system to the number of blocks
of (formatted) data in the files stored in the system. Note
that the storage slack ratio decreases as files are added (or
updated to become longer) and increases as files are deleted
(or updated to become shorter). The security guarantee below
uses the standard security definition in cryptography literature
(see, for instance, [12]), which assures that the security “error”
(statistical distance between the simulated execution and the

real execution) is negligible,8 as a function of the security
parameter. Later, we discuss the choice of concrete parameters.

Theorem 1: Protocol SCATTERSTORE securely realizes the
functionality FSTORE against honest-but-curious adversaries,
provided the storage slack ratio at all times is at least 2

1−1/α

and nD ≥ κ = ω(log k).

Proof: The non-trivial case is when the server is corrupt
(honest-but-curious) and the client is honest. We describe a
simulator for this setting in Figure 5. The simulator essentially
maintains the indices of the sets of blocks seen by the server.
It need not maintain the subsets within these sets that carry
actual data for the file being accessed. The maps are used to
maintain consistency in terms of the pattern (same subsets are
used if the same file is accessed) and the size of the files.

There are two differences between this simulation and
the real execution. Firstly, the simulated execution uses truly
random strings instead of the outputs from Φ, Φ and Γ. To
handle this we can consider a “hybrid experiment” in which
the real execution is modified so that instead of Φ, Ψ and Γ,
truly random functions are used. By the security guarantees
of the PRF, the FD-PRF and the PRG (applied one after the
other), this causes only an indistinguishable difference.

The second difference is in aborting: in the real protocol,
the client aborts when it cannot find enough free blocks in
a pseudorandom subset, whereas the simulation never aborts.
Conditioned on the protocol never aborting in the hybrid
execution, the server’s view in that execution is identical to
that in the simulated execution.

To complete our proof, therefore it remains to show that
the probability of the client aborting in the hybrid (or real)
protocol is negligible. We denote this probability by perr.
Before proceeding, we remark that our goal here is to give an
asymptotic proof of security (showing that perr goes down as
a negligible function of the security parameter). The concrete

8A function ν : N → R
+ is said to be negligible if, for every c > 0,

there exists a sufficiently large k0 ∈ N such that for all k ≥ k0, ν(k) < 1
kc .

That is, ν(k) becomes smaller than 1/poly(k) eventually, for any polynomial
poly.



parameters from this analysis are overly pessimistic and an
actual implementation can use less conservative parameters.
The key message is that perr provides a bound on the extent
of insecurity, and this probability can be quickly driven down
by modestly large parameters that scale linearly with the size
of the data stored.

To analyze perr, recall that we are analyzing a modified
execution in which the output of the PRG Γ on pseudorandom
seeds (used to define the pseudorandom subsets) have been
replaced with truly random strings. Suppose there has been no
abort so far, and a new file f of sizef blocks is to be inserted into
the system (either during the BSTORE.Build stage of during an
update or write operation). Let d out of the nD blocks in D
be filled. These blocks were filled by picking random subsets,
and then within these subsets, choosing random subsets with
free blocks. The net effect is of choosing a random subset
of d blocks out of the nD blocks. Now, when f is being
inserted, we pick a random subset S0

f of size κ and a random
set Sf ⊇ S0

f of size |Sf | = max(�α · sizef�, κ). The expected
number of occupied blocks within this set is d

nD
· |Sf |. By a

standard application of Chernoff bound,9 the probability that
more than 2 d

nD
|Sf | blocks are occupied is 2−Ω(|Sf |), provided

d
nD

is upperbounded by a constant less than 1. Since |Sf | ≥ κ,

this probability is 2−Ω(κ), and since κ is super-logarithmic
in k (for e.g., log2 k), this probability is 2−ω(log k) which is
negligible in k. Thus except with negligible probability, of the
|Sf | blocks chosen, at least |Sf |(1−2 d

nD
) ≥ α ·sizef ·(1−2 d

nD
)

are free.

By the hypothesis in the theorem statement, the storage
slack ratio nD

d ≥ 2
1−1/α , or equivalently, 1− 2 d

nD
≥ 1

α . Thus,

except with negligible probability, of the |Sf | blocks chosen
α · sizef · (1− 2 d

nD
) ≥ sizef blocks are free. The same analysis

shows that S0
f will have at least one free block (in fact, at

least �κ/α	 free blocks), except with negligible probability.
If both these conditions hold, the client will not abort when
adding this file. By a union bound, the probability that it aborts
remains negligible as long as it adds only polynomially many
files.

On the choice of parameters. There are a few parameters that
one can set in an implementation of our blind storage scheme
to optimize security levels and performance. For simplicity we
treat perr (which measures the probability that any illegitimate
information is revealed to the server) as fixed at either 2−40

or 2−80. The other important parameters are the following:

• γ, an upperbound on the storage slack ratio — i.e., nD

d0
,

where d0 is an upperbound on the total number of blocks
of all the files (formatted correctly);

• α, the ratio between the number of blocks in a (large
enough) file and the number of blocks in the pseudorandom

9In choosing a random subset of blocks, the blocks are not chosen
independent of each other. So in order to apply Chernoff bound, we first
consider the experiment in which the blocks are selected independent of each
other with the same fixed probability, so that the expected number of blocks
chosen is, say 3/2d. Then, by an application of Chernoff bound, except with
2−Ω(nD) probability, at least d blocks are occupied. Now, in this experiment,
we bound the probability that more than 2 d

nD
|Sf | blocks in Sf , again using

Chernoff bound. This probability is an upperbound on the corresponding
probability in the original experiment.

subset which is downloaded/uploaded when that file is
accessed; and

• κ, the minimum number of blocks in a pseudorandom
subset.

The higher these parameters, the better the security level would
be. However, they also reflect higher storage and communica-
tion costs. One can find different combinations of (γ, α, κ)
to meet a security level (probability of “error” in simulation)
using the following explicit upperbound, which is tighter than
the Chernoff bound used for asymptotic analysis above.10

perr(γ, α, κ) ≤ max
n≥ κ

α

n−1∑
i=0

(�αn�
i

)(
γ − 1

γ

)i (
1

γ

)�αn�−i

Figure 6 plots various possible combinations of α and κ for
various choices of perr and γ. A few suggested choices of
(γ, α, κ) which achieve perr ≤ 2−40 are (4, 4, 45), (2, 8, 60)
and (4, 8, 25). Thus, for instance, one could use the parameter
setting of (γ, α, κ) = (4, 4, 45) which means that the amortized
storage requirement for each file and the communication
requirement for reading large files is roughly 4 times the size
of the file; however, for small files – any file with at most
11 blocks, including empty or non-existent files – 45 blocks
would be downloaded, decrypted, reencrypted and uploaded
back.

While a very large value of κ would require a large amount
of communication and extra computation on part of the client
(for updates), we recommend moderately large values for κ.
This is because, firstly, increasing κ does not have any effect on
the storage needed (because only as many blocks are occupied
in D as the actual data consists of), and secondly it actually
provides a higher security guarantee and may slightly increase
the overall efficiency too! Apart from lowering perr, another
reason for a higher security guarantee (not captured in FSTORE,
for simplicity) is that the server does not learn the exact
number of blocks in every file that is accessed; for “small”
files, it learns only that the file is small (at most 11 blocks,
in the above example). The higher the value of κ, the less
the information that the server learns. The potential (slightly)
higher efficiency is due to the fact that when a “small” file
is retrieved, a single round of interaction suffices, and again,
the higher the value of κ, the more the files that fall into the
“small” category. This does not increase the computational cost
during read operations.

We point out that while α, κ (and nD) are parameters built
into the system specification, it is not necessary to have a hard
bound d0 on the number of blocks of D that can be filled.
In other words, γ and perr exhibit graceful degradation: as the
array D fills up and γ decreases, perr increases.

Another parameter that affects the choice of these pa-
rameters is the size of the blocks in D. As the block size
decreases, on the one hand, the number of blocks in files
grows and the effect of the communication overhead due to the
minimum number of blocks used for small files (the parameter

10The error probability when adding a file of n ≥ κ
α

blocks is up-
perbounded by the probability that when �αn� blocks are picked (with
replacements) from a set of nD blocks of which at most d0 would be occupied,
i < n distinct blocks that are picked are free. The actual experiment involves
picking blocks without replacement, but for our range of parameters, this gives
a valid upperbound.



κ) decreases; on the other hand, the overhead due to the header
size in each block increases.

An implementation can choose a default standard setting
of the above parameters, or seek to optimize performance by
tuning them to suit the profile of the files to be stored in
the system. For instance, the set of parameters appropriate
for an application like our SSE construction in the sequel
(in which the keyword index files are stored in a Blind
Storage system) may be different from those appropriate for
an application storing a relatively small number of large files.
But it is important that any such optimization is based on a
public profile of the set of files to be stored in the system.
This is because, conservatively, we should assume that the
server would know all the system parameters (and exact sizes
of the files accessed). It is true that, heuristically, slightly
better guarantees may be available, since the server learns
only max(�α · size�, κ), and need not exactly know α and κ
(except as revealed by the former, combined with any auxiliary
information it may have about the sizes of the files being
accessed). Further heuristics could be employed to make this
information noisy, so that it remains hard to decipher the
parameters even from a large number of correlated accesses.
Nevertheless, we recommend that the system parameters are
optimized only using information that can be made known to
the server.

Fig. 6: Finding the right parameters. Each line on the graph cor-
responds to trade-offs between α and κ for a choice of perr ∈
{2−40, 2−80} and γ ∈ {4, 8, 16}.

V. SEARCHABLE SYMMETRIC ENCRYPTION

In this section we formally define the syntax and security
requirements of a dynamic SSE scheme, and also present
an efficient construction. As we shall see, our syntax for a
dynamic SSE scheme is simpler than in [18], since all non-
trivial operations are carried out by the client, and hence, there
are no server side algorithms to be specified. Our construction

A. Definitions

A dynamic searchable symmetric encryption scheme (or
simply, SSE) consists of five probabilistic polynomial time
procedures (run by the client), SSE.keygen, SSE.indexgen,
SSE.search, SSE.add and SSE.remove. These procedures inter-
act with a “dumb” server which provides download and upload
facilities to access blocks in an array (see Section IV-A),
and also a simple file-system to lookup documents by identi-
fiers. Looking ahead, in our implementation, the upload and
download facilities are used to implement a blind-storage
scheme which is used to store the keyword indices, and the

file lookup facility is used to store the actual (encrypted)
documents.11

• SSE.keygen: Takes the security parameter as input, and
outputs a key KSSE. All of the following procedures take
KSSE as an input.

• SSE.indexgen: Takes as input the collection of all the doc-
uments (labeled using document IDs), a dictionary of all
the keywords, and for each keyword, an index file listing
the document IDs in which that keyword is present.12 It
interacts with the server to create a representation of this
data on the server side.13

• SSE.search: Takes as input a keyword w, interacts with the
server, and returns all the documents containing w.

• SSE.add: Takes as input a new document (labeled by a
document ID that is currently not in the document collec-
tion), interacts with the server, and incorporates it into the
document collection.

• SSE.remove: Takes as input a document ID, interacts with
the server, and if a document with that ID is present in the
server, removes it from the document collection.

Security Requirement. As in the case of blind-storage, we
specify an ideal functionality, FSSE (Figure 7) to capture the
security requirements of a dynamic SSE scheme. We note that
the standard simulation-based security (with an environment)
applied to the functionality FSSE automatically ensures what
has been called security against adaptive chosen keyword
attacks (CKA2-security) for searchable encryption.

The functionality FSSE is described in detail in Figure 7.
If document-set privacy is required, then the functionality
behaves slightly differently: the original set of documents are
not added to the list of documents Δ upfront, but each one
is added only at the first instance when it is accessed using
FSSE.search or FSSE.remove.

We highlight a few aspects of our security definition,
compared to that in [18] and prior work. In all forms of
SSE, keyword access pattern and document access pattern are
revealed: i.e., if the same keyword is searched for multiple
times or if the same document appears in multiple keyword
searches, the server learns about that; techniques for hiding
this information incur significant costs. The goal of an SSE
scheme is to reveal as little information as possible, beyond this
information. In our scheme we reveal very little information
beyond this, for the original set of documents. For newly added
documents, a little more information is revealed, as they are
added (see Addition leakage in Figure 7). This has the effect
that for every subset of newly added documents, the server
learns only the number of keywords that are common to all
the documents in that subset.

Existing schemes reveal significantly more information. For
example, in [18], when a document is removed, the scheme
reveals the number of keywords in the document and further,

11In our scheme, if we opt to have document-set security, then the file
lookup facility is not used, as the documents will also be stored in the blind-
storage.

12The index files can be created by SSE.indexgen, if it is not given as input.
13Typically, this would consist of a collection of (encrypted) documents, la-

beled by document indices (different from document IDs), and a representation
of the index, which in our constructions will be stored using a blind-storage
system.



• Initialization. On receiving the command FSSE.indexgen from the client, FSSE accepts a set of ∂0 documents — refered to as the original
documents (as opposed to newly added documents) — and stores them internally in an array Δ. For 1 ≤ ∂ ≤ ∂0, the array stores
Δ[∂] = (id∂ , contents∂ ,W∂) — a unique document ID, the document contents and a set of keywords in the document. It also accepts
from the client a number N, which is a (possibly liberal) upperbound on the total number of (keyword, document) pairs that will be
present in the system at any one time. FSSE also maintains a set called Removed initialized to ∅.
◦ Initialization Leakage. FSSE reveals to the server the (N, s1, · · · , s∂0) where s∂ = |contents∂ | (in number of bits).

• Addition. On receiving the command FSSE.add to add a document (id, contents,W) (with a new or existing document ID), FSSE appends
it to the array Δ: i.e., if there are ∂ − 1 entries currently, let Δ[∂] = (id, contents,W). If there exists ∂′ < ∂ with id∂′ = id and
∂′ �∈ Removed, then add ∂′ to Removed.

◦ Addition Leakage. FSSE reveals to the server the updated set Removed and {Mnew
w |w ∈ W}, where M new

w = {∂′|∂′ > ∂0 and w ∈
W∂′}. i.e., Mnew

w is the set of newly added documents (i.e., not the original documents) that have the keyword w. Note that only the
sets Mnew

w , and not their labels w, are shared with the server.

• Removal. On receiving the command FSSE.remove, FSSE accepts a document ID id and identifies ∂ (if any) such that id∂ = id and
∂ �∈ Removed. If such an index ∂ exists, it adds ∂ to Removed.

◦ Removal Leakage. FSSE reveals to the server the updated set Removed.

• Search. On receiving the command FSSE.search, it accepts a keyword w from the client and returns {(id∂ , contents∂)|w ∈W∂ and ∂ �∈
Removed} to the client.

◦ Search Leakage. FSSE reveals to the server the last instance the same keyword was searched on (or that it is being searched for the
first time) and also Mw = {∂|w ∈W∂}.

Fig. 7: The FSSE functionality: all the information leaked to the server in our SSE scheme is specified here.

for each keyword in it, up to two other documents that share
the same keyword. This is the case even if that keyword is
never searched on. In contrast, by our security requirement, if
an original document is removed, only the number of keywords
in it that are searched can be revealed. Further, it is not
revealed that a removed document shared a keyword with
another document, unless such a keyword is explicitly searched
for.

We remark that our functionality reveals “removed” ver-
sions of the documents in search results, but this information
was revealed (implicitly) by the leakage functions in [18]
as well, as the identifiers for each keyword in a removed
document is revealed and this information links the removed
documents to future searches on the same keyword (when the
same identifier for the keyword is revealed).

Finally, our scheme allows the client to refer to a doc-
ument using an arbitrary document ID rather than a serial
number (which is useful when removing documents from the
collection). We also allow the client to reuse document IDs.
The server does learn when a document ID is reused (though
not the actual identifier of the document ID itself); further, in
the pattern information revealed to the server, the different
versions that use the same document ID are differentiated.
Other dynamic SSE schemes often avoid this aspect simply
by not using document IDs. This suffices if the only time
a document is removed is immediately after retrieving it
from a search (or if the client is willing to maintain a map
from document IDs to serial numbers); however, realistically,
in many applications of a dynamic SSE scheme, it will be
important to efficiently remove documents referenced by their
document IDs.

B. Searchable Encryption from Blind Storage

In this section, we describe an efficient dynamic searchable
encryption scheme, BSTORE-SSE, built on top of a blind-
storage scheme. The full details are given in Figure 8. Here
we sketch the main ideas.

First, note that we can implement a static searchable
encryption scheme simply by storing the index file for each

keyword (which lists all the documents containing that key-
word) in a blind storage system. The guarantees of blind stor-
age readily translate to the security guarantees of searchable
encryption: the server learns only the pattern of index files
(i.e., keywords) accessed by the client.

In a dynamic searchable encryption scheme, we need to
support adding and removing documents, which in turn results
in changing the index files. We seek to do this without reveal-
ing much information about the keywords in a document being
added or removed, if those keywords have not been searched
on before. To support dynamic searchable encryption (with
much better security guarantees than previous constructions),
we rely on the following observation. The access pattern that
server would be allowed to learn tells the server if two newly
added documents share a keyword or not, as soon as they
are added and before such a keyword is searched for (but
not whether they share keywords with the original set of
documents that were added when initializing the system). This
means we can treat the set of newly added documents virtu-
ally as a different system, with significantly weaker security
requirements.

Thus, for each keyword, we use two index files: one listing
the original documents that include that keyword, and another
listing the newly added documents that include it. The first
index file is stored with the server using a blind storage
scheme, where as the second can be stored in a “clear storage”
system (see below). Searching for keywords now involves
retrieving both these index files. Adding documents involves
updating only the second kind of index files (using an append
operation of the clear storage). Also, removing a newly added
document involves updating only the second kind of index
files, which is straightforward (except for efficiency concerns,
addressed below). But in removing an original document, we
need to ensure that the information on keywords in it that
are not searched for (for e.g., the number of such keywords)
remains secret. This is achieved by a lazy deletion strategy. The
index file of a keyword (for the original set of documents) is
not updated until that keyword is searched for. At that point, if
the client learns that a document listed in that index has been
deleted, the index is updated accordingly. This update can be



The construction uses a blind-storage system BSTORE, and a pseudorandom permutation Ψ′ for mapping document IDs (with versioning)
to pseudorandom document indices. It also uses a clear-storage system CLEARSTORE (see text).

• SSE.keygen: Let KSSE = (KBSTORE,K∂ID) where KBSTORE is generated by BSTORE.Keygen and K∂ID is a key for the PRP Ψ′.
• SSE.indexgen:

1) Firstly, for each document ∂, assign a pseudorandom ID η∂ = Ψ′K∂ID
(id∂), where id∂ is the document ID.

2) For each keyword w that appears in at least one document, construct an index file with file-ID indexw that contains η∂ for each
document ∂ that contains the keyword w. No specific format is required for the data in this file; in particular, it could contain a
“thumbnail” (of fixed size) about each document in the list.

3) Next, initialize a blind-storage system with the collection of all these index files (using BSTORE.Build).
4) Also, (outside of the blind-storage system) upload encryptions of all the documents labeled with their pseudorandom document index

η∂ .

• SSE.remove: To minimize the amount of information leaked, and for efficiency purposes, we rely on a lazy delete strategy.

1) Given a document ID id∂ , check if a document with index η∂ = Ψ′K∂ID
(id∂) exists, and if so remove it, using the file system interface

of the server. The index files (in the blind storage or the clear storage) are not updated for the keywords in this document right away,
but only during a subsequent search operation (see below).

• SSE.add: To add a document ∂ to the document collection, first call SSE.remove to remove any earlier copy of a document with the
same document ID. Then proceed as follows:

1) Compute a pseudorandom document index η∂ = Ψ′K∂ID
(id∂).

2) Generate a random tag tag and add it to the document (say, as a prefix, before or after encrypting the document). Encrypt the
document and upload it, as in the SSE.indexgen phase, using the label η∂ .

3) Then, for each keyword w that appears in this document, use the append facility of the clear-storage scheme to append a record
consisting of (η∂ , tag) to the file with file-ID indexw to include η∂ . Note that the append operation will create a file in the clear
storage system, if it does not already exist.

• SSE.search: Given a keyword w, retrieve and update the index files with file-ID indexw and indexw as follows:

1) Retrieve the index file indexw from the blind storage system using the first stage of update operation of the blind storage scheme.
Also, retrieve the index file indexw from the clear storage system, using the first stage of its update operation. All the documents
containing the keyword w have their document indices listed in these two index files. Attempt to retrieve all these documents listed
from the server.

2) Some of the documents listed in the index file indexw could have been removed. Complete the blind storage update operation on
the file indexw to erase the removed files from its list, without changing the size of the file.

3) Some of the documents listed in the index file indexw may have been removed or replaced with newer versions. Complete the clear
storage update operation on the file indexw to remove from its list any document that could not be retrieved, or for which the listed
tag did not match the one in the retrieved document. (Both the update operations are completed in the same round).

One could add an extra round to first check just the tags of the documents before retrieving the documents themselves.

Fig. 8: Searchable Encryption Scheme BSTORE-SSE

carried out in a single update operation of the blind storage
scheme, with little overhead.

In fact, for removing newly added documents too, we
follow a similar lazy delete strategy, for efficiency purposes.
(Otherwise, during a delete operation, the client will need
to fetch the index files for all the keywords in the deleted
document in order to update them, unless the server is willing
to carry out a small amount of computation.) However, we
need to account for the possibility that a document ID could
be reused and that a later version may not have a keyword
present in an earlier version. We associate a random tag with
a document to check if the version listed in an index is the
same as the current version.

Properly instantiated, this simple idea yields strictly better
security than prior dynamic searchable encryption schemes
[18], [10] which revealed more information about keywords
not searched for, especially when removing documents.

Clear Storage. To store the index files for newly added
documents, our SSE scheme uses a “clear storage” scheme
CLEARSTORE that supports the following operations:

• Files labeled with file-IDs can be stored (in the clear, without
any encryption). A two-stage update operation can be used
to read this file and then write back an updated version
(which could be shorter).

• In addition, there is an efficient append operation, that
allows appending a record (of fixed size) to the file in
constant time (without having to retrieve the entire file and
update it).

Note that a standard file-system interface provided by the
server can support all these operations. But the append op-
eration may not be supported by a cloud storage provider. In
this case, it can be implemented by the client, as we consider
in our evaluation.

We consider a simplified version of the SCATTERSTORE to
implement CLEARSTORE with efficient append. In this imple-
mentation, to store a file f = (idf , dataf), the file data dataf is
stored (unencrypted) in a subset of blocks of a pseudorandom

set Ŝf ⊆ Sf . We use a separate file-system interface (without
append) to store fixed-size header files labeled with the file-
name idf ; This header file stores an index indicating the last
block of Sf that is occupied by the file (i.e., the length of the

shortest prefix of Sf that contains Ŝf
14 To append a record to

a file, the client retrieves the header block via the file-system
interface, using the file-name idf . Then it generates Sf , and
recovers the ith block in Sf , where i is the index stored in the
header block. Then it checks if there is enough space in this

14The first block of the data could also be stored in the header file. Note
that then it is possible that the header block itself contains all the data of the
file; in this case the index indicating the last block is set to 0.



last block, and if so adds the record there. Else, it generates κ
more entries in Sf , fetches those blocks from the clear storage,
adds the record to the first empty block in this sequence,15

and updates the index of the last block stored in the header
file accordingly. Note that the number of blocks fetched is a
constant on average provided a block is large enough to contain
(say) κ records; the number of blocks written back is at most
two (and on the average, close to 1).

Choice of parameters. We instantiate BSTORE-SSE with
our SCATTERSTORE constructions. By choosing the parameter
κ for SCATTERSTORE, we can ensure that a single search
operation can typically be completed in one and half rounds
of interaction. This is because the typical size of an index file
could fit into a few blocks, and by choosing κ = 80 as we
do in our experiments, the index file can often be retrieved
without having to fetch more blocks. However, in the worst
case (e.g., searching for the keyword “the,” as we report), two
and half rounds of interaction will be needed.

Theorem 2: Protocol BSTORE-SSE securely realizes FSSE

against honest-but-curious adversaries.

Proof Sketch: The security of this scheme is fairly straight-
forward to establish, since it uses the blind storage scheme as
a blackbox, and involves no other cryptographic primitive. All
the information available to the server from the blind storage
scheme as used in this construction (i.e., the access patterns of
the index files) is easily derived from the information that the
server is allowed to have in the searchable encryption scheme.
In other words, a simulator can simulate to the server all the
messages in the protocol using the information it obtains in
the ideal world. The details are straightforward, and hence
omitted.

VI. IMPLEMENTATION DETAILS

We implemented prototypes of our blind storage and
searchable encryption schemes. The code was written in
C++ using open-source libraries. We used Crypto++ [1] for
the block cipher (AES) and collision-resistant hash function
(SHA256) implementations.

As our schemes only require upload and download interface
and do not require any computation to be performed on the
server, they can be implemented on commercially available
cloud storage services. As a proof of concept, we further
implemented a C++ API to interface with Dropbox’s Python
API. This enables a Dropbox user to use a C++ implementation
of BSTORE-SSE (using SCATTERSTORE) with Dropbox as
the server. In our Dropbox implementation, each block in the
SCATTERSTORE scheme is kept as a file in Dropbox. We
recommend using SCATTERSTORE with a block size that is
a multiple of the block size in the cloud storage provider’s
storage (typically, 4KB).

VII. SEARCHABLE ENCRYPTION EVALUATION

For concreteness, we will compare the performance of our
SSE scheme with that of the recent scheme in [18], as one

15Unlike in the case of blind-storage, if no empty block is found among
the blocks fetched, the client can go on to fetch more blocks. This also allows
one to optimistically fetch a smaller number of blocks, without a significant
penalty.

of the most efficient dynamic SSE schemes in the literature,
implemented in a comparable setting. The more recent work
of [6] offers a possibly more optimized version of this protocol
(without dynamic functionality), but is harder to compare
against experimentally, as the reported implementation was in
a high performance computing environment. We remark that
for the case of simple keyword searches (which is not the focus
of [6]), the construction of [6] is similar to that of [10], [18],
and is expected to show similar performance.

We focus on computational costs; space and communica-
tion overheads in the prior constructions are often not reported
making a direct comparison hard.

• The computation times reported are for the client. In our
case the server is devoid of any computation (beyond simple
storage tasks) and hence this constitutes all the computation
in the system. In contrast, in previous SSE schemes, the
server’s computation is often much more than that of the
client. Thus it would already be a significant improvement
if our client computation costs are comparable to the client
computation costs in prior work. As we shall see, this is
indeed the case.

• There are several possible engineering optimizations in the
Blind-Storage scheme which can significantly improve the
performance of the SSE scheme (for instance, the first one
listed in Section IV-B3 cuts down the time taken for the
search operation by a factor of α or more). None of these
optimizations have been implemented in the prototype used
for evaluation.

Datasets. We use two datasets to evaluate our searchable
encryption scheme, emails and documents.

1) For emails we use the Enron dataset [2] which was also
used by [18] and several other works. From the Enron e-
mail dataset, we selected a 256MB subset, consisting of about
383,000 unique keywords and 20,695,000 unique (document,
keyword) pairs. In the experiments involving smaller amounts
of data, subsets of appropriate sizes were derived from these
datasets.

2) For documents, we created a dataset with 1GB of four types
of documents, namely PDF, Microsoft PowerPoint, Microsoft
Word and Microsoft Excel. The documents were obtained by
searching for English language documents with filetypes pdf,
ppt, doc and xls, using Google search. The resulting collection
consists of 1556 documents (roughly evenly distributed among
the four filetypes), with over 214,000 unique keywords and
about 1,372,000 unique (document, keyword) pairs.

Experiments. The code was compiled without any optimiza-
tions on Apple Mac OS X. We used a well provisioned laptop
– with Intel Core i7 3615QM processor, 8GB memory, running
Mac OS X 10.9 – for the experiments, keeping in mind that
the typical user of our system will use searchable encryption
on a cloud via her personal computer, just the same way a
cloud storage service like Dropbox is used. This is in contrast
with prior research which typically evaluated their work on
large servers with large amounts of memory.

As we shall see below, our scheme is highly scalable
and practically efficient. We cannot offer a direct comparison
between our performance speeds and that of [18], because of



different hardware configuration and limited test equipment
information presented in [18]. Nevertheless, our evaluation
shows that our scheme should be significantly more efficient
than that of [18].

A. Micro-benchmarks – File-keyword pair analysis

In [18], micro-benchmarks were used to evaluate the SSE
operations. We do the same for the SSE.indexgen algorithm.
(For our search, add and delete operations, the performance
is essentially independent of the total number of file-keyword
pairs already stored in the system, and this micro-benchmark
does not provide a meaningful evaluation of these operations.
These operations are evaluated differently, as explained below.)

Figure 9 shows micro-benchmarks for our scheme. The
parameters used in the scheme are held constant, and are the
same as detailed in the next section. Each data point is an
average of 5 runs of SSE.indexgen. Note that the amortized
per-pair time falls as the number of pairs increases, before
tending to 1.58μs; this is because our SSE.indexgen operation
involves encrypting the whole array D (which has the same
size in all the experiments), and this overhead does not increase
with the number of pairs.

Compared to the time for index generation operation re-
ported in [18], our performance is significantly better. [18]
reports a per-pair time of 35μs for the same operation. Thus
our index generation operation is an order of magnitude faster.

Fig. 9: File/Keyword pair versus amortized time for SSE.indexgen.
Time per file/keyword pair tends to 1.58μs, much better than the 35μs
reported in [18] in a similar dataset.

B. Full evaluation

Each data point for Index Generation is the average of 5
runs of SSE.indexgen. Each data point for the Search is the
average of 5 runs using the most frequent English word "the".
Each data point for addition is the average of at least 5 runs.

1) Parameters Used: The parameters used for the experi-
ments guarantee perr ≤ 2−80 (recall that perr is the probability
of the scheme aborting and measures the security “error”) if
less than 1/8 of the total blocks in D are filled and guarantee
perr ≤ 2−40 if less than 1/4 of the total blocks in D are filled.
We set κ = 80 and α = 4, block size of D to 256 bytes, the
total number of blocks in D to nD = 224.

2) Index Generation: Index generation is computationally
the most expensive phase of any searchable encryption scheme.
Our index generation performance measurements include en-
cryption of documents and all other operations except the
cost of plaintext index generation. Plaintext index generation
performance is orthogonal to our contributions, doesn’t reflect
the performance of our system and is ignored by all prior work.
Figure 10 shows our index generation performance on the
email dataset. Our performance is much better when compared
to that of [18], which takes 52 seconds to process 16MB of
data. Our scheme can process 256MB (16 times more data)
in about 35s. [18] extrapolates this to to 16GB of text e-
mails without any attachments and, since the time for index
generation scales roughly linearly with data, estimates that
their index generation would take 15 hours; in contrast, it
would take only 41 minutes in our scheme.

This matches our conclusion from the micro-benchmarks
evaluation, that our index generation operation is at least an
order of magnitude faster than that of [18].

Figure 11 shows the performance of our scheme on the
document dataset.

Fig. 10: SSE.indexgen performance on email dataset with 99%
confidence intervals: SKE stands for Symmetric Key Encryption and
is the time required to encrypt the documents. All SKE costs are
non-zero but some are very small.

Fig. 11: SSE.indexgen on the document dataset with 99% confidence
intervals

Communication costs. The communication cost of initial index
upload depends upon the parameters used for Blind-Storage,
and specifically, the size of the array D. As mentioned above,
in Section VII-B1, the size of D was set to 1GB (224 blocks of
256 bytes each) in our experiments. In comparison, the actual
amount of index data for the 256MB subset of the email dataset
consisted of 20,694,991 file-keyword pairs, which, using 4-
byte fields for document IDs, translates to about 78MB of data.
Given the small size of some of the index files, on formatting
this data into 256-byte blocks for the Blind-Storage scheme,
this resulted in about 178MB data. For our choice of κ and α,
γ = 4 is sufficient to bring perr below 2−40. That is, it would



be sufficient to use about 712MB as the size of D. Hence
the choice of 1GB as the size of D in our experiments leaves
abundant room to add more documents later.

For the document dataset, there are only 1,371,656 file-
keyword pairs, which translates to a plaintext index size of
5MB (with 4-byte document IDs). Thus the size of D could be
as low as 20MB. Note that the document collection itself is of
size 1GB in this case. For rich data formats, it will typically be
the case that the communication overhead due to SSE.indexgen
would be only a fraction of the communication requirement for
the documents themselves.

3) Search: Figure 12 shows the search performance of
our scheme excluding the final decryption of the documents.
Figure 12 does include overhead incurred at search time to
handle lazy delete. We searched for the most frequent English
word “the” and it was present in almost all the documents.
(The exact query word is not mentioned in the previous work
we are comparing against, so we chose a worst-case scenario
for our experiments.) Our scheme performed better than [18]
for all data sizes. Their scheme needs 17 ms, 34 ms and
53 ms for 4MB, 11MB and 16MB subsets of the Enron
dataset respectively. Our scheme consumed 5 ms, 11 ms and
25 ms for 4MB, 8MB and 16MB subsets of the Enron dataset
respectively. The search time grows proportionately to the size
of the response. Figure 13 shows the search performance on
the document dataset.

Fig. 12: Search performance on the email dataset with 99% confi-
dence intervals

Fig. 13: Search performance on the document dataset with 99%
confidence intervals

Note that our scheme uses a lazy deletion strategy to
handle removals. This lazy delete mechanism allows us to
obtain vastly improved security guarantees by limiting the
information leaked to the server (only for files uploaded during
initial index generation). One might ask if this leads to any
efficiency degradation during subsequent searches, since the
actual updates to the index take place when a keyword that
was contained in a deleted document is searched for later.

Fig. 14: Communication needed for searching on the email dataset.
The graph shows the size of the retrieved documents themselves
alongside the extra communication incurred by our scheme.

As it turns out (and as was experimentally confirmed), the
overhead for searches does not significantly vary depending on
whether the search operation involved a lazy deletion or not.
This is because all search operations use the update mechanism
of the underlying Blind-Storage scheme and the clear storage
scheme. The efficiency of the update mechanism itself does not
depend significantly on whether the file was modified or not.
Indeed, in the case of Blind-Storage updates, it is important
for the security that it must not be revealed to the server if a
lazy deletion was involved or not.16

Communication costs. As our scheme does not involve
any server-side computation, we download slightly more data
compared to [18]. But as shown in Figure 14, for the email
dataset, the communication overhead is negligible compared
to the size of the documents retrieved. The document dataset
is much richer and contains much fewer keywords compared
to the email dataset of the same size (1GB of documents in
our dataset contains only 70MB of text), and therefore the
overhead would be even lower for it.

4) Add: As opposed to [18] and other prior work, per-
formance of our add operation does not depend upon the
amount of data (i.e. the number of file-keyword pairs) already
present in the searchable encryption system. Figure 15 shows
the performance of addition of files of specified size when
256MB of data was initially indexed into the system.

Fig. 15: Add performance on email dataset with 99% confidence
intervals. SKE costs are non-zero but very small.

Communication costs. We only need, on average, to download
three blocks and upload two blocks per unique keyword in
the document that is being added. (If the server supports an

16We remark that our security model does not consider timing attacks.
Depending on the implementation, we do not rule out a small dependence
between the time taken and the extent of lazy delete computations involved. A
serious implementation should take this into account. Since our SSE scheme is
a relatively thin wrapper around the Blind-Storage mechanism, timing attacks
can be effectively mitigated with relative ease.



Fig. 16: Add performance on document dataset with 99% confidence
intervals: SKE costs are non-zero but very small.

append operation that allows to append data to existing files
on the server, we do not need to download any data during
Add.)

5) Remove: The communication and computation cost of
removing a document is virtually negligible, since it uses a
lazy deletion strategy. Removal of a document in our scheme
only requires the client to send a command to the server to
delete the document from its file-system, and does not need
any update to the searchable encryption index.

C. Summary

Evaluation of our scheme shows that it is more efficient,
scalable and practical than prior schemes. Index generation in
our scheme is more than 20 times faster than that of [18].
Search operations are 2-3 times faster, in our experiments.
Further, unlike [18], our addition and removal times are
independent of the total number of file-keyword pairs, and
is much more scalable. Removal in our scheme has virtually
zero cost. We stress that several possible optimizations have
not been implemented in this prototype.

VIII. CONCLUSION

In this work, we introduced a new cryptographic construct
called Blind Storage, and implemented it using a novel, yet
light-weight protocol SCATTERSTORE. We also showed how a
dynamic SSE scheme can be constructed using Blind Storage,
in a relatively simple manner. The resulting scheme is more
computationally efficient, require simpler infrastructure, and is
more secure than the existing schemes.

Important future directions include making the scheme
secure against actively corrupt servers, and allowing secure
searches involving multiple keywords. The core idea of using
pseudorandom subsets in SCATTERSTORE is amenable to these
extensions, as is being explored in on going work.
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