
Automating Isolation and Least Privilege in Web Services

Aaron Blankstein and Michael J. Freedman

Department of Computer Science
Princeton University

Princeton, USA
ablankst@cs.princeton.edu and mfreed@cs.princeton.edu

Abstract—In many client-facing applications, a vulnera-
bility in any part can compromise the entire application.
This paper describes the design and implementation
of Passe, a system that protects a data store from
unintended data leaks and unauthorized writes even
in the face of application compromise. Passe automat-
ically splits (previously shared-memory-space) applica-
tions into sandboxed processes. Passe limits communica-
tion between those components and the types of accesses
each component can make to shared storage, such as
a backend database. In order to limit components to
their least privilege, Passe uses dynamic analysis on
developer-supplied end-to-end test cases to learn data
and control-flow relationships between database queries
and previous query results, and it then strongly enforces
those relationships.

Our prototype of Passe acts as a drop-in replace-
ment for the Django web framework. By running
eleven unmodified, off-the-shelf applications in Passe,
we demonstrate its ability to provide strong security
guarantees—Passe correctly enforced 96% of the appli-
cations’ policies—with little additional overhead. Addi-
tionally, in the web-specific setting of the prototype, we
also mitigate the cross-component effects of cross-site
scripting (XSS) attacks by combining browser HTML5
sandboxing techniques with our automatic component
separation.

Keywords-security policy inference; isolation; capabilities;
principle of least privilege; web security

I. INTRODUCTION

Network services play a central role in users’ online expe-

riences. In doing so, these services often gather significant

amounts of valuable, user-specific, and sometimes privacy-

sensitive data. Unfortunately, despite the importance of this

data, client-facing applications are susceptible to frequent,

sometimes high-profile [1, 2], break-ins that ultimately

compromise user data. Many times, a security failure in

a single faulty part of the application exposes data from

other parts. In other cases, aberrant application behavior can

be exploited to release otherwise protected data [3].
Mitigating these threats is typically not easy. Convention-

ally, an entire application or network service runs with one

privilege, and often in one shared-memory address space.

This has problematic security implications, because attacks

that manage to overcome one portion of the application may

affect its entirety. Even if application components can be

better isolated by running with limited privileges and in

separate processes, attack channels commonly exist through

communication channels or shared persistent storage, such

as backend databases in web applications. In this manner,

attackers can target the “weakest link” of an application

(which may undergo less scrutiny by developers) and then

escalate their control. For example, breaking into a website’s

public forums can lead to access to sensitive user data

and passwords, either through explicit database queries or

by directly accessing values in program memory. In some

cases, attackers need not even compromise application code;

unexpected application behavior can lead to execution paths

which ultimately leak or compromise user data [3].

To deal with these threats, our work applies three design

principles. First, we split portions of application code into iso-

lated components along natural isolation boundaries, taking

advantage of the typical “switched” design of networked

applications. Second, in applying the principle of least

privilege [4], we minimize the amount of privilege given to

each component to only that privilege which the component

needs to execute at that specific time. Finally, we use dynamic

analysis to infer each component’s required privilege, such

that the principle of least privilege can be largely automated.

While the principle of least privilege and the goal of

maximizing isolation between components are old concepts,

we believe that today’s network-facing services provide a

unique opportunity to apply these concepts. Automatically

partitioning traditional, single-process applications is notori-

ously difficult [5, 6]: they are typically designed with large

amounts of shared memory and application traces can be

long, with many user interactions intertwined in the execution

trace. However, today’s scale-out architectures and their

client/server division-of-labor offer new possibilities. They

encourage developers to write server-side applications with

components that offer narrowly defined interfaces and handle

short requests. While this often leads developers to design

their applications to support isolation, these applications

usually all run in a single privilege domain and address

space. We, however, leverage these properties to automatically

decompose applications into isolatable components.

This paper presents Passe, a system which realizes these

design principles in a typical client-facing network appli-

cation and allows for the enforcement of learned security

policies in a large-scale datacenter architecture. Passe runs

developer supplied applications as a set of strongly isolated

OS processes, though the design also supports running each

component on a separate machine. The isolated components,

or what we call views, are restricted to what data they can

access or modify. Passe protects data by limiting views to

particular data queries. For example, a view which only

handles displaying user messages will be restricted to only

making queries which fetch user messages. These queries are

restricted further by applying integrity constraints to capture

and enforce the data and control-flow relationships between

queries and other data sources in the system. If the argument

to the above query is always derived from the “current user”,

then a data-flow constraint would assert that “current user”

is the only valid argument to the fetch message query. If

a permissions check is always executed (and returns True)

before the fetch, then a control-flow constraint would assert

that a permission check must be executed and must return

True prior to the fetch query.

To discover the constraints for these queries, Passe mon-

itors normal application behavior during a trusted learning

phase. During this phase, our analysis engine not only learns

which views make which database queries, but it also infers

data-flow and control-flow relationships between database

query results and later database queries. In particular, Passe

captures these relationships when the dependency is one

of equality or set-membership. While more limited than

general control-flow or data-flow dependencies, this approach

captures relationships based on object identifiers, which are

how applications typically express security policies (e.g., a

particular message or post is associated with a particular

set of allowable user IDs). Further, by restricting the set of

relationships we enforce, Passe avoids a problem where most

objects in the system are control-flow or data-flow dependent,

even though they may only be “weakly” dependent (i.e., due

to over-tainting). Ultimately, Passe’s learning phase outputs

an inferred policy. These policies are capable of capturing

direct data-flow and control-flow dependencies between query

results and subsequent queries. For example, an application

may use two queries to implement an access control: the

first query checks whether the current user is in the set of

authorized users, and the second query only executes if the

first query returns true. Passe would enforce this by requiring

that the first query always return true before the second query

could ever be issued.

Our analysis phase is related to work in Intrusion Detection

Systems (IDS) [7, 8], which similarly analyze the behavior of

applications to infer the “normal” behavior of the application.

Unlike prior work in IDS, however, Passe translates these

inferred relationships into integrity constraints which the

runtime will later enforce. This translation from dependency

relationships to integrity constraints is exactly what enables

Passe to support rich data policies in a large-scale application

architecture. Our analyzer may in some cases make inferences

which are too strong, leading to some normal application

functionality being denied. In this sense, Passe is a default-

deny system: if particular queries have not been witnessed

by the analyzer, then those queries will not be allowed.

Developers can fix overly-strict constraints by either adding

test cases to correct Passe’s inferences or by modifying the

policy constraints manually.

While it may be a source of developer frustration, we

believe such behavior has additional security benefits. The

history of web application break-ins shows that applications

are too often written such that, even without a remote code

execution exploit, attackers can make database reads or writes

that are inappropriate given what the developer actually

intended [3]. Because the application’s testing phase forms

the basis for policy generation under Passe, it can serve as

a check for such intent and helps prevent aberrant program

behavior leading to data policy violations. Interestingly, code
analysis techniques like symbolic execution, in finding the

program’s exact constraints, would not provide such a feature.

We built a prototype of Passe on Django, a framework

for building database-backed web applications in Python.

Our prototype’s analysis engine runs unmodified Django

applications and infers a policy configuration for the appli-

cations. This configuration specifies (i) how to split Django

application into separate views, each running in their own

sandboxed OS process, (ii) how to limit access for each

view’s database queries, according to the principle of least

privilege, and (iii) what integrity constraints to place on

these queries. Our design was not specific to Django, and

we expect the same mechanisms could be built into other

popular frameworks.

We evaluated Passe’s effectiveness and ease-of-use by

analyzing and running 11 off-the-shelf Django applications.

We found that Passe can both restrict the set of queries each

component can make, and infer richer application security

policies through data-flow dependency relationships. We also

evaluate the performance of our prototype on a series of

application tests, measuring an increase in median request

latency of 5-15 ms over normal Django, mostly due to the

cost of data serialization between Passe’s isolated processes.

While workloads served entirely from memory suffer a 37%

drop in throughput, workloads requiring database interactions,

as is typical for web applications, experienced a throughput

reduction of about 25%.

II. SECURITY GOALS AND ASSUMPTIONS

The goal of Passe’s analysis is to infer the strongest

possible query constraints which may be applied to isolated

views. There are several potential problems with this. First, if

an application is not easily decomposed, then Passe will fail

to separate it into views, or if single views are responsible

for large portions of the application’s behavior, the provided

isolation will not be particularly useful. Second, if database

queries are highly dynamic, Passe may not allow the queries

at all. If queries are not protectable through simple data-

flows (as one might expect in very complex applications),

then Passe will not provide protections. We developed our

prototype of Passe to explore how well these goals can be

achieved with common web applications.

A. Threat Model

Passe assumes that application developers supply non-

malicious, although possibly exploitable, application code

to our framework, which runs on one or more application

servers. This possibly faulty code may also include many

third-party libraries. Thus, we do not trust that applications

or their included libraries are secure. An attacker can exploit

bugs in application views with the goal of compromising

other views or shared data. Additionally, in the web setting,

an attacker can return scripts to a client’s browser which

attempt to access or extract information from other views

(this includes traditional cross-site scripting attacks).

We do, however, assume that attackers are unable to com-

promise the trusted components of Passe. Further, we trust the

underlying data store, the OS running our components, and,

for web browser sandboxing, we trust that browsers correctly

enforce the new sandboxing features in HTML5. While these

components may and do have bugs, they can be patched and

updated. As a common platform shared by many websites,

we believe there are greater incentives and opportunities

to secure these components, as opposed to securing each

application. Similar to the operating system, securing the

framework only has to be done “once” to benefit all its users.

Further, Passe’s trusted components provide functionality

which is much simpler than the actual application code.

B. Motivating Classes of Vulnerabilities

There are three classes of vulnerabilities common to

networked applications—and web applications in particular—

that Passe is able to mitigate. We further discuss how Passe

mitigates these vulnerabilities in §VII.

1) Poorly understood application behavior. Even while

using frameworks which prevent vulnerabilities in

data operations (such as SQL queries), application

developers may use library calls which have surprising

behavior in unexpected settings. For example, the 2012

Github / Ruby-on-Rails vulnerability was caused by the

default behavior of the Rails mass assignment operation.

This operation allows web requests to set arbitrary

attributes of an UPDATE query.

2) Cross-Site Scripting (XSS). A client’s web browser

presents a possible channel to attack Passe’s isolation

of views. Traditional XSS attacks may allow a vulner-

ability in one view to make AJAX requests to other

views. For example, user input on a forum page is

not properly sanitized, allowing one user to upload

Javascript which, when executed by another user, has

malicious effects such as changing the second user’s

password or accessing their sensitive data. Additionally,

a compromised server-side view could use XSS as

a side-channel to defeat the server-side isolations

of Passe. While numerous approaches exist to filter

user inputs, discover vulnerabilities, and help translate

applications to use proposed W3C Content Security

Policies features, these techniques either cannot find all

XSS vulnerabilities, or they require programmer effort

to modify Javascript code. Passe is able to mitigate

many of the effects of XSS attacks using the same

isolation model that it applies to application views.

3) Arbitrary Code Execution. Even when applications

are programmed in high-level languages such as Python,

there are occasional vulnerabilities allowing attackers

to execute arbitrary code. While these problems may be

infrequent, they are particularly damaging. For example,

a vulnerability in the Python YAML library enabled

attackers to gain complete control of an attacked

Django runtime [9].

C. Security Properties of Passe

In the event that an attack against a particular view

succeeds, Passe continues to provide the following security

properties:

P1: Isolation of Execution. An attacker is unable to

inspect or alter the memory of other application views.

This provides security for the execution of other views.

In the context of web applications, this applies to cross-

site AJAX requests: only application views which normally

communicate using AJAX are allowed to communicate during

the secure execution mode.

P2: Isolation of Data. An attacker is unable to read

or modify portions of the durable data store that are not

accessed by the compromised view during its normal (i.e.,

correct) execution. For example, if the application is an

online store with an attached discussion forum, and an

attacker compromises only the forum view, he would still

be unable to read or modify data associated only with the

store’s functionality.

P3: Enforcement of Data Policy. An attacker is unable

to violate high-level application data policies, even when the

data concerned is normally accessible by the compromised

view. For example, a correctly-behaving view may only fetch

messages for end users that are “logged in” to the service, but

because different users are logged in at different times, the

view has high-level access to the entire set of messages. Even

so, Passe ensures the finer-grain application security policy:

even once comprising the view, an attacker cannot read

���������
	����

�������

�������

�����	�

�

�������

�������

����
���
	����

��
����

��
����

��
��	�

�

��
����

��
����

��
���������	�

Figure 1: A typical tiered service architecture.

��������������
� ����
����������

�
��
��
��
��

	�
������

������

������

�
��
�	

�
�� ���	����

���	����

���	����

Figure 2: High-level overview of the Passe runtime.

messages of users that are not logged in. More specifically,

Passe preserves data-flow dependencies on database query

arguments and control-flow dependencies between queries.

If, during a normal execution, a particular database query

argument is always the result of a prior database query or

the user’s authenticated credentials, then even in the case of

a compromised view, that argument must still come from

that source.

III. PASSE DESIGN

The design of Passe’s runtime accommodates the typical

tiered, scale-out architecture of most client-facing datacenter

services, illustrated in Figure 1. In this architecture, a

request is forwarded to an appropriate machine in the service

tier. The service tier (also called the application tier) is

comprised of multiple machines, possibly running the same

application code, which access shared storage through the

storage tier. The storage tier is comprised of possibly many

machines, handling separate, potentially replicated partitions

(or “shards”) of the shared storage.

In Passe’s runtime (Fig. 2), applications are decomposed

into isolated views, running in separate sandboxed environ-

ments. This can be achieved through OS-level mechanisms,

such as AppArmor [10], or by running views on entirely

separate machines. Each of these views is responsible for

handling specific requests which a dispatcher will forward.

Passe introduces a stateless proxy between the service and

storage tiers which interposes on data queries. This trusted

proxy approves or denies data queries based on a set of

constraints. These constraints are applied to the supplied

queries and a supplied token, ensuring that application data

policies remain in effect even during a compromise of the

application.

Passe provides an analysis system which monitors the

“normal” execution of applications, and during this, learns the

data-flow and control-flow dependencies of the application.

This learning process occurs during an explicit testing

or closed deployment phase, during which we assume

components are not compromised.

A. Interacting with a Shared Data Store

Passe provides data isolation between application views.

If two views never share data through the shared data store,

then the compromise of one view should not affect the data

of the other. While secure, strict isolation greatly limits the

type of applications one can build—applications frequently

need to share data to provide basic functionality. For example,

sensitive information in a database’s user table may be shared

between nearly all of an application’s components.

In Passe, we allow application views to interact with a

shared data store through a query interface. Conceptually,

an unbound query (as we will see later, in SQL these are

query strings) has a set of arguments. Normally, when an

application issues a query, it supplies an unbound query and

a tuple of argument values. For example:

result = fetchUserMessage(uname = "Bob")

In order to enforce data policy, Passe must constrain the

arguments to queries. However, these arguments are not

necessarily hard-coded constants and may instead derive

from prior database results. For example, a view displaying

all of a user’s friends’ updates might issue two queries:

friends = fetchFriendsOf(uname = "Bob")
updates = fetchUpdates(author in friends)

Here, data from the first query is used as an argument value

in the second query. Passe will attempt to enforce this rela-

tionship: that the second query should only contain arguments

from the first query. In fact, this example demonstrates a data-

flow dependency. In a data-flow dependency, the argument

value of one query is equal to the result of a previous query.

Another type of dependency is the control-flow dependency.

In this case, the result of one query affects whether or not a

second query would even be issued. Passe captures data-flow

and control-flow dependencies which can be expressed with

equality relationships. Figure 3 shows example application

code demonstrating dependencies.

B. Protecting the Shared Data Store

Passe employs two mechanisms to enforce dependencies: a

database proxy and cryptographic tokens. Every response

from the proxy includes a token. This token is a set of

T0 is an initial token
{R1, T1} = getUID({"Alice"},T0)
Data-flow Dependency
{R2, T2} = isAuthed({R1}, T1)
Control-flow Dependency:
if R2 = TRUE:
{R3, T3} = getData0({}, T2)

{R4, T4} = getACL({}, T3)
Control-flow Dependency:
if R1 in R4:
{R5, T5} = getData1({}, T4)

Query Constraints
getUID Unconstrained

isAuthed Data-Flow: (Argument == R1)

getData0 Control-Flow: (R2 = TRUE)

getACL Unconstrained

getData1 Control-Flow: (R1 in R4)

Figure 3: Example queries demonstrating the types of data-flow and control-
flow dependencies. Queries take an argument set and a token as input.

key-value pairs which encode results from previous queries.

Every request to the proxy must include a token, which

the proxy will use to check that particular data dependency

relationships are met (and that application code is not trying

to issue unauthorized queries). This token allows the database

proxy to track what information has been returned to the

view while remaining stateless itself (particularly important

if the system employs multiple such proxies). In order to

prevent compromised code from altering this token, it is

cryptographically MAC’ed by the proxy. The key used for

this operation is shared by Passe’s dispatcher and proxy. To

prevent replay attacks with this token, the dispatcher and

proxy include nonces in each token and track the nonces

which have already been used.

In order to approve a query, the database proxy consults

an access table and applies a two-stage verification process.

In the first stage, the proxy checks whether the requested

unbound query is whitelisted for that particular view. If not,

then the request is denied (in this sense, the proxy is fail-
safe). In the second stage, the proxy checks if the set of

constraints associated with the unbound query is satisfied by

the supplied argument values and token. Figure 3 displays a

set of constraints for the associated unbound query.

C. Learning Constraints

Passe infers access-table entries during a learning phase.

In this phase, Passe uses dynamic taint tracking to learn the

data and control-flow dependencies experienced during the

normal execution of application code. The developer can

either supply test cases or run an “internal beta”. Once this

phase has completed, Passe translates dependencies into the

token-based constraints which will form the access table

entries. These inferences would allow any of the witnessed

traces to run, but then errs on the side of strictness. If the

analyzer provides too strict of a configuration, the developer

�
��
��
��
��
��

������	�
�	�����

���

���

���

�
���
��

�������	 ���

������������
�
���
��

�������	 ���

����������!�

����������
�������

�����	 �� �	�
�	�����

"
�

�
��
��
�#
$�

Figure 4: Each arrow represents a communication channel in Passe’s
runtime. Solid lines are trusted; dashed are untrusted. Blue lines correspond
to developer-supplied code, which is embedded into Passe’s runtime
components. When a request arrives at the dispatcher, it first gets processed
by any number of middleware modules (which includes the session manager),
before getting matched against the URL Map for dispatching to the
appropriate view.

can either increase the number of test cases or alter the

configuration manually.

IV. PASSE RUNTIME IN WEB SETTING

We implemented Passe as a drop-in replacement for

Django, a popular Python-based web framework which relies

on the “model-view-controller” design pattern. This pattern

defines a logical separation between various computation and

data components. In this setting, the Passe runtime (shown

in Figure 4) involves the following components:

• The Dispatcher uses the URL of a request to decide

which view will handle a particular request.

• The Session Manager handles mapping user cookies

to stored sessions.

• The Authentication Manager checks users credentials

(username and password) and associates the current

session with that user.

• The Database Proxy mediates access to a SQL

database.

• The View Server provides a wrapper around the view

function for handling inter-process communication and

automatically binding tokens to requests in and out of

the view. The view function itself is the unmodified

developer code.

A. Isolating Views

In automatically decomposing applications into isolated

views, we must solve four problems, related to (i) determining

view boundaries, (ii) translating function calls into inter-

process communication, (iii) dealing with global variables,

and (iv) sandboxing these processes.

Passe determines application boundaries by leveraging the

design of Django. In Django, application developers specify

a mapping of requests to functions which handle the logic

and HTML rendering of those particular requests. In Passe,

we treat each of these functions as a separate view, such that

each view is responsible for handling a complete request.

Passe must translate what were previously simple function

calls into inter-process communication. Passe wraps appli-

cation code with a view server, which handles marshalling

function calls into this inter-process communication. This

uses the Pyro library for Python remote objects, which

automatically serializes the arguments of remote procedure

calls using Python’s pickle module. The deserialization

process is unsafe: if any object can be deserialized, then

arbitrary code may be executed. This is dealt with by

modifying the deserialization code to only instantiate objects

of a white-listed set of types.

Because application code now runs in separate processes,

previously shared global variables are no longer shared.

However, in order to support a scalable application tier,

developers are encouraged to share global variables through a

narrow interface by modifying values in a single request state

object. In Passe, changes to this object are propagated back

to the dispatcher by our view server. In order to minimize

this overhead, Passe computes and sends a change-set for

this object. The dispatcher checks that the change-set is valid

(e.g., a view is not attempting to change the current user)

and applies it to a global request object.

Passe sandboxes these views by engaging Linux’s App-

Armor and creating specific communication channels for the

processes. Each of the views communicates over specific

Unix domain sockets with the dispatcher and the database

proxy. As each view server starts, an AppArmor policy

(which Passe defines) is engaged, and the view server

becomes sandboxed. This prevents views from making system

calls, communicating over the network, or reading from the

filesystem. Views may only read from a limited set of files

required for their execution. This set of files includes the

Python libraries and the application source code, allowing

the view to read and execute those files. When executed,

these files run within the view’s sandbox. Network access

is limited to the Unix sockets used to communicate with

Passe’s components.

B. Constraining SQL Queries

Applying Passe constraints to SQL queries requires two

mechanisms. First, we need to specify how a SQL query

maps to our notion of an unbound query. Second, we need

to specify how SQL query results are stored and referred to

in the token.

In Django, applications issue queries as a query string

and an ordered list of arguments. For example, a view might

supply a query string

SELECT (text,fromUser) FROM msgs WHERE toUser = ?

and an argument “Bob”. For Passe, we treat the query string

itself as the unbound query. In the access table, we store

the strings with a cryptographic hash of the query string (to

reduce the required storage).

	������������������������������� �!"#�$%&�

����'��� (������)�	�
��*�"��+���
�,�����*�"��+�,"�-���.$�

��/����0 �!"#�$1��������������

����!�����0
�2$�� �-3�!�'$1�
�4����������������� �!"#�$%���

����-3�-5�"+��0
�2$�61%�&�

����'��� (������)�	�
���7+3�����
�,�����3��-���"��.$�

��/����0�����
�2$�� �-3�!�'$%�1�����������4�

����!�����0 *��$�� 23�$1�
�8���������������� �!"#�$%���

����-3�-5�"+����0
�2$��61%��
���4-3�-57�����0 *��$�61%�&�

��������7���������������8�

��������+�
9"�:�

�3����
�
"�73�#-�

�

����;'�

�
"�73�#-�

�

����;'�

Figure 5: At the start of a request, Passe provides a view with an initial
token containing the current user. As the view makes database queries, it
supplies the current token which Passe’s proxy uses to check the integrity
constraints on the arguments supplied to the query. The database proxy
replies with updated versions of the token based on the query results.

In order to store query results in the token, we again use a

hash of the query string to refer to the “source” of the data.

In addition, we separate the results by column so that Passe

can place constraints at the column granularity, rather than

the entire result set.

C. Handling a Web Request

When a view receives a request, the dispatcher gives it an

initial token containing the current user (or “anonymous” if

appropriate) and any HTTP request variables (query strings

and header fields).

The contents of Passe’s tokens during the execution of a

view are shown in Figure 5. As the view makes requests into

trusted Passe components, those components respond with

updated token values, which may in turn be used in future

requests. Whenever updating a token, the trusted component

generates a new message authentication code (MAC) covering

the token’s latest contents.

This example demonstrates how Passe’s constraints operate

in practice. When operating correctly, this view displays all

posts from the current user’s friends, in this case Alice’s

friends. From a security perspective, the view should only

be able to enumerate the user’s friends and only read those

updates from her friends (confidentiality properties). In more

detail, the view initially receives the HTTP request object

and a token containing the current user. The view makes two

database queries, each with an argument protected by a data-

flow constraint. The first query derives its argument from the

“User” key. The second query’s argument, however, is derived

from the results of the first (and matches a key that names

the first query and the “uid” column). These constraints

ultimately enforce the application’s desired policies, even if

the view were compromised: the view can only see updates

for users contained in the result set of the first query and

that query can only return the current user’s friends.

D. User Authentication and Session Management

Passe’s constraints specify a relationship between a query

and the trusted sources that supply the values to that query

(or affect the control-flow leading to that query). Certain

token keys—such as the current user and HTTP request

parameters—do not originate from prior queries, however,

but rather serve as a foundation for the constraints of a view’s

queries. It is vital that the mechanisms used to generate these

tokens are sound: If an adversary can forge the current user,

confidentiality is largely lost.

Traditionally, Django has two mechanisms for associating

a request with a user. Either a view can explicitly call into

the authentication library which returns the associated user,

or the request is part of a session already associated with a

logged-in user. In the latter case, before a view handles a

request, the dispatcher calls into the session manager, which

reads the request’s session cookie and checks whether it is

already associated with a user.

In Passe, we modified these two mechanisms so that both

session and authentication manager will securely embed the

current user’s ID in a token, rather than simply returning the

user to the dispatcher or login view, respectively. This change

also entails that these managers know the shared symmetric

key used to MAC tokens.1 To prevent a compromised view

from stealing session cookies, the Passe dispatcher elides

session information from the token before forwarding the

request to the view.

E. Isolating Views at a Client’s Browser

An end user’s browser presents a significant attack channel

for an attacker with control of a view. The attacker can return

an HTML page with malicious code used to circumvent least-

privilege restrictions and thus access other portions of the web

application. For example, if an attacker compromises a view

A which cannot access restricted portions of the database,

the attacker can return Javascript which loads and scripts

control over another view B. View A can then use the results

of view B to gain access to otherwise inaccessible portions

1In fact, our implementation could have left the session manager
unmodified, as it only communicates with the dispatcher, which could have
embedded the user ID on its behalf. Because the authentication manager
is accessed by an untrusted login view, however, it must implement this
secure token embedding itself.

������

�������

	
�������

����
���

��

��

�����
�������

��

��

�
��
��
��
����

Figure 6: An attacker who has compromised view A is unable to directly
query the database for view B’s data. However, by returning a script to the
user’s browser, the attacker can exfiltrate B’s data by having the browser
make seemingly normal requests to view B.

of the database, as shown in Figure 6. This attack is similar

to XSS in that the same-origin policy fails to protect other

portions of the web application from the malicious script.

Typically, applications prevent XSS attacks by filtering user

inputs. However, an attacker with control of a view can

circumvent these protections by inserting Javascript directly

into a response. Even when an application uses a feature

such as Content Security Policies (CSP), entire domains are

typically trusted to supply scripts [11].

To mitigate this cross-view attack channel, Passe supports

execution with isolation even at the client browser. In

particular, to preserve isolation between views, Passe’s

dispatcher interposes on AJAX requests between views. The

dispatcher keeps a mapping, learned during the Passe training

phase, of which views are allowed to originate scripted

requests to other views. Based on this mapping, the dispatcher

approves or rejects requests. This requires the dispatcher

to know which view originated a particular request and

whether that request is an AJAX request. The dispatcher

derives this information from two HTTP headers: Referer
and X-Requested-With.

To prevent adversaries from circumventing these checks,

Passe must ensure that an attacker cannot remove or modify

these headers. Towards this end, Passe sandboxes a view’s

HTTP responses using the new HTML5 sandbox attribute

with iframes. Every view’s response is wrapped in this

sandboxed environment by the dispatcher. We implemented a

trusted shim layer which ensures that the headers are correctly

added to each outgoing AJAX request. Our approach is

similar to the shim layer used to enforce privilege separation

in HTML5 applications as introduced by Akhawe et al. [12].

F. Applicability to Other Frameworks

While much of Passe’s prototype implementation is

concerned with Django-specific modifications, Passe’s ar-

chitecture is directly applicable to other web frameworks as

well. For example, in Ruby on Rails, the dispatcher would

make routing decisions based on Rails’ routes and views

would be separated along Rails’ ActionControllers and Views.

However, because some frameworks do not include standard

authentication libraries, Passe would need to provide a new

third party authentication library, or support some of the

most common ones.

V. THE PASSE ANALYSIS PHASE

During the analysis phase, Passe monitors application

execution with the following goals:

• Enumerate Views. Passe’s runtime only executes a

fixed set of views. The analysis phase is responsible for

enumerating these views and assigning each of them a

unique identifier.

• Enumerate Queries. Passe associates each view with

the SQL queries witnessed during analysis.

• Infer Dependency Relationships between Queries.
The analysis phase is responsible for determining data

and control-flow relationships between queries, prior

query results, and other data sources.

• Translate Dependencies into Enforceable Con-
straints. Dependencies witnessed during the learning

phase must be translated into constraints which the Passe

runtime is capable of enforcing.

Passe’s analysis phase achieves these goals using a

combination of taint tracking and tracing. As queries execute,

Passe constructs an event log and adds taint values to the

database results, and once execution has completed, Passe

processes this log and outputs the allowed queries for each

view, and the associated constraints on those queries. The

analysis phase runs on a PyPy Python interpreter which we

modified to support dynamic taint tracking.

A. Dynamic Taint Tracking in Python

In order to support dynamic taint tracking for Passe,

we developed a modified version of the PyPy Python

interpreter (our modifications are similar to approaches found

in [13, 14, 15]). Our modifications allow for fine-grained

taint tracking through data passing operations and some

control-flow tracking. The interpreter exposes a library which

application-level code can use to add taint to a particular

object, check an object’s current taint, and check any tainting

of the current control-flow.

Each interpreter-level object is extended with a set of

integer taints. As the interpreter processes Python bytecode

instructions, any instruction which returns an object propa-

gates taint from the arguments to that object. Additionally,

because many functions in PyPy are implemented at the

interpreter level (and therefore are not evaluated by the byte-

code interpreter), these function definitions also need to be

modified to propagate taint. For our prototype implementation,

only functions for strings, integers, booleans, unicode strings,

lists, dictionaries, and tuple types were modified.

In order to track control-flow tainting, the interpreter

checks the taint of any boolean used to evaluate a conditional

jump. If the boolean contains a taint, this taint is added to

the current execution frame. Taints are removed when their

originating function returns. In our prototype, the current

control-flow taint does not propagate during data operations—

if a control-flow taint is active while a data-flow operation

occurs, the result is not tainted with the control-flow taint.

While this causes the analysis to miss some control-flow

dependencies, this is purely a limitation of the prototype, and

the applications we tested were not affected. While including

this feature will increase the possibility of over-tainting,

Passe’s constraints only capture equality and set-membership

relationships which mitigates many of the effects of over-

tainting.

B. Tainting Data Objects and Logging Query Events

During the analysis phase, Passe creates a log of query

events by tracing the normal Django execution of the

application. In order to track the data-flow and control-flow

dependencies in the application, these events contain taint

tags for each logged data object.

In addition to capturing query calls, Passe must properly

add taints to data objects as they flow through the application.

As HTTP requests enter the application, Passe taints the initial

data objects. Later, as each database query is made, Passe

also adds taints to each result column.

When Passe captures a query call, it logs the event with

the following information:

1) The view responsible for the query.

2) The query string.

3) An ordered list of the query’s argument values and the

current set of taints for each of those values.

4) Any previous database results or initial data objects,

and these objects’ associated taints.

5) The control-flow taint set for the current execution

context. In addition to a set of taint tags, for each

permissions library call which affects the control-

flow, the name of the checked permission is included.

The permissions library is special-cased because of

the “root” permission set. (Existence of a particular

permission may be checked, or if the user is root, then

the check is always approved.)

This information will allow the analyzer to translate

witnessed dependency relationships between queries and

objects into the integrity constraints used by the Passe runtime.

Dependency relationships here are captured by the included

taint sets.

C. Inferring Constraints from Dependency Relationships

Knowing that specific database query calls depend on

previous query results is not sufficient for the Passe runtime

to enforce constraints. Rather, Passe collects the logged query

events and uses these to infer enforceable constraints. To do

this, Passe collects all of the events for a particular (query
string, view) pair and merges the dependency relationships.

The analyzer constructs constraints which are the union of

all witnessed data-flow relationships: if, across all witnessed

query events, multiple data-flow relationships exist for a

particular query argument, then any of those sources will be

allowed to satisfy that argument’s constraint. On the other

hand, if in some query events, no data-flow relationships

exist at all, then the argument will be left unconstrained.

To capture data-flow relationships, the analyzer only checks

for equality and set membership relationships. These two

relationships capture relationships based on object identifiers,

which are typically how applications express security policies.

(For example, a particular message or post is associated with

a particular set of allowable user IDs.) As we will see in our

example applications (§VII), no policies were missed because

of this limitation. By requiring equality, Passe mitigates

many of the problems normally associated with over-tainting.

Normally, if “too much” taint propagates in an application,

constraints based solely on taints will be too strong. In

Passe, however, both the taints and the values are required

to be equal, which reduces the chance of over constraining

a particular query. In cases where this does happen, then

the developer can include test cases where equality does not

hold which will prevent that constraint from being inferred.

Passe captures control-flow relationships similarly. For

each query event, Passe determines which control-flow

relationships affected that event. Passe then creates a set

of invariants for the query based on these relationships. Here,

unlike in data-flow constraints, there is a higher chance of

over-fitting the invariant. For example, the getUID query in

Fig. 3 affects the control-flow of getData1. Passe could infer

an invariant containing an ORed set of user IDs. This invariant,

however, is too strong in practice: it fits the invariants to

precisely those witnessed during the testing phase. Thus,

rather than unioning these sets of possible invariants, Passe

takes the intersection of these sets to construct the final

invariant. For this example, the invariant R1 in R4 would

be witnessed for all getData1 events, while invariants such

as R1 = Alice’s UID would only be witnessed for a few

events.

When this translation phase ends, each view will be

associated with a set of allowable queries. Each of these

queries will have an associated set of control-flow and data-

flow constraints, which are exactly what the Passe runtime

uses in its access table to enforce query integrity.

D. Monotonicity of Analysis

By design, the Passe analysis phase does not witness all

possible code paths and, therefore, Passe’s inferences may

prevent certain code paths from executing correctly. However,

developers can increase the number of test cases witnessed by

the Passe analyzer and increase the allowable code paths. In

respect to this, Passe guarantees monotonicity: additional tests

cannot reduce the set of allowable queries. To see why this

is the case, imagine that Passe witnesses an additional query

event for some (query, view) pair. If this event creates any

new data-flow constraints, they only increase the allowable

data-flows. If, previously, that particular query argument

was unconstrained, then it will remain unconstrained (again,

because data-flow constraints only add new paths). The same

is true for any new control-flow constraints, because a control-

flow constraint will only be added if it holds for all the

witnessed events of a particular (query, view) pair.

E. Impacts of False Positives and Negatives

Passe’s analysis phase is capable of both false positives and

false negatives when detecting dependencies. False positives

occur when the application developer wishes to allow data-

flows which Passe’s analysis phase does not witness. This

results in a policy which disallows those data-flows. The

developer can resolve such false positives by including new

test cases which cover those particular data-flows. Passe is

also capable of false negatives when detecting dependencies.

In these scenarios, Passe will generate a policy which is

too permissive, such that, in the event of an application

compromise, an attacker would be able to execute data-

flows which should be constrained. This can only occur if

a witnessed dependency is not captured by our taint tracker.

As discussed in §V-A, our prototype can fail to detect certain

kinds of control-flow dependencies. (Building a more full-

featured PyPy taint-tracker is part of ongoing work.) A

developer can remedy such missed dependencies by manually

inserting those dependencies into the outputted policy. While

this is an unsatisfying method, we did not encounter any such

cases of false negatives in our tested applications. This is

also a current limitation of our prototype, rather than Passe’s

underlying method; a more complete implementation of taint-

tracking in the Python interpreter would not encounter false

negatives while detecting dependencies.

VI. IMPLEMENTATION

We implemented the Passe runtime and analysis engine as

modified versions of Django 1.3. For the analysis engine, we

modified certain Django libraries to make analysis easier—

in particular, the authentication and database libraries—by

adding annotating calls for the tracer. Further, we use our

modified version of the PyPy 1.9 interpreter to perform our

dynamic taint tracking.

For the runtime, we modified the Django dispatcher

to support interprocess calls to views, and the database,

authentication, and session libraries were modified to make

proxied requests. A Gunicorn HTTP server just acts as

the network front-end, accepting HTTP requests before

passing them to Django (and its dispatcher). Our database

proxy provides support for two different database backends,

PostgreSQL and SQLite.

In total, Passe required 2100 new lines of code (LOC) for

Passe-specific functionality, as well as changing 2500 LOC

in the Django library and 1000 LOC in PyPy. Our HTML5

constrained app admin code

views queries queries constraints policies actions actions loc coverage

social-news 47 411 68% 653 17 155 46 4375 90%

swingtime calendar 19 95 52% 379 9 17 101 1187 97%

simplewiki 19 132 71% 370 13 46 69 1057 95%

django-articles 22 219 75% 455 15 12 139 992 100%

django-forum 18 165 81% 436 15 34 111 510 100%

whoami blog 15 47 49% 129 9 6 74 487 95%

wakawaka wiki 20 114 71% 323 7 39 92 471 99%

django-profiles 9 23 47% 69 5 18 37 230 100%

portfolio 10 24 61% 103 6 8 19 118 96%

django-polls-tutorial 5 29 62% 87 5 15 25 77 99%

django-notes 5 10 37% 16 4 16 0 65 100%

Figure 7: For each application, we measure the number of browser actions performed in our test suites for Passe’s analysis phase and the number of
discovered views, queries, constraints, and higher-level policies. Code coverage numbers reflect what percentage of the application code was covered by our
tests (both in runtime and analysis phases). The lines of code (loc) not covered were either completely unreachable or unreachable through web browsing
alone.

sandbox requires 320 lines of Javascript code, which are

inserted into responses automatically by our dispatcher.

A. Unsupported Django Behavior.

While we attempt to provide an interface identical to

Django, our modifications do require some changes to this

interface: views are forced to authenticate users through the

default authentication library, which we modified, applica-

tions cannot use arbitrary global variables and the URL Map

may only contain views found during analysis.

Developers may attempt to authenticate users directly,

circumventing the authentication library. In our system, this

will fail, as only the authentication server is able to create

a new token for the application. This is problematic for

applications that use external sources for authentication (e.g.,

OAuth). Our prototype could be extended to support different

authentication libraries, or to provide a generic API which

would allow Passe to be integrated with custom authentication

method. This, however, would still require modifying some

applications to use our API.

Because views in Passe run in separate processes, global

variables cannot be used to pass information between views.

However, passing information through global variables is

discouraged by the Django framework. Using global variables

in this way can lead to problems even in normal Django

deployments where multiple worker processes are responsible

for processing concurrent requests in parallel. Because these

workers do not share an address space, propagating informa-

tion through global variables could lead to inconsistencies

between requests. As such, none of the applications we tested

used global variables in this way.

Django allows developers to modify the URL Map to

add new views dynamically. While Passe could possibly

be extended to support such behavior by giving the new

view the same permissions as the parent view, this was not

implemented. Instead, if a view attempts to modify the URL

Map, it fails, as it has no access to the dispatcher’s URL

Map object. We did not encounter this problem in any of

the applications we tested.

VII. PROTECTIONS FOR REAL APPLICATIONS

To understand how Passe executes real applications,

we ran and tested ten open-source Django applications,

manually inspecting both the application source code and

Passe’s inferred policies. We assessed the source code for

instances of application security policies and, in particular,

those impacting data integrity or confidentiality. We then

checked whether Passe correctly enforces those policies.

Across all applications, we found four instances of clearly

intended policies missed by Passe, exposing the application

to confidentiality violations. In this section, we evaluate the

following questions:

§VII-A. How does Passe mitigate our three classes of

vulnerabilities?

§VII-B. How difficult is it to construct end-to-end test cases

for Passe to analyze applications?

§VII-C. What coarse-grained isolation properties can Passe

provide to applications?

§VII-D. Are there security policies in these applications

which Passe’s dependency constraints cannot enforce?

§VII-E. Examining three case studies in more depth, how

does Passe capture fine-grained security policies?

§VII-F. How do common web application vulnerabilities

apply to Passe?

A. Passe in the Presence of Vulnerabilities

1) Unexpected Behavior: When applications exhibit un-

expected behavior, Passe is able to prevent the attacker from

compromising the database in many cases. For example, in

the 2012 Github / Ruby-on-Rails attack, a mass assignment

vulnerability allowed users to set the UID for the public key

being uploaded. This allows users to upload a key for any
user. In Passe, the normal path of the code would create a

constraint for the UPDATE statements asserting that the UID

must be equal to the current account.

2) XSS Attacks: Passe can mitigate many of the effects of

XSS vulnerabilities. Passe restricts the content returned by

views to only making AJAX requests to a whitelisted set of

other views. For example, if a view containing user-generated

content (such as a forum page) does not normally call to other

views, then no XSS vulnerabilities in the view will be able to

call other views. While this does not prevent scripting attacks

which do not make cross-site requests, it does prevent views

from using scripts to open attack channels against unrelated

views. This allows Passe to preserve isolation between views,

even at the client’s browser.

3) Arbitrary Code Execution: Some web applications

contain bugs which allow arbitrary code execution. For

example, a commonly used YAML library in Django allowed

arbitrary object deserialization, ultimately allowing remote

code exploits [9]. YAML parsing libraries exposed node.js

and Rails applications to a similar attack [16, 17]. Passe

mitigates the threat of this by restricting developer-supplied

code to specific database actions.

Unfortunately, an attacker who has complete control over

a view can launch a phishing attack, displaying a convincing

login screen to users. This is more damaging than normal

phishing attacks as this page will be served by the correct

web host. Therefore, it is still important to recover from an

attack quickly, even though Passe continues to provide data

security properties during an attack. Other similar systems are

also susceptible to this attack, including those incorporating

more formal mechanisms such as DIFC [18].

B. Building End-to-End Tests

To perform end-to-end tests, we wrote a test suite for

each application using Selenium, a library for automating

web-browser actions. Our suites tested applications entirely

through their web interfaces by performing normal applica-

tion actions. After running an application through Passe’s

testing phase, we ran the application in the secure runtime of

Passe, and when the inferred constraints were too strong, we

added more tests to the test suite. Each of these test suites

took less than an hour to construct and was comprised of

about 200 lines of Python.

To understand how much testing was required for each

application, we measured the number of browser actions in

each of the test suites we developed. The table in Figure 7

displays these measurements. An important note is that

while each application required a large number of browser

actions to test the application, many of these actions were

performed on the django-admin interface. Because this is a

standard interface, a more advanced testing framework could

automatically generate tests for this interface, a possible

direction for future work.

In order to run with Javascript sandboxing on the browser,

Passe requires that a mapping from AJAX requesting views

to the responding views be constructed. To see how much

additional burden was required to generate this mapping,

we tested the most AJAX-intensive application in our test

cases (social-news) in the Javascript sandboxing mode.

We modified our end-to-end test scripts so that elements

would be selected in the sandboxed frame rather than in

the parent window. Other than these changes, the original

end-to-end tests we developed to capture query constraints

were sufficient to capture all of the allowable AJAX requests

as well.

C. Isolation Properties

To understand how much isolation Passe provides by

restricting each view to the set of queries it needs, we

measured the proportion of views that can access each table

of an application. Half of our applications’ tables are readable

by at most 7 views. Still, some tables can be accessed

by nearly all of an application’s views. For example, in

the blogging applications, the user table holds an author’s

username. Because most of the views display authored posts,

the user table can be read by most views. When we look

at views with write access, however, the separation is much

stronger. Fully half of the tables for all applications are

writable by only one or two views. Of course, these results

do not speak to the guarantees provided by the inferred

constraints, which further strengthen the application’s security

properties.

We measured the number of constraints Passe inferred for

each application (Fig. 7). Additionally, we characterized

higher-level policies by inspecting constraints by hand,

discovering that Passe successfully finds 96% of the 105

possible application policies. Because we characterized these

policies by hand, we cannot eliminate the possibility that we

incorrectly characterized or left out policies.

D. Fetch-before-Check Problems

It is important to understand the scenarios in which Passe

can miss an application policy. In all of the applications tested,

Passe missed four application policies (out of 105 total poli-

cies): one in each of the simplewiki, django-articles,
django-profiles, and the django-forum applications. In

all four cases, the application code fetched a data object

before evaluating a permission check. The simplewiki
application, for example, performed read permission checks

only after fetching wiki pages from the database. While this

behavior poses no confidentiality problem if the application

is never compromised, it is clearly not enforceable by Passe.

This breaks Passe’s assumption that the normal behavior

of the system does not leak information. (Still, such an

implementation can be dangerous from a security perspective:

Even when not compromised, the application fetches data

even when permission is denied, which may expose the

database to a denial-of-service attack if the fetched content

may be sizable.)

This behavior can be quickly remedied, however. We fixed

Passe’s missed inferences by moving the permission checks

to precede the data queries. In each of these applications,

these changes required modifying fewer than 20 lines of

code.

E. Case Studies

Social News Platform: social-news is a Django

application which provides the functionality of a social news

service like Hacker News or Reddit. Users can submit stories

to one of many user-created topics and each of these stories

supports a comment section. Users vote an item up or down,

and the final count of votes determines an item’s score. A

recommendation system then uses these votes to suggest

other stories which a user might like.

The social-news application contains three queries

which need to be modified for the application to run

with Passe. The application constructs these queries using

string replacement to insert arguments rather than using

SQL argument passing. This is known to be a less safe

programming practice, as it can expose applications to SQL

injection attacks. However, in Passe, such bugs cause an

application to fail safely, as Passe will simply deny the

constructed queries which it does not recognize. In order

for the application to run correctly, 5 lines of code were

modified so that query arguments were passed correctly.

With these changes, Passe correctly finds and enforces 17

policies for the application. Most of these are data integrity

policies. For example, only the author of a post is authorized

to change the content of that post. However, the post’s score is

an aggregation of other users’ votes and each user is allowed

to contribute only one vote to this score. Passe captures

this by constraining the queries which log the votes, and

the queries which tally those votes. Constraints are applied

on the up-vote and down-vote views. These views issue

an insertion query which puts a new row into a link vote

table, or an update query which changes the direction of the

vote. Passe ensures that these queries are associated with the

current user, and a database uniqueness constraint ensures that

only one row exists per user. The application then updates the

score field of the news item by issuing a COUNT query and

a subsequent UPDATE query. Passe ensures that the updated

score value is exactly the result of the associated count query.

CMS Platform: django-articles, one of the appli-

cations we tested on Passe, provides a simple CMS platform

that allows users to create and manage a blog. New articles

can be added with a web interface, and it supports multiple

authors, article groups, and static pages.

This CMS application, like many Django applications,

includes and relies on the django-admin module. This

module provides a full-featured interface for modifying,

adding, and deleting models in any application. To support

any significant set of Django applications, Passe must support

the admin module, and it does. Passe is able to infer strong

constraints for this module. The admin module makes calls

to Django’s permissions library, and Passe infers control-flow

constraints based on those calls. In the case of the CMS

platform, the Passe proxy requires that a view present a token

possessing the “Article.add” permission to add a new article

to the database.

Passe additionally enforces integrity constraints on queries

creating and modifying blog posts. In particular, Passe

requires that a new post’s author matches the current user

and that the content of that article matches the user’s request

variables. Passe ensures that a user is allowed to post articles

by checking that user’s coarse permission set.

Web Forum: We also tested a simple forum library

django-forum under Passe. This application allows devel-

opers to run an online forum, which supports user accounts,

user groups, and multiple forums with display permissions.

To support creating new groups and forums, the application

uses the default django-admin interface.

django-forum supports linking particular forums to user

groups, such that a given forum is hidden to and cannot be

modified by users outside of that group. In the application,

this access control is implemented by (i) retrieving the set

of groups for the current user, (ii) issuing queries both to

fetch those forums with a matching group and those with

a public (null) group, and (iii) fetching all threads to those

forums. Note that the application never explicitly declares

the policy that users should only be able to see threads in

their groups; it is only implicit in the application’s execution.

Passe makes this policy explicit, and it is enforced by the

database proxy as a data-flow dependency (Figure 8).

The django-forum application also provides an example

of a control-flow constraint. Before adding discussion threads

to a forum, a view checks whether the current user has access

to the forum. This check involves a SQL query which fetches

the set of allowable users, and then, in Python, the view

checks whether the current user is in that set. If the user

has access, the view fetches the appropriate forum’s ID, and

uses this ID as an argument for creating a new thread.

In this example, the first query is a control-flow dependency.

Later queries do not have arguments reflecting its return

values, and thus these three queries do not form a data-

flow dependency. However, the Passe analyzer correctly

determines that the first query, along with the current user,

has tainted the control-flow, and infers a constraint that the

current user must be contained within the set of allowable

users for the second and third queries to be executed.

SQL0:
SELECT forum ... WHERE group in user.groups
and user.id == y

DATA-FLOW CONSTRAINT: y = (current_user)
SQL1
SELECT forum ... WHERE group == NULL
SQL2:
SELECT thread ... WHERE id == x
DATA-FLOW CONSTRAINT: x = (SQL0.ID OR SQL1.ID)

Figure 8: django-forum executes three SQL statements to retrieve the
accessible threads for the current user. SQL2 is restricted to only return
threads from forums discovered in SQL1 or SQL0. These assertions chain
these queries together, enforcing their data-flow relationship.

F. Common Web Vulnerabilities and Their Effects on Passe

Though Passe protects against more general exploits,

it is important to understand how various common web

vulnerabilities are relevant to Passe and its protections.

SQL Injection. For the purposes of Passe, SQL Injection

attacks are mitigated by the use of Django, which strongly

encourages developers to issue queries using separate query

strings and query arguments. For applications which do not

use this argument passing method, Passe will prevent these

from causing SQL injection vulnerabilities. This is because

Passe’s database proxy expects that the only parts of a query

allowed to change are the arguments to the SQL query. If

the query changes from string manipulation rather than SQL

argument passing, then the query will no longer be recognized

as the "same" query witnessed during training, and Passe’s

proxy will reject the query. This requires that the developer

change their application and adopt the preferred approach.

Cross-Site Request Forgery. Django mitigates CSRF

attacks by requiring forms to carry CSRF tokens, which

are used to check that requests came from a legitimate web

request. If an attacker compromises a view, they can always

forgo this protection for that particular view. Worse, however,

this attacker may be able to steal CSRF tokens and use them

for other views. To mitigate this attack, we can associate

CSRF tokens with particular views, and thus prevent a view

compromise from affecting other views.

Click Jacking. An attacker may attempt to load web pages

secured by Passe in a HTML frame and maliciously access

the page using Javascript. In order to prevent this attack

both from external sites, and from an internal view which an

attacker has compromised, Passe adds the X-Frame-Options
header to all outgoing responses. This prevents the web page

from being displayed inside of a frame.

VIII. PERFORMANCE EVALUATIONS

To evaluate the performance of Passe, we ran three

applications in Django and Passe, measuring the time to

fetch each application’s home page. Our testing system

used Gunicorn 0.15 to dispatch web requests through WSGI,

PostgreSQL 8.4 as the backing database, Python 2.7, and

Ubuntu 11.04. Gunicorn is the default Python HTTP server on

popular hosting platforms such as Heroku. Because Django

��

���

���

���

���

���
���

�	
��

�	��
�
���

���	
��� ��

�

�	��
�
���

�

�	��
�
���

���
��

��

��

��

��

�	

���

��
��
��
�	

�

�

�
��
��
��
	�	

�
��

��
��
�
��
��

�����

���������

Figure 9: Request latency to access home page of applications. Error bars
indicate the 90th and 10th percentiles. The black line represents the number
of queries each view issues per request.

��

����

����

����

����

�����

�����

���
���

�	
��

�	��
�
���

���	
��� ��

�

�	��
�
���

�

�	��
�
���

���
��

��

��

��

��

��

���

�
��
��
��
��
	

��
�

��
��
��
��
�

�
��
��
��

�

�
��
��
��
�	
��
�

�����
	���������

Figure 10: Mean throughput of applications running in Passe and Django
over five trials (error bars show stddev). Each trial involves 8K requests. The
black line represents the number of queries each view issues per request.

and Passe do not require many of the features of Apache,

lighter-weight servers such as Gunicorn may be used. Our

test server had 2 Intel Xeon E5620 CPUs, with 4 cores

each clocked at 2.40GHz. Because Passe’s database proxy

pools database connections, in order to fairly compare the

throughput with plain Django, the plain Django version

used pgpool for connection pooling. (Without pgpool, Passe

outperformed vanilla Django in throughput measurements.)

In order to understand Passe’s performance on real

applications, we examine performance on the case study

applications we detailed earlier. Further, to explore the base

overhead Passe imposes on simple applications, we developed

a benchmark application that immediately renders a response

from memory without using the database.

A. Latency and Throughput

We measured latency of requests by repeatedly fetching

application pages with a single user on the JMeter benchmark-

ing platform. Figure 9 plots the latencies of 1000 requests.

While Passe’s latency overhead of 5-13 ms is not insignificant,

applications and service providers often target much larger

end-to-end latencies, e.g., Amazon cites 300 ms as their

desired 99.9% latency for requests [19]. In comparison,

Passe’s overhead is not an excessive burden.

Figure 11: Memory usage of Passe in comparison to normal Django.

Figure 12: Idle memory consumption of Passe while varying the number of
views spawned by the simple application benchmark.

To characterize the throughput overhead of Passe, we

used JMeter configured with 40 simultaneous users. We ran

Gunicorn with 8 worker processes (one worker per CPU

core). When running Django, each of these workers ran

a separate Python interpreter with a separate copy of the

Django application. When running Passe, each worker ran a

separate Python interpreter connected to separate instances

of Passe.

Throughput results (Figure 10) show that the cost of

Passe may vary greatly based on the application. For the

simple benchmark, which requires little I/O and no database

operations, Passe reduces throughput by 37%. However, for

actual applications that often require more I/O and query the

database, such as the forum or CMS applications, we find

Passe reduces throughput by about 25%.

B. Memory Overhead

In addition to latency overhead, Passe adds memory

overhead, as each view requires a separate OS process. To

characterize this overhead, we measured the total memory

consumption of Passe while running 8 workers for our

benchmark applications (Figure 11). While this memory

overhead is large, it does not increase significantly under

load. Rather, the memory overhead corresponds to the

number of views in the application, each of which causes

8 separate processes to be spawned. In order to understand

the behavior of this relationship, we varied the number of

views in our simple application. Figure 12 shows the linear

correspondence between the number of views and the memory

consumption. Based on these measurements, modern servers

with a fairly modest 16 GB of RAM would be able to run

applications with hundreds of views. In comparison, the

most complicated application we tested had only 47 views.

While on dedicated servers, memory consumption may not

be prohibitive, in memory-constrained environments (e.g.,

hosted virtual machines), this cost may be excessive. In these

cases, a more aggressively optimized version of Passe could

make better use of copy-on-write memory and other memory

saving techniques to reduce this overhead. Such performance

improvements remain as future work.

IX. RELATED WORK

Intrusion Detection Systems: Our approach is most

related to previous work in intrusion detection. Like intrusion

detection systems, Passe uses dynamic analysis of execution

to “learn” the normal or intended behavior of the application.

Some work, such as DFAD [7] or SwitchBlade [20], has

similarly used taint tracking to check whether a detected de-

viation in program behavior was the result of a code injection

attack. This does not address attacks where code injection

was not the root cause. Other intrusion detection work, such

as Swaddler [21], SENTINEL [22] and DoubleGuard [8], has

analyzed internal program state to infer potential invariants

using Extended Finite State Machine modeling.

Passe differs from this work in two major ways. First,

Passe actively splits applications into sandboxed components,

allowing Passe to more easily infer constraints and to support

more restrictive constraints than could otherwise be achieved.

Second, Passe’s enforcement mechanisms operate without

instrumenting application code or requiring a stateful database

proxy. This prevents arbitrary code exploits from defeating

the system and allows the proxy to be implemented in a

scale-out architecture.

AutoISES [23] attempts to infer relationships between

security checks and data accesses. In general, Passe cannot

know which queries are “permission checks,” and so must

make inferences about the relationships between queries.

Automated Vulnerability Detection: Some work in

vulnerability detection has used a similar inference model to

find potential errors in application code [24]. Several systems

for detecting web vulnerabilities use program analysis to

find bugs which can be readily identified once they are

found (e.g., application crashes, malformed HTML, or

forced browsing) [25, 26, 27]. For finding general data-flow

violations which are harder to characterize, Passe cannot use

the same kind of analysis.

Other work attempting to detect data-flow vulnerabilities

has used a similar approach to Passe. For example, in [28],

“normal” usage of the application is analyzed dynamically.

In [29], taint tracking is used to identify cases in which

user input has not been properly sanitized. Such work is

focused on finding bugs rather than developing policies for

a secure runtime, as in Passe. Thus, many of these projects’

mechanisms cannot be applied to Passe’s setting.

Decentralized Information Flow Control: Passe differs

significantly from traditional DIFC systems [30, 31, 32, 33,

34, 35], as Passe learns application policy during an analysis

phase, while DIFC systems require developers or users to ex-

plicitly annotate data or code. Because DIFC systems require

reasoning about information labels, application code may

still be vulnerable to aberrant behavior. This is true even for

automatic instrumentation systems such as SWIM [36], which

still requires developer-supplied policies. Hails [18] applies

the DIFC model to web applications while using a shared

data store. Hails requires applications to be written in a safe

subset of Haskell. Hails’ policies provide stronger guarantees

than Passe, but require explicit policy specification.

XSS Protection: There has been significant work in

preventing XSS attacks. Much of this work has focused on

filtering and sanitizing user inputs. Passe addresses a stronger

class of threats, in which the attack has compromised part

of the application code. Other work allows applications to

specify exactly which scripts should be executed and in

what form [37, 38], or focuses on using the proposed CSP

standard [11] to separate trusted script sources from the data

of the HTTP response [39]. Other client side solutions use

taint tracking or fine-grained policies to limit the threat of

XSS attacks [40, 41] XSS-Guard learns the set of scripts a

web application typically constructs, and blocks unrecognized

scripts [42]. While these approaches may work in Passe’s

setting, the approach we chose reuses the view-level isolation

model from the rest of our system’s protections. This allows

us to unify isolation at the server with isolation at the client.

Other Approaches to Web Security: Resin [43], a system

which uses explicit policies to specify allowable data flows,

can provide many of the same properties as Passe. However,

because Resin relies on data-flow tracking in the application

during runtime, it is susceptible to remote code exploits.

Systems such as Diesel [44] and OKWS [45] provide web

frameworks strongly rooted in the principle of least privilege.

Passe provides much richer constraints and does not require

explicit separation from the developer. SELinks [46] supports

enforcing explicit security policies near the database. Unlike

Passe, policies are compiled into user-defined functions at

the database.

X. CONCLUSION

This paper introduces Passe, a system that provides security

guarantees for applications using a shared data store. Passe

decomposes applications into isolated views which execute in

sandboxed environments. Passe enforces the integrity of data

queries by using cryptographic tokens to preserve learned

data and control-flow dependencies. In doing so, Passe infers

and enforces security policies without requiring developers

to specify them explicitly (and sometimes erroneously).

Our Passe prototype is capable of executing unmodified

Django applications. We test Passe on eleven off-the-shelf

applications, detail some of its inferred constraints, demon-

strate several examples of security vulnerabilities it prevents,

and show that it adds little performance overhead.

ACKNOWLEDGMENTS

We thank the anonymous PC and our shepherd Andrei

Sabelfed for the constructive feedback. We are grateful to

Nickolai Zeldovich for insightful discussion about our project.

We are also thankful to Edward Felten, Arvind Narayanan,

Ariel Rabkin, David Shue, Wyatt Lloyd, Matvey Arye, Ariel

Feldman, Marcela Melara, Xiaozhou Li, and Amy Tai, for all

of their helpful comments during the course of this project.

This research is supported by NSF Award CSR-0953197

(CAREER) and a Sloan Research Fellowship.

REFERENCES

[1] M. Schwartz, “Hackers hit Symantec, ImageShack, but
not PayPal,” http://www.informationweek.com/security/attacks/
hackers-hit-symantec-imageshack-but-not/240049863, 2012.

[2] T. Smith, “Hacker swipes 3.6m Social Security numbers, other
data,” http://usat.ly/TkBM0H, 2012.

[3] T. Preston-Warner, “Public key security vulnerability and
mitigation,” https://github.com/blog/1068-public-key-security-
vulnerability-and-mitigation, 2012.

[4] J. H. Saltzer and M. D. Schroeder, “The protection of
information in computer systems,” Proc. IEEE, vol. 63, no. 9,
1975.

[5] D. Brumley and D. Song, “Privtrans: Automatically parti-
tioning programs for privilege separation,” in Proc. USENIX
Security, 2004.

[6] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng, and
X. Zheng, “Secure web applications via automatic partitioning,”
in Proc. SOSP, 2007.

[7] S. Bhatkar, A. Chaturvedi, and R. Sekar, “Dataflow anomaly
detection,” in Proc. IEEE S & P, 2006.

[8] M. Le, A. Stavrou, and B. Kang, “Doubleguard: Detecting
intrusions in multitier web applications,” IEEE TDSC, vol. 9,
no. 4, pp. 512–525, 2012.

[9] https://www.djangoproject.com/weblog/2011/nov/, 2011.

[10] http://wiki.apparmor.net/, 2012.

[11] “Content Security Policy 1.1,” www.w3.org/TR/CSP11/, Jun
2013.

[12] D. Akhawe, P. Saxena, and D. Song, “Privilege separation in
HTML5 applications,” in Proc. USENIX Security, 2012.

[13] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever
wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask),” in
Proc. IEEE S & P, 2010.

[14] J. Clause, W. Li, and A. Orso, “Dytan: a generic dynamic
taint analysis framework,” in Proc. ISSTA, 2007.

[15] V. Haldar, D. Chandra, and M. Franz, “Dynamic taint
propagation for java,” in Proc. ACSAC, 2005.

[16] N. Poole, “Code execution via YAML in JS-YAML Node.js
module,” https://nealpoole.com/blog/2013/06/code-execution-
via-yaml-in-js-yaml-nodejs-module/, Jun 2013.

[17] A. Patterson, “Serialized attributes YAML vulnerability with
Rails 2.3 and 3.0 [cve-2013-0277],” https://groups.google.com/
d/msg/rubyonrails-security/KtmwSbEpzrU/NzjxkM7HLjAJ,
Feb 2013.

[18] D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Mazières,
J. Mitchell, and A. Russo, “Hails: Protecting data privacy
in untrusted web applications,” in Proc. OSDI, 2012.

[19] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and
W. Vogels, “Dynamo: Amazon’s highly available key-value
store,” in Proc. SOSP, 2007.

[20] C. Fetzer and M. Süßkraut, “Switchblade: enforcing dynamic
personalized system call models,” in Proc. EuroSys, 2008.

[21] M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna, “Swad-
dler: An approach for the anomaly-based detection of state
violations in web applications,” in RAID, 2007, pp. 63–86.

[22] X. Li, W. Yan, and Y. Xue, “Sentinel: securing database from
logic flaws in web applications,” in Proc. ACM CODASPY,
2012.

[23] L. Tan, X. Zhang, X. Ma, W. Xiong, and Y. Zhou, “AutoISES:
Automatically inferring security specifications and detecting
violations,” in Proc. USENIX Security, 2008.

[24] D. Engler, D. Y. Chen, S. Halem, A. Chou, and B. Chelf,
“Bugs as deviant behavior: a general approach to inferring
errors in systems code,” in Proc. SOSP, 2001.

[25] P. Bisht, T. Hinrichs, N. Skrupsky, and V. Venkatakrishnan,
“Waptec: whitebox analysis of web applications for parameter
tampering exploit construction,” in Proc. CCS, 2011.

[26] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar,
and M. D. Ernst, “Finding bugs in dynamic web applications,”
in Proc. ISSTA, 2008.

[27] F. Sun, L. Xu, and Z. Su, “Static detection of access control
vulnerabilities in web applications,” in Proc. USENIX Security,
2011.

[28] V. V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna,
“Toward automated detection of logic vulnerabilities in web
applications,” in Proc. USENIX Security, 2010.

[29] A. Nguyen-tuong, S. Guarnieri, D. Greene, and D. Evans,
“Automatically hardening web applications using precise
tainting,” in Proc. 20th IFIP International Information Security
Conference, 2005.

[30] A. Myers and B. Liskov, “Protecting privacy using the
decentralized label model,” TOSEM, vol. 9, no. 4, pp. 410–442,
2000.

[31] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey,
D. Ziegler, E. Kohler, D. Mazières, F. Kaashoek, and R. Morris,
“Labels and event processes in the Asbestos Operating System,”
in Proc. SOSP, 2005.

[32] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières,
“Making information flow explicit in HiStar,” in Proc. OSDI,
2006.

[33] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. Kaashoek,
E. Kohler, and R. Morris, “Information flow control for
standard OS abstractions,” in Proc. SOSP, 2007.

[34] W. Cheng, D. R. K. Ports, D. Schultz, V. Popic, A. Blankstein,
J. Cowling, D. Curtis, L. Shrira, and B. Liskov, “Abstractions
for usable information flow control in Aeolus,” in Proc.
USENIX ATC, 2012.

[35] Y. Mundada, A. Ramachandran, and N. Feamster, “Silverline:
Data and network isolation for cloud services,” in Proc.
HotCloud, 2011.

[36] W. R. Harris, S. Jha, and T. Reps, “DIFC programs by
automatic instrumentation,” in Proc. CCS, 2010.

[37] M. Ter Louw and V. Venkatakrishnan, “Blueprint: Robust
prevention of cross-site scripting attacks for existing browsers,”
in Proc. IEEE S & P, 2009.

[38] Y. Nadji, P. Saxena, and D. Song, “Document Structure
Integrity: A robust basis for cross-site scripting defense.” in
Proc. NDSS, 2009.

[39] A. Doupé, W. Cui, M. H. Jakubowski, M. Peinado, C. Kruegel,
and G. Vigna, “deDacota: Toward preventing server-side XSS
via automatic code and data separation,” in Proc. CCS, 2013.

[40] L. A. Meyerovich and B. Livshits, “Conscript: Specifying and
enforcing fine-grained security policies for Javascript in the
browser,” in Proc. IEEE S & P, 2010.

[41] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and
G. Vigna, “Cross site scripting prevention with dynamic data
tainting and static analysis.” in Proc. NDSS, 2007.

[42] P. Bisht and V. Venkatakrishnan, XSS-GUARD: precise dy-
namic prevention of cross-site scripting attacks. Springer,
2008, pp. 23–43.

[43] A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek,
“Improving application security with data flow assertions,” in
Proc. SOSP, 2009.

[44] A. P. Felt, M. Finifter, J. Weinberger, and D. Wagner, “Diesel:
Applying privilege separation to database access,” in Proc.
ASIACCS, 2011.

[45] M. Krohn, “Building secure high-performance web services
with OKWS,” in Proc. USENIX ATC, 2004.

[46] N. Swamy, B. J. Corcoran, and M. Hicks, “Fable: A language
for enforcing user-defined security policies,” in Proc. IEEE S
& P, 2008.

