
Dancing with Giants: Wimpy Kernels for On-demand Isolated I/O

Zongwei Zhou Miao Yu Virgil D. Gligor

ECE Department and CyLab, Carnegie Mellon University

{zongweiz, miaoy1, virgil}@andrew.cmu.edu

Abstract—To be trustworthy, security-sensitive applications
must be formally verified and hence small and simple; i.e.,
wimpy. Thus, they cannot include a variety of basic services
available only in large and untrustworthy commodity systems;
i.e., in giants. Hence, wimps must securely compose with giants
to survive on commodity systems; i.e., rely on giants’ services
but only after efficiently verifying their results. This paper
presents a security architecture based on a wimpy kernel that
provides on-demand isolated I/O channels for wimp applications,
without bloating the underlying trusted computing base. The size
and complexity of the wimpy kernel are minimized by safely
outsourcing I/O subsystem functions to an untrusted commodity
operating system and exporting driver and I/O subsystem code
to wimp applications. Using the USB subsystem as a case study,
this paper illustrates the dramatic reduction of wimpy-kernel
size and complexity; e.g., over 99% of the USB code base is
removed. Performance measurements indicate that the wimpy-
kernel architecture exhibits the desired execution efficiency.

I. INTRODUCTION

Modern architectures can isolate security-sensitive applica-

tion code from the untrusted code of commodity platforms,

enabling their safe co-existence [13, 14, 16, 31, 44, 47, 48,

50, 56, 60–62, 66]. This is necessary because large untrust-

worthy software components will certainly continue to exist

in future commodity platforms. Competitive markets with low

cost of entry, little regulation, and no liability will always

produce innovative, attractively priced, large software systems

comprising diverse-origin components with uncertain security

properties. As Lampson metaphorically put it a decade ago,

among software components, only the giants survive [41].

Thus, the best one can hope for is that some trustworthy

software components can be protected from attacks launched

by adversary-controlled giants. To be trustworthy, software

components must be verified, and to be verified they must

be comparatively small, simple, and limited in function. In

contrast to the giants, these software components are wimps.

Problem. Unfortunately, isolating security-sensitive wimps

from untrusted giants does not guarantee wimps’ survival

on commodity platforms. To avoid re-creating giants inside

their isolated execution environments, wimps often give up a

variety of basic services for application development, which

greatly undermines their usefulness and viability. For example,

wimps typically lack persistent memory [52], file system and

network services [13, 14, 16, 31, 44], flexible trusted paths

to users [69], and I/O services needed for many applications;

e.g., in industrial control, finance, health care, and defense.

Past multi-year efforts to restructure giants (e.g., commercial

OSes) and provide trustworthy services for applications led to

successful research [37, 58] but failed to deliver trustworthy

OSes that met product compatibility and timeliness demands of

competitive markets [25, 45]. The alternative of including basic

services in the trusted computing bases (TCBs)1 that guarantee

safe giant-wimp co-existence has been equally unattractive.

TCBs would lose assurance since they would become bloated,

unstable, and unverifiable; i.e., they would use large and

complex code bases of diverse, uncertain origin (e.g., device

drivers) needed for different applications, and require frequent

updates because of function additions, upgrades, and patches.

Thus, the only remaining option is to place basic application

services in the giants. To survive, wimps would have to rely

on giant-provided services but only after efficiently verifying

their results. In turn, wimps could make their own isolated

services available to giants for protection against persistent

threats. Continuing with the wimp-giant metaphor, trustworthy

wimps must engage in a carefully choreographed dance (i.e.,

secure composition) with untrustworthy giants.

Among the basic services needed by wimps are on-demand

isolated I/O channels to peripheral devices. Past attempts to

provide such services with high assurance on commodity

systems have been unsuccessful; viz., related work in Sec-

tion VIII. Some provide isolated I/O channels within system

TCBs [53, 69] but only for a few selected devices. Even

limited support for few devices invariably increases the size

and complexity of trusted code and undermines assurance.

For example, including only the Linux USB bus subsystem in

the XMHF micro-hypervisor[66] would more than double its

code-base size and increase its complexity significantly; e.g., it

would introduce concurrency in serial micro-hypervisor code

since it would require I/O interrupt handling. Other attempts

statically allocate selected peripheral devices to isolated system

partitions [28, 38, 55, 64, 65] at the cost of losing on-demand

(e.g., plug-and-play) capabilities of commodity systems. In

contrast, other systems provide on-demand I/O capabilities by

virtualizing devices or passing them through to isolated guest

OSes, but sacrifice I/O channel isolation from the untrusted

OSes [22, 46, 53, 60]. Further attempts to isolate I/O channels

rely on special hardware devices equipped with data encryption

capabilities [40] to establish cryptographic channels to applica-

tions [30, 49, 67]. This approach excludes commodity devices,

which lack encryption capabilities, and adds TCB complexity

by requiring secure key management for the special devices.

Solution. In this paper, we present a security architecture

for on-demand isolated I/O channels, which enables security-

1TCBs include security [10, 57], micro [39, 59], and exo kernels [20],
virtual machine monitors [11, 13, 14, 17, 22, 31], micro-hypervisors [47, 60–
62, 65, 66, 69], and separation/isolation kernels [28, 53, 55, 64].

sensitive applications (i.e., wimps) to dynamically connect to

diverse peripheral devices of unmodified commodity OSes.

Central to on-demand isolation of I/O channels is the notion

of the wimpy kernel, which constructs these channels without

affecting the underlying TCB; i.e., without modifying its secu-

rity properties and increasing the verification effort [39, 66].

The wimpy kernel is an add-on trustworthy service that is

isolated from the untrusted OS by the underlying TCB. It

executes at the OS’s privilege level, mediates all accesses of

wimp applications (wimp apps) to I/O devices, and prevents

the untrusted OS from interfering with wimp apps’ execution

and I/O transfers, and vice-versa. The wimpy kernel removes

a wimp app’s direct interfaces to the underlying TCB. Thus,

future I/O function innovation that enhances the untrusted OS

or wimp apps would only affect the wimpy kernel, leaving

the underlying TCB unchanged. Note that TCB used in this

paper is a slightly modified version of XMHF [66] – a

non-virtualizing micro-hypervisor whose memory integrity has

been formally verified. We stress, however, that any type of

TCB with similar isolation properties as XMHF could be used

to support the wimpy kernel.

We minimize the size and complexity of the wimpy kernel

to facilitate its formal verification, using two classic secu-

rity engineering methods. First, we outsource I/O subsystem

functions to the untrusted OS, but only if the wimpy kernel

can verify that the execution of that code is correct. For

example, the initialization and configuration of the entire USB

controller-hub-device hierarchy is handed over to the wimpy

kernel by the untrusted OS on demand. The wimpy kernel

verifies the hierarchy without enumerating each device. Sec-

ond, we further minimize the wimpy kernel by de-privileging

and exporting drive and driver-subsystem code to wimp ap-

plications, and implementing wimpy-kernel checks that verify

applications’ use of the exported code. Exporting code requires

identification and removal of all driver-code dependencies

on the untrusted OS services (e.g., memory management,

synchronization, kernel utility libraries), either because they

become redundant in the new on-demand mode of operation

or because they can be satisfied by the wimp apps or wimpy

kernel. For example, synchronization functions that multiplex

a device among different applications become redundant, since

we already guarantee the isolation and exclusive ownership of

devices to a wimp app during its execution.

Contributions. In short, we make the following contributions.

• We introduce the notion of on-demand isolated I/O chan-

nels for security-sensitive applications (i.e., for wimps)

on unmodified commodity platforms (i.e., on giants).

• We present a security architecture based on a minimal

wimpy kernel, which implements on-demand I/O isolation

without affecting the underlying TCB.

• We illustrate how the classic outsource-and-verify and

export-and-mediate methods are used to minimize the

wimpy kernel, and report on the minimization results in

detail; e.g., we remove over 99% of the Linux USB code

from the wimpy kernel.

• We implement the wimpy kernel for the USB subsystem

of Linux and evaluate its performance. Experimental

results indicate that our on-demand I/O isolation system

incurs acceptable performance overhead.

II. PROBLEM DEFINITION

This section outlines the advantages of the on-demand I/O

channel isolation on commodity platforms in the wimp-giant

model, describes the adversary model, presents the inherent

challenges posed by on-demand channel isolation, and sum-

marizes the security properties to be achieved.

A. On-demand Isolated I/O

In the on-demand I/O isolation model, the untrusted OS

manages all commodity hardware resources and devices on the

platform most of the time. However, when a security-sensitive

application demands exclusive use of a device, the I/O isolation

system takes control of necessary hardware communication

resources from the untrusted commodity OS, verifies their OS

configurations, and allocates them to the application. When

the application is done with a channel, the system returns all

resources used to the untrusted OS.

The on-demand I/O isolation model has four significant

advantages. First, it enables wimp applications to obtain iso-

lated I/O channels to any subset of a system’s commodity

devices needed during a session, not just to a few devices

statically selected at system and application configuration [69].

Cryptographically enabled channels, device virtualization, or

pass-through of hardware devices become unnecessary.

Second, it enables trusted audit and control of physical

devices without stopping and restarting applications, since

all devices can be time-shared between trusted and untrusted

applications. This makes it possible to maintain control of

physical devices in long-running applications on untrusted

commodity OSes; e.g., industrial process control, air-traffic

control, and defense.

Third, it allows unmodified commodity OSes to have unfet-

tered access to all hardware resources and preserve the entire

application ecosystem unchanged. Relinquishing and reclaim-

ing hardware resources for on-demand I/O isolation is handled

by non-intrusive OS plug-ins (e.g., loadable kernel modules),

without requiring any OS re-design or re-compilation.

Fourth, it offers a significant opportunity for the reduction

of the trusted I/O kernel size and complexity, and hence for

enhanced verifiability. That is, the kernel can outsource many

of its I/O functions to an untrusted OS and use them whenever

it can verify the results of the outsourced functions correctly

and efficiently. This opportunity is unavailable in either the

static device allocation or virtualization models. In the former

the OS cannot configure devices in wimp partitions, and in the

latter it does not have direct access to hardware devices.

B. Adversary Model

We adopt the typical adversary model of systems that

support giant-wimp isolation. Thus, an adversary could com-

promise the untrusted commodity OS (i.e., the giant) and

can control some of its hardware resources (e.g., physical

memory, device I/O ports). The compromised OS can directly

attack wimp apps or intentionally control or mis-configure

any device (e.g., modify a USB device’s address), including

the I/O devices that it hands over to wimp apps, on demand.

Controlled or mis-configured devices may unwittingly perform

arbitrary operations to breach a wimp app’s I/O isolation,

such as claiming USB transfers, and issuing Direct Memory

Access (DMA) requests. In addition, a malicious or rogue

wimp application may attempt to escalate its privilege by

manipulating the interfaces with the I/O isolation system or

configuring the wimp app’s devices. It could also try to

break application isolation (e.g., process isolation, file system

controls), or even compromise OS execution and corrupt its

data. We assume that all the chip-set hardware and peripheral

devices do not contain Trojan-Horse hardware circuits, mi-

crocode or malicious firmware, which could violate the desired

security properties. Side-channel and denial-of-service attacks

against isolated I/O channels are also out of scope.

C. Security Challenges

In the giant-wimp isolation model, on-demand I/O channels

offer ample opportunity for a giant to interfere with a wimp’s

I/O operation and compromise its secrecy and integrity. One

faces three key challenges in providing such channels.

I/O Channel Interference. Given the fact that hardware

resources and devices are dynamically shared by the giant (i.e.,

untrusted OS) and wimp applications on a time-multiplexed

basis, the giant can mis-configure a device, or a transfer path

to it, and compromise the secrecy and/or integrity of a wimp’s

I/O. For example, most devices are interconnected by diverse

bus subsystems (e.g., PCI, USB, Bluetooth, HDMI) in modern

I/O architectures [36], which now become exposed to subtle

isolation attacks; viz., the USB address overlap attack and the

remote wake-up attack of Section IV-B1. Hence, I/O channel

isolation must now control the multiplexing of complex bus

subsystems for different devices.

Mediation of Shared Access to Devices. Further opportuni-

ties for interference arise from on-demand I/O; e.g., a rogue

wimp/giant may refuse to release the use of I/O resources

shared with the giant/wimp (e.g., shared interrupts) after I/O

completion. Although both wimps and giants must have time-

bounded, exclusive access to shared I/O resources and devices,

they must be unable to retain unilateral control over shared I/O

resources beyond time bounds specified by mediation policies

for device access.

Verifiable I/O Codebase. The opportunity for minimizing

I/O kernel size and complexity created by the on-demand

I/O isolation model (viz., Section II-A) poses a significant

design question. That is, if outsourcing of I/O kernel functions

to the untrusted OS is possible only if the results of the

outsourced functions can be verified correctly and efficiently

by the kernel, which functions can be outsourced? Answering

this question is important, since the trusted code minimization

can be dramatic, as illustrated in Section VII below.

Minimization of I/O kernel code base for verifiability

reasons goes beyond the outsource-and-verify method. For

example, device driver and bus subsystem code could be

decomposed into modules that can be exported to applications,

whenever the trusted I/O kernel can mediate the exported

modules’ access to I/O kernel functions and objects.

Finally, the composition of an trusted I/O kernel with the

rest of the TCB must not diminish the existing assurance; i.e.,

must not invalidate the TCB’s security properties and their

proofs.

D. Security Properties

The security challenges described above indicate that the

typical giant-wimp isolation model must be augmented with

additional security properties. These specify how the trusted

I/O kernel interacts with wimp applications, giant, and the

underlying TCB to provide on-demand isolated I/O channels

to peripheral devices. These properties are presented below.2

P1. I/O Channel Isolation. This property implies that

both the giant and wimp applications cannot compromise the

authenticity and secrecy of their I/O transfers, and wimps

cannot compromise other wimps’ transfers.

P2. Complete Mediation. This property implies that all

time-multiplexed accesses of wimp applications to devices via

shared I/O hardware resources and bus subsystem software

must be mediated.

P3. Minimization of the Trusted Codebase. This property

implies that the size and complexity of (1) the code base of

a trusted I/O kernel must be minimized to facilitate formal

verification; and (2) the underlying TCB must be unaffected

by the addition of a trusted I/O kernel.

III. SYSTEM OVERVIEW

To fulfill all three security properties of on-demand isolated

I/O systems, we define an add-on security architecture based

on a wimpy kernel (WK), which composes with the underlying

TCB, the untrusted OS, and wimp applications. This section

illustrates this architecture, and highlights the code base min-

imization methodology of the wimpy kernel.

A. Wimpy Kernel: An Add-on Trustworthy Component

As shown in Figure 1, the micro-hypervisor (mHV) – the

underlying trusted code base of the I/O isolation system – runs

at the highest privilege level, protects itself and provides typ-

ical isolated execution environment for wimp apps to defend

against the untrusted OS and other applications (i.e., the giant).

The micro-hypervisor is a trustworthy component “added

on” to existing commodity OSes - not a native foundation

built at OS inception [25]. The mHV , which is a slightly

modified version of XMHF [66], implements the giant-wimp

isolation model in the sense that it controls only the few

hardware resources needed for its isolation, whereas the giant

directly controls the remaining system chip-set hardware and

peripheral devices.

2The similarity of these security properties to those of a traditional reference
monitor [8] is not entirely accidental. However, achieving these properties
for on-demand isolated I/O channels on a commodity OS is a vastly more
challenging exercise than building a reference monitor for non-I/O objects
from scratch.

���������	
�	��

����������
�

������������

	
��
��

Wimp
app 2

	
��
�

Wimp
app 1

��

non-

privileged

OS-

privileged

most-

privileged
��
�����	
����
�

�������������������������

��������	���

. . .

Legend Interfaces Isolated

Channel
Device

. . .

Figure 1. Overview of the I/O isolation architecture. The grey area represents
the trusted code base of wimp applications.

The wimpy kernel is also an add-on trustworthy component,

which is isolated from untrusted OS by mHV . It executes at the

OS’s privilege level, dynamically controls hardware resources

necessary to establish isolated I/O channels between wimp

apps and I/O devices, and prevents the untrusted OS from

interfering with these channels and vice-versa; viz., Property

1 of Section II-D. mHV maps the wimpy kernel into the

address space of each supported wimp app to facilitate efficient

communication between wimp apps and the wimpy kernel.

The wimpy kernel leverages typical system techniques, such

as CPU rings and guest page table permissions, to protect itself

from the non-privileged wimp apps. The wimp apps incorpo-

rate modified, unprivileged device drivers to communicate with

the isolated I/O devices, under the mediation of the wimpy

kernel. The mHV , wimpy kernel, and wimp app interactions

for channel isolation are described in Section V.

Figure 1 shows that the wimpy kernel must compose with

three other system components. First, it must compose with

the underlying micro-hypervisor, mHV . The key goal of this

composition is to retain the stable and formally verified

properties of mHV , as required by Property P3 (part 2); e.g.,

memory integrity and address space separation [66]. Second,

it must compose with the untrusted OS (giant) since the

wimpy kernel outsources its most complex functions to the

untrusted OS, whenever it can efficiently verify their results,

if its code base is to be small and simple; viz., Property 3

(part 1). Third, it must compose with wimp apps. This is

because the minimization of its code base suggests that it

should de-privilege and export some of its code (e.g., drivers)

to wimp applications whenever it can mediate all accesses of

the exported code to I/O devices and channels under its control;

viz., Property 2.

B. Composition with mHV

The composition of the wimpy kernel with mHV has three

important goals: it preserves mHV ’s wimp-giant isolation

model; it avoids addition of new abstractions to mHV ; and

it retains the verifiability of mHV and its security proofs.

First, the wimpy kernel does not add any security primitives

or services to the underlying mHV beyond those already

required by the typical wimp-giant isolation model, which

include physical memory access control [7, 33], device Direct

Memory Access (DMA) control [6, 32], and sealed storage

and attestation root-of-trust [29].

Second, the wimpy kernel does not require any new ab-

stractions beyond wimp registration/un-registration, which are

already offered to the untrusted OS for wimp-giant isolation.

These services rely on separation of wimp and untrusted OS

address spaces and physical memory, and preserve the memory

isolation semantics of mHV .

Third, the wimpy kernel does not invalidate mHV ’s security

properties and their proofs. For example, it does not add ser-

vices and primitives that support I/O channels or virtualization.

I/O channels include memory mapping operations that directly

affect address-space separation and memory protection proofs,

and interrupt processing that greatly complicates those proofs

due to added concurrency. Hence, interrupt processing must

completely bypass mHV and dynamically select handling pro-

cedures located in either the untrusted OS or WK, depending

on which system component controls the device at the time.3

Satisfying these composition goals preserves the simplicity

and stability of the underlying micro-hypervisor. With XMHF

as its foundation, mHV continues to remain much simpler

than all past virtualizing hypervisors/VMMs and recent micro-

hypervisor designs [15, 47, 60–62].

C. Composition with the Untrusted OS and Wimp Apps

To assure the I/O channel isolation, wimpy kernel needs to

control all I/O hardware that is shared by wimp devices with

devices of the untrusted OS or another wimp. For example,

the USB device of a wimp app could share the USB host

controller and hubs with untrusted-OS-controlled devices using

this controller. However, to include all OS code that ordinarily

controls shared I/O hardware in the wimpy kernel would bloat

its code base and substantially increase its verification effort.

To minimize the code base size and complexity of the

wimpy kernel, we apply two classic methods of trustworthy

system engineering, namely outsource-and-verify functions

(whose various cryptographic versions have been used since

the late ’70s [13, 14, 16, 19, 24, 26, 27, 31, 44]) and export-

and-mediate code [35, 37, 58]. However, neither method

has been used for high-assurance, on-demand I/O isolation

kernels for commodity platforms before. I/O isolation was

either in security kernels for a few simple devices and not on

demand, or was outside security kernels and not minimized

for high assurance; viz., related work in Section VIII-A. We

achieve significant code base reduction results using these two

methods; i.e., we manage to cut down over 99% of Linux USB

code from the wimpy kernel, as shown in Section VII-A.

3Wimpy kernel uses similar mechanisms to those of references [22, 69]
to isolate the interrupts of OS- and wimp-app-controlled devices and bypass
mHV .

Outsource-and-Verify. We decompose the bus subsystem

functions, outsource them to the untrusted OS, and then

efficiently verify the results of those functions; viz., Figure 2.

For example, the untrusted OS initializes the USB hierarchy,

which includes the USB host controller, hubs and devices,

and configures the I/O channels for a specific wimp device,

whereas the wimpy kernel verifies their correct configuration

and initialization. Without verification, the untrusted OS could

intentionally mis-configure the shared USB host controller and

hubs, and violate I/O channel isolation in an undetectable

manner; viz., the USB address overlap and remote wake-up

attacks in Section IV-B1. The verification code is much smaller

and simpler than the bus subsystem code and various device

drivers left in the untrusted OS, and relies only on generic host

controller and hub operations, instead of the device-specific

ones. In short, the outsource-and-verify approach enables us

to substantially decrease the code base of the wimpy kernel

and, at the same time, avoid reliance on the untrusted OS.

Export-and-Mediate. The wimpy kernel code base is further

minimized by exporting device drivers and bus subsystem

code to isolated wimp applications,4 which would otherwise

have to be supported in the wimpy kernel itself; e.g., the

Bus Subsystem Stub of Figure 2 denotes bus subsystem code

exported by the wimpy kernel to a wimp app. In Section IV-B2,

we illustrate how to export bus subsystem code using USB

as an example. In particular, we show how different transfer

descriptors for USB transactions are created for wimp apps,

and how the wimpy kernel mediates the wimp-app’s use of

these descriptors by checking the validity of a few isolation-

relevant descriptor fields.

To export device driver and bus subsystem code to wimp

apps, the wimpy kernel must identify and remove all code

dependencies on the untrusted OS. To do this, the wimpy

kernel de-privileges the driver support code (e.g., memory

management, kernel utility libraries) and mediates the wimp

apps’ use of it, whenever necessary; viz. Figure 2. Some code

dependencies, such as those of synchronization functions for

device multiplexing, disappear in the on-demand I/O model

and, while they no longer require de-privileging before ex-

port, they still require mediation after export. We illustrate

how wimpy kernel performs driver support code exporting in

Section IV-C.

Efficient Wimp-OS Communication. The wimpy kernel im-

plements low-level communication primitives between wimp

applications and the untrusted OS, which are compatible with

the unmodified OS; i.e., the OS is neither redesigned nor

recompiled. At run time, wimp apps can invoke untrusted

OS services, such as file-system and networking services,

whose results they can verify efficiently; e.g., using typical

cryptographic functions. These primitives are highly efficient

because they use Interprocessor Interrupts [7, 33] and shared

memory and avoid heavy-weight context switches with mHV .

We describe the design of the wimp-OS communication in

4Wimp apps can also outsource-and-verify driver functions (e.g., device
initialization, power management) to the OS, and reduce their size and
complexity.

���

��������������

��	
������	���

��������

������������	� ������	��	��	���

�����

�����

OS-
privileged

non-
privileged

�������

������������	���
��

�������
��

����

Legend Verifier Mediator Module Use
Dependency

Exported
Module

�

���

���

���
. . . �

���

Outsource
 &
 Verify

Export &
Mediate

�������

��

����

Figure 2. Outsourced functions and exported code of the Wimpy Kernel.

Section IV-D, and illustrate its performance in Section VII-B.

IV. WIMPY-KERNEL DESIGN

In this section, we define the scope of the wimpy kernel

(WK) design (Section IV-A), present the design methods (Sec-

tions IV-B – IV-C), and describe the wimp-OS communication

service provided by the wimpy kernel (Section IV-D).

A. Scope

Why Character-Oriented Devices? The design of the wimpy

kernel focuses on character-oriented I/O devices for two rea-

sons. First, these devices are pervasive (e.g., their drivers con-

stitute about 52% of all Linux drivers [36]) and the isolation of

their channels is more complex than for storage and network

I/O devices. Second, the wimpy kernel need not support any

storage or network I/O device functions. The reason is that

the wimp apps can safely outsource these functions to the

untrusted OS and retain their wimpy size and complexity.

Wimp apps can do this very efficiently using cryptographic

outsource-and-verify techniques [19, 26, 27], whereby they use

either authenticated-encryption or MAC modes5 to checksum

and protect the integrity, and when necessary confidentiality,

of the objects outsourced to untrusted OS services; e.g., files,

databases, emails and other messages.

Why USB Subsystem? We chose the USB subsystem to

illustrate the wimpy kernel code minimization method for

three reasons. First, the USB bus is very popular in terms

of device connectivity. For example, in Linux, 35% of device

drivers use USB and 36% PCI; 10% of higher-level protocol

drivers use either [36]. Second, we’ve already used similar

code minimization methods for the PCI, and already reported

them in the context of trusted path isolation [69]. We also

illustrated the export-and-mediate method for simple character-

oriented devices such as the PS/2 and VGA, which directly

access low-level I/O resources; e.g., the I/O ports and MMIO

memory. Third, channel isolation for the USB subsystem is the

most complex since it mixes control and data channels, and

uses (untrusted) software to maintain the device hierarchy and

initialize device addresses (in versions earlier than USB 3.0).

In contrast, channel isolation for all other subsystems (e.g.,

5An isolated subsystem for key distribution is presented by Zhou et al. [70].

PCI) is much simpler. For example, they already have separate

control channels: some (e.g., PCI, Firewire) store hierarchy in-

formation in hardware, and others (e.g., Bluetooth and HDMI)

have hardware-assigned device addresses. In neither case can

untrusted OS code modify these channel control components.

Is the Design General? The minimization of wimpy kernel

code requires modular decomposition and our design relies

on traditional decomposition methods for I/O kernel code;

viz., Figure 2. The outsource-and-verify method, which we

illustrate with the USB subsystem (Section IV-B), applies to

all other bus subsystems with similar code size and com-

plexity minimization results. This is the case because device

initialization and configuration functions, which we outsource

to the untrusted OS, comprise about 51% of driver code on

average [36]. Verification algorithms for the outsourced results

are much simpler for all other subsystems (e.g., PCI, Firewire)

than for the USB. For example, the verification algorithm

for PCI bus is able to collect hierarchy information directly

from the hardware registers of PCI bridges without having to

derive it. For the Firewire bus, all bus bridges store routing

information on how to reach a specific device, which can be

directly accessed by the verification algorithm. In addition, for

power management code (7.4% of driver code on average),

verifying the power state of bus controller and hubs/bridges

are general to any bus subsystem, because they comply with

the widely accepted ACPI standard.

Our export-and-mediate method follows classic trustworthy-

system engineering principles (mentioned above). Although

the security-sensitive operations may differ for different bus

subsystems and devices, their identification is well understood.

In the on-demand I/O isolation model, we identify all opera-

tions which, if misused by malicious or compromised wimp

apps, could violate the isolation I/O channels belonging to

other wimp apps or to the OS. The mediation code of the

wimpy kernel verifies that wimp-app operations do not cross

the isolation boundary of low-level I/O resources allocated

to wimp app devices and is used by all devices and bus

subsystems. For example, the wimpy kernel performs simple

range checks to ensure that a wimp app’s operations only

touch its own I/O ports, MMIO memory, and DMA memory.

Mediation code also validates interrupt settings by comparing

the interrupt vector, which is set by wimp apps, with others set

by the untrusted OS. The wimpy kernel need not mediate wimp

app operations that affect functional properties or availability

of the isolated devices, which are more likely to have complex

semantics of specific devices or buses. In addition, the method

used to export driver-support code (e.g., low-level I/O, memory

management, synchronization) to wimp apps (Section IV-C)

applies to all devices and buses. However, drivers for different

types of devices and buses may have different dependencies

on support code.

B. Decomposing the USB Bus Subsystem

The Linux USB bus subsystem implements a variety of

I/O functions such as bus enumeration, power management,

device-information bookkeeping and the virtual file system

Table I
DECOMPOSITION OF THE LINUX USB BUS SUBSYSTEM.

Code Modules Design Decisions

Bus enumeration Outsourced to OS

Power Management Outsourced to OS

Information & VFS Removed

Device hot-plug Removed

Request handling Exported to wimp apps

(VFS) presentation to user-level application, device hot-plug,

and request handling. We apply the outsource-and-verify and

the export-and-mediate approaches to decompose this subsys-

tem and include only necessary code in the wimpy kernel. The

results are summarized in Table I.

Specifically, we outsource the USB bus enumeration func-

tion to the OS, and design a simple and efficient verification

algorithm in the wimpy kernel to verify the OS’s configuration

of the USB bus hierarchy (Section IV-B1). We also outsource

power management functions of the USB host controller and

hubs to the OS, since the wimpy kernel can efficiently verify

the power status and prevent the OS from selectively dis-

abling the bus hierarchy and compromising I/O data integrity

of wimps. In contrast, device information bookkeeping and

virtual file system services become unnecessary, because the

wimpy kernel manages only a few devices for wimp apps

on-demand. Instead, user-level wimp apps include the device

drivers and directly access their devices, without any file-

system representation. Also, the device hot-plug is excluded

from the wimpy kernel, because it is not applicable to the on-

demand I/O isolation model. Finally, the wimpy kernel exports

the USB request handling code, which sets up USB transfer

descriptors according to the requests from USB device drivers,

to the wimp apps. However, the wimpy kernel verifies a few

fields in the wimp-app-generated descriptors to ensure that the

wimp apps’ use of device I/O resources does not violate I/O

channel isolation (Section IV-B2).

1) Verifying the Outsourced USB Bus Enumeration: To

motivate the need to verify the USB device hierarchy whose

management is outsourced to an untrusted OS, we briefly illus-

trate two attacks in which the compromised OS can breach the

I/O data secrecy and integrity of wimp apps. Then we present

the algorithm to defend against these attacks and verify the

OS-initialized USB hierarchy. The concrete implementation of

this algorithm is described in Section VI-B1.

Address Overlap Attack. A compromised OS can in-

tentionally create duplicate addresses for various devices or

hubs in the USB hierarchy, as is shown in Figure 3. The

ultimate purpose of this type of device mis-configuration is to

surreptitiously compromise the wimp I/O data, as illustrated

below.

A device with a duplicate USB address can hide from the

WK during hierarchy verification, if it responds to control

transfers from the WK (e.g., reading device descriptors) slower

than the wimp device whose address it duplicates. However,

the hidden device (“hidden dev”) may still intercept or respond

to other types of USB data transfers faster. Thus the hidden

device can be directed to compromise both I/O data secrecy

Figure 3. USB address overlap and remote wake-up attacks. Legend: The
root of the USB bus denotes the USB host controller, the leaves the USB
devices, and the intermediate nodes the USB hubs. The number of each tree
node denotes the USB device address. The dotted nodes represent the USB
devices whose addresses are duplicated in an attack. The grey node denotes
the USB device that is suspended by the untrusted OS and can be remotely
woken up using external signals (e.g., a special packet sent to a USB Ethernet
card).

and integrity of a wimp device with the same address. We

present a proof-of-concept experiment to showcase this attack

in Section A.

Remote Wake-up Attack. A subtle attack can be launched

by USB devices in suspended state which can still respond

to external wake-up signals (e.g., a special packet sent to

a USB Ethernet card) and resume their active state. Taking

advantage of this remote wake-up feature, a compromised OS

can configure a hidden dev, suspend it to evade verification,

and later resume it to launch a “USB address overlap attack”.

However, we note that the remote waking up of a device

needs to be coordinated by an upstream, non-suspended USB

hub [4]. In a more potent attack, the OS could configure the

hub upstream of the suspended device as a hidden dev (e.g., the

dotted node No.3 in Figure 3), which would hide the remote

wake-up event from the wimpy kernel. Thus, to defend against

this subtle attack, the wimpy kernel verifies (1) that only the

hubs that connect the wimp device to the host controllers are

in non-suspended state during wimp execution, (2) that there

is no hidden hub in the hierarchy, and (3) the status of all

non-suspended hubs to detect any remote wake-up signals.

Hierarchy Verification Algorithm. The purpose of the

verification algorithm is to check that only the USB paths

of the wimp devices are in active state under a USB host

controller. Here a USB path denotes a chain of USB devices

from the the host controller, via the on-path hubs, and to a

specific wimp device.

To design this algorithm, we need to overcome several

challenges posed by the two attacks and the complexity

of USB bus (illustrated in Section IV-A). For instance, the

USB hierarchy information about USB address and hub-

device connectivity is maintained only in the bus subsystem

software of the untrusted OS. There is no hardware-stored

hierarchy information that can be directly used by the WK.

When discovering the hierarchy information, the WK must

communicate with the USB devices using common operations

instead of device-specific ones (to minimize code size and

complexity). In addition, the WK must not interfere with the

normal functions of the I/O hardware being verified; e.g., it

must not make un-recoverable configuration changes.

Figure 4. USB Transfer Descriptor Verification by the Wimpy Kernel.

In the on-demand isolation model, the untrusted OS prepares

a set of USB paths for all wimp devices, and provides them

as inputs to the WK verification algorithm. Specifically, the

OS backs up the state of all non-USB-path devices, suspends

them, and passes the USB path information to the WK. The

USB path information includes the addresses of all devices and

on-path hubs, and the ports of their upstream hubs that they

connect to. The WK protects the host controller so that the

untrusted OS can no longer issue any USB command via this

host controller. The WK then executes the following algorithm

to verify the OS-prepared USB paths:

(1) WK periodically monitors the port status of all on-path

hubs to detect remote wake-up events. If any is detected,

the verification fails.

(2) WK examines all hub ports that do not have any down-

stream wimp device. These ports should either be disabled

or suspended. Otherwise, the WK suspends those ports.

(3) WK scans all the device addresses (e.g., 127 addresses

possible for USB 2.0). If it detects any that are active

non-USB-path devices, the verification fails.

(4) For each device in USB path, WK suspends it, and then

communicates using its address. If there is any reply, a

hidden dev or hub is detected, and verification fails.

In Appendix B, we present an informal analysis of the

algorithm and argue that it prevents both the USB address

overlap and remote wake-up attacks.

2) Mediating the Exported USB Request Handling: In

our system, most of the USB device operation module is

deprivileged and pushed to the wimp apps. WK only verifies

the behavior of the wimp apps that may affect wimp app

isolation from the OS. For example, as shown in Figure 4,

if a wimp app intends to perform certain operations to its

device, it generates a set of transfer descriptors qhs. However,

it cannot directly add descriptors to controller hardware, which

is controlled by WK. Instead, the wimp app invokes the WK

using a system call like interface (WKcall) with the descriptors

qhs as input. The WK copies the descriptors to its kernel space,

verifies them, and submits the valid descriptors to the host

controller hardware. The copied descriptors are placed in a

shared memory area to allow efficient descriptor status polling

by the wimp app. This cannot compromise security, because

the shared memory is read-only for the wimp app.

In this outsourcing model, the wimp apps bookkeep their

Table II
MINIMIZING DRIVER SUPPORT CODE IN WIMPY KERNEL.

Driver Support Code Minimization Decisions

Memory Virt & phys memory Exported to wimp apps
Management Page permissions Mediated by WK

Synchronization
Locks Exported to wimp apps

Threads Exported to wimp apps
Signals Exported to wimp apps

Kernel Utility functions Exported to wimp apps
Library Timer Exported to wimp apps

Device Library
Class functions Exported to wimp apps

I/O ports & mem Exported to wimp apps
Config space & Interrupts Mediated by WK

Kernel File system Outsourced to OS
Services CPU scheduling Mediated by WK

USB transfer information, and fill a large amount of other

descriptor fields. The WK only needs to verify a few security-

critical descriptor fields to verify that wimp apps filled them

correctly. The principle of verification is that those fields

in the descriptors do not affect the isolation of the wimp

apps’ devices and other devices controlled by the wimpy

kernel and the untrusted OS. The wimpy kernel does not

verify descriptor fields that only affect the availability of the

wimp apps’ devices. In addition, the verification algorithm of

the security-sensitive fields are general and simple, without

complicated bus-specific semantics. For example, the wimpy

kernel performs simple range checking on the Buffer Pointer

fields in the descriptors, and makes sure that these fields point

to the wimp apps’ DMA memory region. Similar checking

also applies to other bus subsystems. Section VI-B2 presents

the details of USB transfer descriptor verification.

C. Exporting Driver Support Code

Aside from communicating with bus subsystems, device

drivers also use a variety of services of commodity OS

subsystems; e.g., kernel library, memory management, syn-

chronization, device library and other kernel services [36].

Table II shows examples of such interfaces in each category

and how we export them to minimize the code base of WK,

according to the on-demand I/O isolation model.

(1) Memory management interfaces are further divided

into three types: virtual memory pages, physical pages, page

permissions. Virtual and physical page management is done

in wimp apps, because during wimp registration, memory

(including the code, data and I/O memory) of wimp apps is

provisioned by the OS, and isolated by the micro-hypervisor

and wimpy kernel. The wimpy kernel verifies that the OS

provisions contiguous memory in both virtual and physical

address spaces to the wimp apps, so that the wimp apps can

easily perform page mapping translation. However, the WK

sets page permissions for wimp apps to prevent buggy or

compromised wimp code from subverting the WK’s virtual

memory isolation.

(2) Synchronization functions (e.g., locks, threads, and sig-

nals) are either unnecessary in the on-demand isolation model,

or can be deprivileged to wimp apps. First, locks (e.g., mutex,

semaphore, conditional variable) that are used for multiplexing

devices among different applications are unnecessary, because

wimp apps exclusively own their devices during execution.

Locks for other usage can be easily implemented in user-level.

Second, wimp apps implement their own thread management

and scheduling functions using user space thread libraries [2]

and timer interrupts delivered by WK. Third, if multi-process

is needed6, wimp apps manage the signals between their

processes, using user-space signal implementation.

(3) Kernel library for utilities, timers, debugging and book-

keeping are unprivileged and can be replaced by user-level

libraries in wimp apps. For example, wimp apps manage their

own timers, because WK delivers timer interrupts to wimp

apps.

(4) Device library include routines supporting a class of

device and other low-level I/O related functions. Device-class

functions are now placed in wimp apps, similar to device

drivers. Low-level I/O resources such as I/O ports, MMIO

and DMA memory are already isolated by the wimpy kernel,

thus the wimp apps directly manage them without any run-

time mediation by WK. However, configuration space access

code (e.g., changing MMIO base address registers, modifying

Message Signaled Interrupt Capability) and interrupt manage-

ment functions (e.g., acknowledging End of Interrupts register,

enable/disable interrupts) exported to wimp apps should be

mediated by WK, because this code could be exploited by

malicious or compromised wimp apps to breach I/O channel

isolation.

(5) Kernel services include code for driver interaction with

other OS subsystems, such as file systems and CPU schedul-

ing. File system functions are outsourced to the OS by wimp

apps, using the wimp-OS communication channels of WK

(discussed below). Multi-process CPU scheduling, if needed, is

implemented in wimp apps. However, the wimpy kernel needs

to sanitize the new process page tables created by wimp apps

during forking processes, and mediates page table switches.

D. Wimp-OS Communication

The wimp-OS channels enable bidirectional communication

between the untrusted OS and the wimpy kernel or wimp

apps. For example, a wimp app can request extra memory

from the OS, when it runs out of the memory provisioned.

The WK contacts the relevant OS services, and verifies that

the dynamically assigned memory regions returned by the OS

services are valid (e.g., they do not overlap with the memory

regions of other wimp apps).

Conversely, the untrusted OS can use these wimp-OS chan-

nels to protect itself from potential buggy wimp behavior

or defend against privilege escalation attacks from malicious

wimps. When the OS invokes the wimp apps, it places upper

bounds on the wimp apps’ resources. If a wimp app exceeds

these bounds, the OS requests the WK to take appropriate ac-

tion. WK verifies these requests using the resource accounting

information it keeps during wimp app execution. For example,

if the OS detects a potentially deadlocked wimp app (e.g.,

which holds a CPU in excess of an established time bound), it

notifies WK with the total running time as an input message.

6Multi-thread is usually sufficient for wimp apps that exclusively own their
CPUs during execution.

WK verifies this request by calculating the elapsed time of the

wimp app, using the CPU time stamp it records during wimp

app invocation and the current time stamp. If the total running

time is correct, WK then notifies the wimp app to prepare for a

descheduling. If the wimp app acts normally in descheduling,

it can still be invoked by OS later. However, if the wimp app

fails to deschedule for a certain amount of time, the untrusted

OS can request the WK to terminate the wimp app. Similarly,

an OS helper (e.g., a loadable kernel module) can constantly

monitor shared interrupts of OS’ devices. If it discovers that a

shared interrupt with a wimp app is blocked for a long time,

it could also complain to WK using wimp-OS channels.

We designed efficient asynchronous primitives for wimp-OS

communication, which are compatible with standard commod-

ity OS implementations. For example, when a wimp app re-

quests OS services, it invokes WK-provided interfaces, instead

of directly triggering high-weight context switches coordinated

by the underlying micro-hypervisor. This yields substantially

better performance for fine-granularity protection than that

offered by security/separation kernels [10, 28, 55, 57, 64],

recent micro-hypervisors [38, 60, 65], and traditional hyper-

visor designs [13, 14, 16, 31]. We demonstrated its effi-

ciency in Section VII-B. Specifically, the wimp app provides

an OS service number, inputs, and a completion call-back

function to WK. The WK signals the OS running on other

CPUs using Interprocessor Interrupts (IPIs) [7, 33], which

is a standard facility of the Local Advanced Programmable

Interrupt Controller (LAPIC) in main-stream multi-processor

CPUs. It is frequently used to coordinate multi-processor

bootstrap, but we use this capability to send an interrupt to

other processors where the OS executes, as a signal of service

requests. Before sending the IPIs, WK places the wimp app-

provided inputs in a dedicated memory region shared with the

OS, which is established by the micro-hypervisor during wimp

app registration. After IPIs are sent, WK transfers control back

to the requesting wimp app, and the wimp app continues to

perform other operations. Later, the OS sends an IPI to WK

to signal the service completion, and returns service results

using the shared memory region. The WK verifies the service

results and passes them to wimp app.

V. SYSTEM LIFE-CYCLE

We illustrate the life cycle of isolated I/O channels and the

interactions between the micro-hypervisor, the wimpy kernel

and the wimp apps, as shown in Figure 5.

Registration. The untrusted OS or untrusted application

provisions the memory (e.g., stack and heap) and wimp device

I/O resources (e.g., MMIO memory, DMA memory, interrupts)

required by a wimp app, and explicitly registers the wimp

app through an OS-hypervisor interface. During registration,

the mHV isolates the wimp app’s memory and I/O resources,

maps the WK to the virtual address space of the wimp app,

and transfers control to WK. The WK creates the virtual

address page table of the wimp app and itself, verifies the

configurations of the wimp devices and necessary hardware,

and establishes the isolated I/O channels for the wimp devices

��� !"� #$�
��� ������� !"�#$!%$$!

�&�!'(��)*!�+!",!

�-�!.�+/%��!#�#+ 0!1+ !

",!2!"�#$!%$$!

�3�!4� �10!.56!*% 7(% �!

)+81��!+9��+9)�7!�+!6'!!

�:�!'(��)*!�+!6'!

�;�!<��%=/��*!"�#$!

%$$!��+/%��+8!

�>�!.�+/%��!.56!)*%88�/!

!!!!!!1+ !"�#$!%$$!

�?�!.8@+A�!#B4!�+!��+/%��!!

!!!!CDEF!DD.6F!.8�� 9$��!

(a) Wimp application registration

��� !"� #$�
���!.8@+A�!"�#$!%$$!

�-�!'(��)*!�+!",!
�&�!'��9$!"�#$!%$$!

!!!!!!�8�� 9$�!7�/�@� 0!

#% &��

'&&�

�;�!<G�)9��!!

!!!!!!"�#$!%$$!

�3�!<G��!
�?�!H�% 7+(8!"�#$!%$$!

!!!!!!�8�� 9$�!7�/�@� 0!

�>�!��I9���!�(��)*!!

!!!!!!�+!6'!
�:�!���9#�!6'!

(b) Wimp application invocation

Figure 5. The Life-cycle of Wimp Applications.

(except for the interrupt delivery). Until unregistration, the

untrusted OS can no longer tamper with the memory regions

and I/O resources of the registered wimp apps.

Invocation. The OS implicitly invokes the wimp app by ex-

ecuting one of the wimp app’s entry points. The mHV detects

this execution and switches the context to the WK. The WK

establishes the wimp-OS channels for the wimp app, sets up

the wimp device interrupt delivery, and then begins executing

the requested entry points at the wimp app’s privilege level.

Upon finishing execution, the wimp app suspends its devices

and transfers control to WK. The WK disables the wimp-

OS channels and wimp device interrupt delivery, and then

the mHV takes control and performs a context switch to the

OS. Between invocations, the OS can run other applications,

but cannot use the wimp devices or tamper with the wimp

app. Note that the wimp app could be invoked for arbitrary

times after registration, and the invocation is efficient, because

most I/O configuration overhead has already been offloaded to

registration.

Unregistration. The OS explicitly requests wimp app unreg-

istration via the wimp-OS channel, which is faster than via an

OS-hypervisor interface. The WK resets the wimp devices to a

clean state, tears down the isolated I/O resources of the wimp

app with the help of the mHV , restores the configurations of

the shared I/O hardware, and returns the CPU, memory regions

and I/O resources of the wimp app to the OS.

VI. IMPLEMENTATION

A. Micro-hypervisor

The micro-hypervisor implementation is based on XMHF

open source package v0.2.2 [1]. We extend XMHF with two

main functions. First, we implement a fine-grained DMA

protection function of the IOMMU, which allows the wimpy

kernel to enable/disable DMA access of a device to a certain

memory region, because the original XMHF only supports

coarse-grained DMA protection, which simply disables DMA

access of any device to a specific memory region. Our fine-

grained DMA protection is based on Xen-4.3.0 source code.

Second, we implement the wimp app registration and unregis-

tration interfaces, using the XMHF’s memory isolation primi-

tive and the DMA protection primitive we have implemented.

The registration interface is the only interface provided to the

untrusted OS, and the unregistration interface to the WK. The

code base break-down of the micro-hypervisor is shown in

Section VII-A.

B. Wimpy Kernel

Due to the simplicity of the reduced USB code in the

wimpy kernel, we implement it from scratch based on the

source code of Coreboot/Seabios [3] and the Enhanced Host

Controller Interface (EHCI) host controller driver in Linux,

adding the USB hierarchy verification and transfer descriptor

(TD) verification algorithm. As for wimpy kernel interfaces,

we implement the WKcall for wimp apps based on x86 fast

system call instructions, and the wimp-OS communication

channel based on IPIs and shared memory. Note that our

prototype is implemented on x86 platforms, and we have

not fully implemented the interrupt delivery and isolation

mechanisms. The experimental results in Section VII show

the minimality and efficiency of the WK.

1) USB Hierarchy Verification: The hierarchy verification

algorithm only requires a few standard operations, includ-

ing PCI configuration space operations to access EHCI host

controller registers [5], and basic USB control and interrupt

transfer operations to access registers of USB hubs, via the

host controller [4]. The control and interrupt transfers are much

easier to configure than the other two USB transfers (i.e., bulk

and isochronous) and require smaller TCB.

In Step 1 of the algorithm, WK monitors remote wake-up

events by setting periodic interrupt transfers to the port status

endpoints of all on-path hubs. The endpoint data contains

a bit to indicate that the hubs have coordinated a wake-up

event. This type of event is always be detected by the periodic

checking.

In Step 2, WK scans through all device addresses by sending

standard SET Configuration commands to each address. By

specification, every USB device supports at least a default

configuration No.1, thus an active device should always re-

spond to a SET Configuration=1 command. We choose this

command, because its USB transaction does not have a data

stage and introduces less latency overhead. A non-malicious

USB device should always acknowledge this command within

50ms. If a scanned device address does not exist, the command

will return an error immediately.

In Step 3, WK suspends an on-path hub or wimp device

by sending a SET Feature command to the upstream hub port

that the hub/device connects to. If the upstream hub is the

root-hub, WK directly accesses the port status registers of

the host controller using PCI read command. After a device

is suspended, WK finds out hidden devices by sending a

SET Configuration command to the same address device.

2) USB Transfer Descriptor Verification: There are four

different types of descriptors specified in USB 2.0, namely

Queue Head (QH), Isochronous Transfer Descriptor (iTD),

Split Transaction Isochronous Transfer Descriptor (siTD) and

Frame Span Traversal Node (FSTN) [4]. QH contains zero or

more Queue Element Transfer Descriptors (qTD).

The WK exposes seven interfaces to wimp apps,

in two categories: attach_QH, attach_iTD,

attach_siTD and attach_FSTN for submitting

descriptors; reactivate_qTD, reactivate_iTD

and reactivate_siTD for reactivating the executed

descriptors. FSTN descriptors need not be reactivated [5].

For the first four interfaces, WK verifies the following fields

of the descriptors: the Device Address fields in QH, iTD, and

siTD, to assure that the addresses refer to the correct wimp

device; the Buffer Pointer fields in qTD, iTD, and siTD, to

make sure that the addresses point to the wimp app’s own

DMA memory region; a few other fields that lead to undefined

operations if configured incorrectly, such as the Maximum

Packet Length field in QH and iTD, the Total Bytes to Transfer

field in siTD, and the Typ field in FSTN.

3) Wimpy-Kernel Interfaces: We implement the WKcall

interface using the standard x86 Fast System Call instruc-

tion [7, 33] (SYSENTER for requesting wimpy kernel ser-

vices, and SYSEXIT for the wimpy kernel to switch to the

wimp app, both after serving syscalls and when invoking

the wimp app). Parameters (e.g., service ID, pointers to in-

put/output data structures) are passed by registers. Alternatives

like SYSCALL/SYSRET and “int 0x80” work, but SYSEN-

TER/SYSEXIT is widely available on x86 platform and is

more efficient.

For wimp-OS channels, WK triggers an IPI by programming

the interrupt command register (ICR) of LAPIC to specify

the IPI vector number and delivery destination. The deliv-

ery status bit of ICR indicates whether the IPI is sent. On

the receiving CPUs, the IPIs are delivered as normal edge-

triggered interrupts. The IPIs are used as notifiers of wimp-

OS communication. The real data, including wimp-OS service

ID and input/output parameters, is passed by shared memory

buffer, which is established during wimp app registration, by

mHV .

C. Device Driver Study

We perform device driver study on Linux Ubuntu 12.04

with kernel 3.2.0. We develop automatic scripts to extract the

external interfaces that character device drivers use, by analyz-

ing the symbol tables in drivers’ binary headers and looking

for undefined symbols. We filter out the undefined symbols

that point to the functions implemented in other drivers, and

leave only the symbols of Linux kernel services. To verify

correctness and completeness, we compare the results of these

scripts with those of the OCaml/CIL source code analysis tools

used in [36], and the CodeSurfer software analyzer [9]7.

7We are able to compile driver sub-directories using the academic version
of CodeSurfer, though building the entire Linux kernel fails.

Table III
MINIMIZING DRIVER SUPPORT CODE IN THE WIMPY KERNEL. “IN

LINUX” COLUMNS SHOW THE UNIQUE OS INTERFACES USED IN ALL

DRIVERS AND CHARACTER-ORIENTED DEVICE DRIVERS, RESPECTIVELY.

Driver Dependency
In Linux

In Wimpy Kernel
All Char Dev

Memory Management 113 67 set page permission

Synchronization 189 95 None

Kernel Library 863 349 None

Device Library 612 212 en/disable irq, config write

Kernel Services 442 254 None

We manually study those driver dependencies, and present

the result of deprivileging the relevant OS support code in

Table III, following the interface categories defined in [36].

According to the analysis presented in Section IV-C, we

identify only a few interfaces that should be implemented in

the WK, and the support code of other interfaces can be all

deprivileged to wimp apps. The wimpy kernel should verify

the set_page_permission requests to prevent the wimp

app from subverting the wimpy kernel’s virtual memory isola-

tion. The wimp apps use enable_irq and disable_irq

WKcalls to enable/disable the interrupts of their devices, and

use config_write to modify configuration space registers,

under the WK’s mediation.

Drivers also invoke privileged instructions, such as

wrmsr/rdmsr, wbinvd, lgdt/lidt, and ltr, which are

available at the user-level. However, by scanning through

all character device drivers in Linux, we found only one

instruction (wbinvd for invalidating cache entries) used in

one video driver during device initialization. When migrating

this driver, wimp apps can outsource the initialization functions

to the untrusted OS. Otherwise, the WK simply provides a

WKcall interface for this instruction.

VII. EVALUATION

We implement and evaluate the system on an off-the-shelf

HP Elitebook 8540p with a Dual-Core Intel Core i5 M540

CPU running at 2.53 GHz, 4GB memory; a Hitachi GST

Travelstar 7200 rpm 500GB SATA-II disk; an Intel 82577LM

Gigabit network card; and an Infineon v1.2 TPM. The machine

is also equipped with two USB 2.0 host controllers and two

immediate downstream rate matching hubs for transforming

high-speed USB transactions to low-speed ones. The machine

runs a 32-bit Ubuntu 12.04 OS with Linux kernel 3.2.0-36.56.

The wimp application tested in our experiments is a prototype

that includes a USB keyboard device driver. In all network

experiments, the machines are connected via 1Gbps Ethernet

links.

A. Code Base Size Evaluation

We use SLOCCount8 to calculate the Source Lines of Code

(SLoC) of the mHV and the WK. As shown in Table 3(a),

the micro-hypervisor has 25211 SLoC, adding 660 SLoC

to the XMHF [1] code base for wimp app registration and

unregistration, and 4925 SLoC to complete the XMHF’s DMA

protection primitive. The code addition does not invalidate

8SLOCCount by David A. Wheeler, http://www.dwheeler.com/sloccount/

Table IV
SYSTEM CODE BASE SIZE. (*) IN MICRO-HYPERVISOR IMPLEMENTATION,

WE AUGMENT THE ORIGINAL XMHF WITH FINE-GRAINED DMA
PROTECTION CAPABILITY.

(a) Micro-hypervisor

Modules SLoC

Registration 447

Unregistration 213

XMHF* 24551

Total 25211

(b) Wimpy Kernel

Modules SLoC

USB Subsystem 2144

WKcall 249

Wimp-OS Channel 106

Others 1038

Total 3537

Table V
COMPARISON OF CODE SIZE IN USB SOFTWARE STACK BETWEEN WK

AND IN LINUX. (*) WE CALCULATE ONLY THE USB DRIVERS INCLUDED

IN THE LINUX KERNEL TREE.

Wimpy Kernel Linux

Verification
Others Total

USB
Subsystem

USB
Drivers

Total
Hierarchy TD

93 107 1944 2144 19820 >206376* >226196*

the XMHF’s formally-proved memory integrity property [66].

The code base of our micro-hypervisor is smaller than other

micro-hypervisors, and much smaller than full functioning

VMMs/hypervisors9.

Table 3(b) shows the code base break-down of the current

WK prototype. The WK code size is about 3.6K SLoC, 60% of

which is USB bus subsystem relevant code. This code base is

sufficient to support all types of USB 2.0, 1.1, and 1.0 devices,

and all types of USB transfer mode, such as control, interrupt,

bulk and isochronous transfers [4].

Table V compares the WK USB software stack to the

commodity Linux one (Both only support USB EHCI host

controller). We manage to introduce only 2144 SLoC of USB

code to the wimpy kernel, which represents more than 99%

reduction compared with the over 22K SLoC of Linux USB

code base. Note that the reduction result in practice is even

better, because when calculating the Linux USB code, we do

not include a significant number of third party USB drivers

out of the Linux kernel tree and drivers relevant to high-

level protocols (e.g. SCSI drivers for USB flash drive). In

addition, the USB hierarchy verification algorithm and transfer

descriptor verification algorithm only use 93 and 107 SLoC,

respectively.

B. Micro-benchmarks

USB Hierarchy Verification. Table VI shows the latency of

each step in the USB hierarchy verification algorithm. Among

them, device address scanning (step 3) dominates the latency

overhead. However, this overhead is acceptable, because this

algorithm is only invoked once per wimp application reg-

istration, and does not affect the more frequent wimp app

invocations.

9Fides [62] has 7.2K SLoC, but without DMA protection, multi-core
and AMD x86 virtualization support. The new version of TrustVisor based
on XMHF [66] has about 24K SLoC without implementing fine-grained
DMA protection. Guardian [15] has approximately 25K SLoC. NOVA’s code
base contains 36K SLoC [61]. BitVisor [60] has 194K SLoC. Most full-
function VMM/hypervisors have code-base sizes which are nearly an order of
magnitude larger than our micro-hypervisor; e.g., Xen (263K SLoC), VMWare
ESXi (200K SLoC), KVM (200K SLoC), and Hyper-V (100K SLoC).

Table VI
LATENCY BREAK-DOWN OF THE USB HIERARCHY VERIFICATION

ALGORITHM.

Step 1 Step 2 Step 3 Step 4 Total

Time (ms) 0.29 0.54 573.03 1.32 575.18

Table VII
LATENCY COMPARISON OF WK-INVOLVED AND HYPERVISOR-INVOLVED

CONTEXT SWITCHES.

WKcall Wimp-OS Channel Hypercall Page Fault

Time (μs) 0.38 0.23 7.56 20.68

Table VIII
LATENCY OF WIMP-APP LIFE-CYCLE OPERATIONS.

Registration Invocation Unregistration

Time (ms) 583.79 0.26 0.97

USB Transfer Descriptor Verification. In our experiments,

the latency overhead of TD verification is negligible. For

example, verifying a QH and an iTD only takes about 0.28

μs and 0.42μs, respectively. In comparison, a micro-frame,

the minimum time unit in USB specification, takes 125μs.

Wimpy-Kernel Interfaces. Table VII illustrates the latency

overhead of two main wimpy kernel interfaces; i.e., the WK-

calls for communicating with wimp applications, and the IPI-

based wimp-OS channels for communicating with the OS.

These two interfaces avoid the more heavy-weight micro-

hypervisor-involved context switches and greatly improve

overall system performance. Hypercalls and hardware page

faults are the two most widely used methods of triggering

hypervisor-involved context switches. In comparison, our WK-

calls are about 20 times faster than hypercalls and 54 times

faster than page faults. Our wimp-OS IPI channels are 33 times

faster than hypercalls and 90 times faster than page faults.

In addition, using the asynchronous wimp-OS channels, the

wimp apps and wimpy kernel do not block waiting for the OS

services.

System Life-cycle Operations. Table VIII presents the

latency overhead of the registration, invocation and unregistra-

tion of a wimp application. The latency of wimp application

invocation and unregistration are much smaller than those of

registration, because the more heavy-weight hardware config-

uration verification is only invoked during registration.

C. Macro-benchmarks

In this section, we attempt to evaluate the overhead of

the micro-hypervisor and the wimpy kernel to the co-existing

OS, both in CPU and I/O performance. We use the stan-

dard SPECint 2006 as our CPU-bound benchmarks. For I/O

workloads, we choose the iozone 3.397 for disk read/write,

netperf 2.5.0 (TCP and UDP) and Apache Benchmark (ab)

for networking. Specifically, in the iozone test suite, we choose

evaluation parameters to be (block size: 4KB, file size: 8GB).

For netperf, we set the message size to be 16384 bytes and

select a 120 seconds duration. For Apache, we run the Apache

HTTP Server 2.2.22 on our testbed and run ab on another

machine to generate 200, 000 transactions using 20 concurrent

connections.

We evaluate the performance overhead in two steps. First,

we compare the performance overhead of TrustVisor and mHV

(named “TrustVisor” and “mHV” in Figure 6), as both of

them are based on XMHF and provide basic isolated execution

environments. In the TrustVisor test cases, we run TrustVisor

along with the OS, without registering or invoking any isolated

software modules. In the mHV test cases, we run the mHV

without registering any wimp application (the WK is not

mapped to any wimp app’s address space). Second, we further

measure the performance overhead introduced by the WK on

the same benchmarks (named “mHV w/ WK” in Figure 6),

by registering the wimp app but not invoking it. The results

shown in Figure 6 are all normalized to the benchmark results

on the vanilla OS.

CPU Benchmarks. As shown in Figure 6(a), the mHV

incurs similar performance overhead as TrustVisor, because

they have similar memory foot-print, and rely on the same

hardware virtualization support for memory isolation. The

performance overhead introduced by the WK memory foot-

print is negligible, comparing to that of the TrustVisor and the

mHV .

I/O Benchmarks. The I/O evaluation results are shown in

Figure 6(b). We measure the network transfer rate (KB/s)

of Apache web server and netperf benchmark, and the disk

read/write throughput (KB/s) of the iozone benchmark. All

disk and network I/O test results in our experiment show

less than 4% performance downgrade, comparing with the

vanilla OS case. The performance of the mHV is similar to

that of the TrustVisor, and the mHV w/ WK cases always

have slightly worse performance. This is because the first

two cases use coarse-grained DMA protection, which is more

light-weight than the fine-grained DMA protection used in the

wimpy kernel. We expect that the I/O performance overhead

will decrease along with more advanced hardware for DMA

protection.

VIII. RELATED WORK

A. I/O Isolation Systems

Limited Device Support. Security kernels [10, 57], iso-

lation kernels [53], and micro-hypervisors [15, 70] support

isolated channels for a few selected user-interface devices (e.g.,

security administrators) within their TCBs. This approach

inevitably increases the size and complexity of trusted code

and does not apply to the wide variety of devices that need

to be supported outside the TCB. Zhou et al. [69] illustrate

a limited form of user-verifiable trusted paths to application-

code modules, protected by a micro-hypervisor [47]. Filyanov

et al. [21] also proposes using an isolated software module

to control user-centric devices (e.g., keyboard and display),

but does not protect the I/O data from an OS’s intentional

mis-configuration. The DriverGuard system [17] only protects

the confidentiality of the I/O data between commodity devices

and small code modules in device drivers. In contrast with

these systems, we address the seemingly conflicting and more

challenging requirements of supporting diverse and complex

I/O devices while, at the same time, maintaining overall system

JK!

�JK!

-JK!

&JK!

;JK!

3JK!

?JK!

>JK!

:JK!

LJK!

�JJK!

$� /=�8)*! =M�$-! �))! #)1! �+=#A! *##� ! �N�8�! /�=I9%8�9#! *-?; �1! +#8��$$! %��% ! G%/%8)=#A!

H 9��4��+ ! #B4! #B4!(5!",!

(a) CPU Benchmarks (SPECint 2006)

3JK!

33K!

?JK!

?3K!

>JK!

>3K!

:JK!

:3K!

LJK!

L3K!

�JJK!

E$%)*�! 8��$� 1OHPQ! 8��$� 1ORCQ! .6S+8�O��%7! .6S+8�O" ���!

H 9��4��+ ! #B4! #B4!(5!",!

(b) I/O Benchmarks

Figure 6. The CPU and I/O macro-benchmark results.

simplicity. Our system protects I/O data against subtle device

mis-configuration attacks (e.g., USB address overlap attacks

and remote wake-up attacks), which these systems do not

(claim to) counter.

Static Device Allocation. Separation kernels [28, 55, 64] can

isolate I/O channels by allocating devices to different system

partitions, which are statically defined at system configuration

time. They also enforce strict information flow policies among

these partitions – a goal that we do not share. NoHype [38, 65]

dedicates I/O devices with virtualization support (e.g., SR-

IOV [34]) to virtual machines (VMs) through a static pre-

allocation process. Their system design is based on the obser-

vation that a VM running on a cloud platform only needs a

limited number of I/O devices; e.g., network interface cards,

storage, and graphic cards. Thus, they cannot protect I/O

data from user devices such as a mouse, VGA, or printer. In

contrast, our system focuses on providing dynamic, on-demand

isolation of a wide variety of peripheral devices.

Device Virtualization and Passthrough. During the past

decade, advances in device virtualization have decreased the

trusted code base for isolated I/O channels, gradually evolving

from the monolithic hypervisors/VMMs to hypervisors with

privileged device management domains [11], then to hypervi-

sors with disengaged privileged domains [18], and finally to

hypervisors with isolated driver domains [22, 51]. However,

applications in their guest domains still communicate with

virtualized devices via the untrusted guest OS on which they

run, which still implies that a huge code base has to be

trusted for on-demand, isolated I/O. Hypervisors with device

pass-through support (e.g., Xen, KVM, and [46]) or para-

passthrough support (e.g., BitVisor [60]) exclusively assign

I/O devices to a specific guest VM. A driver of the pass-

through device still has to co-exist with the untrusted guest OS.

Worse, a compromised control domain can break the isolation

of the pass-through devices. In contrast, our system is specially

designed to avoid virtualizing hardware devices of commodity

OSes. We control only the necessary hardware for I/O channel

isolation, and rely on a small and simple trusted code base.

Special Devices. Some systems take advantage of special

hardware devices – equipped with data encryption capability

– to establish secure I/O channels with isolated software [30,

40, 49, 67]. Our system avoids the attendant secure key

management issues and special devices, and supports protected

I/O channels to commodity peripheral devices.

B. Isolated Execution Environments

Recent advances on isolated execution environments (IEEs),

using both software [47, 48, 56, 61, 62, 66] and hardware

architectures [50], illustrate the safe co-existence of software

code modules or applications with an untrusted OS. However,

most IEEs lack basic services for application development.

Other systems add a few such services to the IEE with minimal

TCB support; e.g., persistent memory [52], file system and

network services [13, 14, 16, 31, 44], inter-IEE commu-

nication [62], and limited user trusted path [69]. They do

not include services for on-demand isolated I/O channels to

diverse and complex peripheral devices (e.g., USB devices).

In contrast, this paper addresses this unmet challenge on

commodity platforms. In addition, most of these systems [13,

14, 16, 31, 52] adopt a synchronous, or blocking, service

communication model (i.e., the application execution ceases

during services) and entail additional overhead for application-

OS context switches with low-level hypervisor support. In

contrast, we support asynchronous and more efficient wimp-

OS communication channels without any low-level micro-

hypervisor support and hence avoid extra overhead, on multi-

core platforms. More recently, the Drawbridge/Library OS

system [54] packaged rich, high-level application services

(e.g., rendering engines, language run-time) with IEE software,

but left the device drivers and kernel driver subsystem to the

host OS. Thus, the trusted code base of their application I/O

services is much larger than ours.

C. Device Driver Isolation and Decomposition

Several approaches [12, 23, 42, 43, 51, 63, 68] exist

to isolate device drivers from the OS kernel, and/or move

them to user-space, primarily for the purpose of improving

driver reliability and fault isolation. Swift et al. propose using

hardware memory protection domains to isolate the drivers of a

monolithic kernel [63]. LeVasseur et al. [43] and Nikolaev et

al. [51] propose running unmodified device drivers of guest

operating systems in separate virtual machines. SUD [12]

moves device drivers to an emulated Linux kernel environment

in user-space. Leslie et al. [42] implement user-level device

drivers on a Linux kernel. I/O channel isolation of all these

systems relies on very large and untrusted OS code bases. In

contrast, the overriding goal of our system is to decouple the

I/O channels from an untrusted OS to obtain much higher iso-

lation assurance. Ganapathy et al. [23] propose a microdriver

architecture that splits driver code, leaving the critical path

code in the kernel and moving the rest (e.g., initialization,

configuration) to a user-level process. They aim to achieve

high driver performance and compatibility with commodity

OSes. We share similar driver decomposition goals, but we

focus primarily on reducing a system’s trusted code base by

outsourcing I/O management functions to the untrusted OS

and verifying their behaviors in the wimpy kernel.

Williams et al. [68] develop an architecture that isolates

device drivers in user space and a reference validation mech-

anism (RVM) that mediates their low-level interactions (e.g.,

MMIO, DMA, interrupts) with I/O devices. RVM relies on

safety specifications for individual devices to identify allowed

and prohibited interactions. This architecture has different

goals than ours as it is based on an extensively re-designed

OS. Also, enforcing safety specifications for individual devices

is insufficient in the on-demand I/O model, since this model

requires the composition of safety specifications for multiple

interconnected devices via complex bus subsystems that are

shared on a time-multiplexed basis.

Similarly, micro-kernels [39, 59] restructure commodity

OSes by leaving essential functions like task scheduling and

IPCs in the kernel, and moving the rest of OS functions to

user-space; e.g., device drivers and bus subsystems. Though

providing high assurance, these systems require extensive

OS re-design, which is precisely what we avoid. Instead,

we achieve safe co-existence of our trusted code base with

unmodified commodity OSes. For our purposes, it would be

equally undesirable to use a micro-kernel [39] and its user-

level driver subsystems as our wimpy kernel, because we seek

to retain the I/O programming model of commodity OSes,

and encourage wimp applications to reuse commodity device

drivers to the largest possible extent.

IX. CONCLUSION

Trustworthy applications are unlikely to survive in the

marketplace without the ability to use a variety of basic

services securely, such as on-demand isolated I/O channels to

peripheral devices. This paper presents a security architecture

based on a wimpy kernel that provides these services with-

out bloating the underlying trusted computing base. It also

presents a concrete implementation of the wimpy kernel for a

major I/O subsystem, namely USB subsystem, and a variety

of device drivers. Experimental measurements show that the

desired minimality and efficiency goals for the trusted base are

achieved.

ACKNOWLEDGMENT

We are grateful to the reviewers, and Weidong Cui in

particular, for their insightful suggestions. We also want to

thank Asim Kadav and Yueqiang Cheng for help with the

driver study, and Amit Vasudevan for micro-hypervisor as-

sistance and debugging. This research was supported in part

by CMU CyLab under the National Science Foundation grant

CCF-0424422 to the Berkeley TRUST STC and a gift from

Intel Corporation. The views and conclusions contained in this

paper are solely those of the authors and should not be inter-

preted as representing the official policies, either expressed or

implied, of any sponsoring institution, the U.S. government or

any other entity.

REFERENCES

[1] eXtensible Modular Hypervisor Framework. http://xmhf.org
[Accessed on 21 Feb 2014].

[2] GNU Pth - The GNU Portable Threads. http://www.gnu.org/
software/pth/ [Accessed on 21 Feb 2014].

[3] SeaBIOS. http://www.coreboot.org/SeaBIOS [Accessed on 9
Nov 2013].

[4] Universal Serial Bus Specification, Revision 2.0, 2000.

[5] Enhanced Host Controller Interface Specification for Universal
Serial Bus, 2002.

[6] AMD. AMD I/O virtualization technology (IOMMU) specifi-
cation. AMD Pub. no. 34434 rev. 1.26, 2009.

[7] AMD. AMD 64 Architecture Programmer’s Manual: Volume
2: System Programming. Pub. no. 24593 rev. 3.23, 2013.

[8] J. P. Anderson. Computer security technology planning study.
volume 2. Technical Report ESD-TR-73-51, Air Force Elec-
tronic Systems Division, 1972.

[9] P. Anderson and T. Teitelbaum. Software inspection using
codesurfer. In Workshop on Inspection in Software Engineering,
2001.

[10] BAE Systems Information Technology LLC. Security Target,
Version 1.11 for XTS-400, Version 6, 2004.

[11] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. In Proc. ACM Symposium on Operating Systems
Principles, 2003.

[12] S. Boyd-Wickizer and N. Zeldovich. Tolerating malicious device
drivers in linux. In Proc. USENIX Annual Technical Conference,
2010.

[13] H. Chen, F. Zhang, C. Chen, Z. Yang, R. Chen, B. Zang, and
W. Mao. Tamper-resistant execution in an untrusted operat-
ing system using a virtual machine monitor. Technical Re-
port FDUPPITR-2007-0801, Parallel Processing Institute, Fudan
University, 2007.

[14] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A.
Waldspurger, D. Boneh, J. Dwoskin, and D. R. Ports. Over-
shadow: a virtualization-based approach to retrofitting protec-
tion in commodity operating systems. In Proc. Architectural
Support for Programming Languages and Operating Systems,
2008.

[15] Y. Cheng and X. Ding. Guardian: Hypervisor as security
foothold for personal computers. In Proc. International Confer-
ence on Trust and Trustworthy Computing. 2013.

[16] Y. Cheng, X. Ding, and R. Deng. Appshield: Protecting ap-
plications against untrusted operating system. Technical Report
SMU-SIS-13-101, Singapore Management University, 2013.

[17] Y. Cheng, X. Ding, and R. H. Deng. DriverGuard:
Virtualization-based fine-grained protection on i/o flows. ACM
Transaction on Information and System Security, 16(2):1–30,
2013.

[18] P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker, T. Deegan,
P. Loscocco, and A. Warfield. Breaking up is hard to do:
Security and functionality in a commodity hypervisor. In Proc.
ACM Symposium on Operating Systems Principles, 2011.

[19] D. Denning. Cryptographic checksums for multilevel database
security. In Proc. IEEE Symposium on Security and Privacy,
1984.

[20] D. R. Engler, M. F. Kaashoek, et al. Exokernel: An operating
system architecture for application-level resource management.
29(5):251–266, 1995.

[21] A. Filyanov, J. M. McCune, A.-R. Sadeghi, and M. Winandy.
Uni-directional trusted path: Transaction confirmation on just
one device. In Proc. IEEE/IFIP Conference on Dependable
Systems and Networks, 2011.

[22] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and
M. Williamson. Safe hardware access with the xen virtual

machine monitor. In Proc. Workshop on Operating System
and Architectural Support for the on demand IT InfraStructure
(OASIS), 2004.

[23] V. Ganapathy, M. J. Renzelmann, A. Balakrishnan, M. M. Swift,
and S. Jha. The design and implementation of microdrivers.
In Proc. International Conference on Architectural Support for
Programming Languages and Operating Systems, 2008.

[24] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable
computing: Outsourcing computation to untrusted workers. In
Proc. of CRYPTO, 2010.

[25] V. D. Gligor. Security limitations of virtualization and how to
overcome them. In Proc. International Workshop on Security
Protocols, Cambridge University, 2010.

[26] V. D. Gligor and B. G. Lindsay. Object migration and au-
thentication. IEEE Transactions on Software Engineering, SE-
5(6):607–611, 1979.

[27] R. Graubart. The integrity lock approach to secure database
mangement. In Proc. IEEE Symposium on Security and Privacy,
1984.

[28] I. GreenHills Software. Integrity-178b separation kernel se-
curity target. http://www.niap-ccevs.org/st/st vid10362-st.pdf
[Accessed on 7 Nov 2013], 2010.

[29] T. C. Group. TPM specification version 1.2, 2009.

[30] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and
J. Del Cuvillo. Using innovative instructions to create trust-
worthy software solutions. In Proc. International Workshop on
Hardware and Architectural Support for Security and Privacy,
2013.

[31] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel.
Inktag: secure applications on an untrusted operating system.
In Proc. international conference on Architectural support for
programming languages and operating systems, 2013.

[32] Intel. Intel virtualization technology for directed I/O architecture
specification. Intel Pub. no. D51397-006 rev. 2.2, 2013.

[33] Intel Corporation. Intel 64 and IA-32 architectures software
developer’s manual: Volume 3: System programming guide.
Pub. no. 253668-048US, 2013.

[34] Intel LAN Access Division. PCI-SIG SR-IOV Primer: An
Introduction to SR-IOV Technology. http://download.intel.com/
design/network/applnots/321211.pdf, 2011.

[35] P. A. Janson. Removing the dynamic linker from the security
kernel of a computing utility. Technical Report MIT-LCS-TR-
132, 1974, 1974.

[36] A. Kadav and M. M. Swift. Understanding modern device
drivers. In Proc. International Conference on Architectural
Support for Programming Languages and Operating Systems,
2012.

[37] P. A. Karger, M. E. Zurko, D. W. Bonin, A. H. Mason, and
C. E. Kahn. A retrospective on the VAX VMM security kernel.
IEEE Transactions on Software Engineering, SE-17(11):1147–
1165, 1991.

[38] E. Keller, J. Szefer, J. Rexford, and R. B. Lee. NoHype:
virtualized cloud infrastructure without the virtualization. In
Proc. annual International Symposium on Computer Architec-
ture, 2010.

[39] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish,
T. Sewell, H. Tuch, and S. Winwood. seL4: formal verification
of an OS kernel. In Proc. ACM Symposium on Operating
Systems Principles, 2009.

[40] N. Knupffer. Intel Insider What Is It? (IS it DRM? And yes it
delivers top quality movies to your PC). http://blogs.intel.com/
technology/2011/01/intel insider - what is it no/[Accessed
on 30 Oct 2013].

[41] B. Lampson. Software components: Only the giants sur-
vive. Computer Systems: Theory, Technology, and Applications,
(9):137–145, 2004.

[42] B. Leslie, P. Chubb, N. Fitzroy-dale, S. Gotz, C. Gray,
L. Macpherson, D. Potts, Y. Shen, K. Elphinstone, and
G. Heiser. User-level device drivers: Achieved performance.
Journal of Computer Science and Technology, 20(5):654–664,
2005.

[43] J. LeVasseur, V. Uhlig, J. Stoess, and S. Götz. Unmodified
device driver reuse and improved system dependability via
virtual machines. In Proc. Symposium on Operating Systems
Design and Implementation, 2004.

[44] Y. Li, A. Perrig, J. McCune, J. Newsome, B. Baker, and
W. Drewry. Minibox: A two-way sandbox for x86 native
code. Technical Report CMU-CyLab-14-001, Carnegie Mellon
University, 2014.

[45] S. Lipner, T. Jaeger, and M. E. Zurko. Lessons from VAX/SVS
for high assurance VM systems. IEEE Security and Privacy,
10(6):26–35, 2012.

[46] J. Liu, W. Huang, B. Abali, and D. K. Panda. High performance
VMM-bypass I/O in virtual machines. In Proc. USENIX Annual
Technical Conference, 2006.

[47] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and
A. Perrig. TrustVisor: Efficient TCB reduction and attestation.
In Proc. IEEE Symposium on Security and Privacy, 2010.

[48] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and H. Isozaki.
Flicker: An execution infrastructure for TCB minimization. In
Proc. European Conference in Computer Systems, 2008.

[49] J. M. McCune, A. Perrig, and M. K. Reiter. Safe passage
for passwords and other sensitive data. In Proc. Network and
Distributed Systems Security Symposium, 2009.

[50] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas,
H. Shafi, V. Shanbhogue, and U. R. Savagaonkar. Innovative
instructions and software model for isolated execution. In Proc.
International Workshop on Hardware and Architectural Support
for Security and Privacy, 2013.

[51] R. Nikolaev and G. Back. Virtuos: an operating system with
kernel virtualization. In Proc. ACM Symposium on Operating
Systems Principles, 2013.

[52] B. Parno, J. R. Lorch, J. R. Douceur, J. Mickens, and J. M.
McCune. Memoir: Practical state continuity for protected
modules. In Proc. IEEE Symposium on Security and Privacy,
2011.

[53] M. Peinado, Y. Chen, P. Engl, and J. Manferdelli. NGSCB:
A Trusted Open System. In Proc. Australasian Conference on
Information Security and Privacy, 2004.

[54] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and
G. C. Hunt. Rethinking the library os from the top down.
In Proc. International Conference on Architectural Support for
Programming Languages and Operating Systems, 2011.

[55] J. M. Rushby. Design and verification of secure systems.
15(5):12–21, 1981.

[56] R. Sahita, U. Warrier, and P. Dewan. Protecting critical appli-
cations on mobile platforms, 2009.

[57] R. Schell, T. Tao, and M. Heckman. Designing the GEMSOS
security kernel for security and performance. In Proc. National
Computer Security Conference, 1985.

[58] M. D. Schroeder, D. D. Clark, and J. H. Saltzer. The Multics
kernel design project. In Proc. ACM Symposium on Operating
Systems Principles, 1977.

[59] J. S. Shapiro, J. M. Smith, and D. J. Farber. Eros: a fast
capability system. In Proc. ACM symposium on Operating
systems principles, 1999.

[60] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote, S. Hasegawa,
T. Horie, M. Hirano, K. Kourai, Y. Oyama, E. Kawai, K. Kono,
S. Chiba, Y. Shinjo, and K. Kato. Bitvisor: a thin hypervisor for
enforcing I/O device security. In Proc. ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments,
2009.

[61] U. Steinberg and B. Kauer. NOVA: a microhypervisor-based
secure virtualization architecture. In Proc. European Conference
on Computer Systems, 2010.

[62] R. Strackx and F. Piessens. Fides: selectively hardening soft-
ware application components against kernel-level or process-
level malware. In Proc. ACM conference on Computer and
Communications Security, 2012.

[63] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving
the reliability of commodity operating systems. In Proc. ACM
Symposium on Operating Systems Principles, 2003.

[64] W. R. Systems. Wind river vxworks mils platform.

http://www.windriver.com/products/platforms/vxworks-mils/
MILS-3 PO.pdf [Accessed on 7 Nov 2013], 2013.

[65] J. Szefer, E. Keller, R. Lee, and J. Rexford. Eliminating the
hypervisor attack surface for a more secure cloud. In Proc.
ACM Conference on Computer and Communications Security,
2011.

[66] A. Vasudevan, S. Chaki, L. Jia, J. McCune, J. Newsome,
and A. Datta. Design, implementation and verification of an
extensible and modular hypervisor framework. In Proc. IEEE
Symposium on Security and Privacy, 2013.

[67] T. Weigold, T. Kramp, R. Hermann, F. Höring, P. Buhler,
and M. Baentsch. The zurich trusted information channel —
an efficient defence against man-in-the-middle and malicious
software attacks. In Proc. International Conference on Trusted
Computing and Trust in Information Technologies: Trusted
Computing - Challenges and Applications, 2008.

[68] D. Williams, P. Reynolds, K. Walsh, E. G. Sirer, and F. B.
Schneider. Device driver safety through a reference validation
mechanism. In Proc. USENIX Conference on Operating Systems
Design and Implementation, 2008.

[69] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune. Building
verifiable trusted path on commodity x86 computers. In Proc.
IEEE Symposium on Security and Privacy, 2012.

[70] Z. Zhou, J. Han, Y.-H. Lin, A. Perrig, and V. Gligor. Kiss:
Key it simple and secure corporate key management. In Proc.
International Conference on Trust and Trustworthy Computing,
2013.

APPENDIX

A. USB Address Overlap Attack Experiments

We experiment with the USB address overlap attack, and

analyze its impact on I/O channel isolation. Note that USB

device communication has two directions: IN means data

is transferred from device to host controller, while OUT

represents the opposite. There are four types of data trans-

fer: control, interrupt, bulk, and isochronous. Each type has

different latency and bandwidth guarantees, and is performed

by different types of USB devices.

We perform the analysis using two keyboards, one is Dell

SK8115, as the wimp device, the other one is Dell L100, as

a device controlled by the adversary. We changed the USB

address of Dell L100 to overlap that of Dell SK8115. In

the experiment, when performing control transfer IN direction

communication (e.g., reading device descriptors), Dell SK8115

always replies faster, so we only read its device descriptors

from the host controller. Dell L100 is hidden from the con-

trol software (e.g., verification software, wimp applications).

However, when performing control transfer OUT direction

communication (e.g., sending command to light the caps-lock

LED on the keyboard), we discovered that the caps-lock LEDs

on both keyboards are always lighted together. This means

the hidden Dell L100 can silently intercept control OUT data

of the isolated-channel device, which breaks the secrecy of

the I/O channel. Moreover, if we perform interrupt control IN

communication (e.g., reading keyboard input), key-presses on

both keyboards are accepted normally, which means that the

hidden Dell L100 can inject data into the isolated channel and

break its integrity.

In summary, the USB device address overlap attack can

break both the secrecy and integrity of isolated I/O channels,

without being noticed by any control software.

B. Analysis of the USB Hierarchy Verification Algorithm

We first analyze that Steps 1 to 3 are able to find out all non-

USB-path devices that are still in active state. The untrusted

OS may attempt to hide a device when the WK scans it in

Step 3, and remotely wake it up later. However, the remote

wake-up event of a device must be coordinated by a non-

suspended hub. This hub is either be a non-USB-path hub, or

a hub on a USB path. For the former the WK will always

discover it in the linear scan, and for the latter the remote

wake-up event will be detected by the WK, as shown in Step 1.

Although Steps 1 to 3 guarantee that all non-suspended

devices have correct addresses are on the USB paths, this does

not prove that the given USB paths are correct, because hidden

devs (or hubs) may still be on USB paths. Step 4 can rule

out any hidden dev that is on a different USB-path with the

targeted device whose address the hidden dev duplicates, but

it cannot detect the hidden dev that is on the same USB-path

with the targeted device (“same-path hidden dev”).

We now provide a informal correctness argument on a

proposition that the untrusted OS cannot configure any “same-

path hidden dev” that manages to evade the WK verification

and compromise the wimp I/O data isolation later. To be

“meaningful”, the same-path hidden device must either be able

to intercept/fake messages between the host controller and the

targeted device, or it must have suspended devices that are

hidden downstream and can be remotely woken up later.

Before continuing with the argument, we need to make

four observations on USB 2.0 specification. First, a non-

malicious device/hub in its Configured state will not respond

to SET Address commands, unless it is deconfigured by a

SET Configuration command and transits back to Address

state. Second, if a hub is in the Deconfigured state, all

its downstream devices lose power and transit back to the

Attached state, which is similar to resetting all downstream

devices. Third, the remote wake-up capability is disabled by

default, and can only be enabled when the device/hub is in

its Configured state. Forth, a hidden device downstream to its

target device cannot affect the message secrecy and integrity

of the target device, because the target device always receives

and responds to USB transactions faster than the downstream

hidden device.

Our informal correctness argument is as follows: If the

untrusted OS intends to configure a hidden device to duplicate

the address of its upstream device, the SET Configuration

command to the hidden device is always intercepted by the

upstream device, thus the hidden device can never transit to the

Configured state, and thus “meaningless”. If the untrusted OS

sets a hidden device to duplicate the address of its downstream

device, the hidden device must first be deconfigured, and thus

all downstream devices will lose power and all their configu-

rations. The hidden device itself becomes “meaningless”.

In conclusion, we informally argue that the hierarchy veri-

fication algorithm can prevent both the USB address overlap

and remote wake-up attacks.

