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Abstract—A probabilistic password model assigns a probability
value to each string. Such models are useful for research into
understanding what makes users choose more (or less) secure
passwords, and for constructing password strength meters and
password cracking utilities. Guess number graphs generated from
password models are a widely used method in password research.
In this paper, we show that probability-threshold graphs have
important advantages over guess-number graphs. They are much
faster to compute, and at the same time provide information
beyond what is feasible in guess-number graphs. We also ob-
serve that research in password modeling can benefit from the
extensive literature in statistical language modeling. We conduct a
systematic evaluation of a large number of probabilistic password
models, including Markov models using different normalization
and smoothing methods, and found that, among other things,
Markov models, when done correctly, perform significantly better
than the Probabilistic Context-Free Grammar model proposed
in Weir et al. [25], which has been used as the state-of-the-art
password model in recent research.

I. INTRODUCTION

Passwords are perhaps the most widely used method for

user authentication. Passwords are both easy to understand and

use, and easy to implement. With these advantages, password-

based authentication is likely to stay as an important part of

security for the foreseeable future [14]. One major weakness

of password-based authentication is that many users tend to

choose weak passwords that are easy to guess. Addressing

this challenge has been an active and important research area.

A fundamental tool for password security research is that of

probabilistic password models (password models for short).

A password model assigns a probability value to each string.

The goal of such a model is to approximate as accurately

as possible an unknown password distribution D. We divide

password models into two classes, whole-string models and

template-based models. A template-based model divides a

password into several segments, often by grouping consecutive

characters of the same category (e.g., lower-case letters, digits,

etc.) into one segment, and then generates the probability for

each segment independently, e.g., [21], [25]. A whole-string

model, on the other hand, does not divide a password into

segments, e.g., the Markov chain model in [8].
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We classify research involving password models into two

types. Type-1 research aims at understanding what makes

users choose more (or less) secure passwords. To do this, one

obtains password datasets chosen by users under difference

circumstances, and then uses a password model to compare the

relative strengths of these sets of passwords. Type-2 research

aims at finding the best password models. Such a model can

then be used to evaluate the level of security of a chosen

password, as in password strength meters. Such a model can

also be used to develop more effective password cracking

utilities, as a password model naturally determines the order

in which one should make guesses.

Type-1 research has been quite active in recent years. Re-

searchers have studied the quality of users’ password choices

under different scenarios [17], [18], [22], [23], [26]. In this

area, earlier work uses either standard password cracking tools

such as John the Ripper (JTR) [3], or ad hoc approaches

for estimating the information entropy of a set of passwords.

One such approach is NIST’s recommended scheme [7] for

estimating the entropy of one password, which is mainly based

on their length.

Weir et al. [25] developed a template-based password model

that uses Probabilistic Context-free Grammar. We use PCFGW

to denote this password model. In [24], they argued that en-

tropy estimation methods such as that recommended by NIST

are inaccurate metrics for password strength, and proposed

to use the guess numbers of passwords. The guess number

of a password according to a password model is defined

to be the rank of the password in the order of decreasing

probability. To compare two sets of passwords, one plots the

number of guesses vs. the percentage of passwords cracked

by the corresponding number of guesses in the testing dataset.

Such guess-number graphs are currently the standard tool in

password research. Plotting such graphs, however, requires

the computation of guess numbers of passwords, which is

computationally expensive. For many password models, this

requires generating all passwords with probability above a cer-

tain threshold and sorting them. Some template-based models,

such as the PCFGW model, have the property that all strings

fitting a template are assigned the same probability. One is thus

able to compute guess numbers by maintaining information

about templates instead of individual passwords. This is done

in the guess calculator framework in [17], [20], which is

based on the PCFGW model. This framework uses parallel

computation to speed up the process, and is able to go up to

≈ 4E14 [20]. Even with this approach, however, one is often



limited by the search space so that only a portion (typically

between 30% and 60%) of the passwords are covered [17],

[20]. Such studies thus miss information regarding the stronger

passwords.

We observe that for type-1 research, in which one compares

the relative strength of two sets of passwords, it is actually

unnecessary to compute the guess numbers of all passwords.

It suffices to compute the probabilities of all passwords in the

datasets, which can be done much faster, since the number

of passwords one wants to evaluate (often much less than

1E6) is in general extremely small compared to the maximum

guess number one is interested in. We propose to plot the

probability threshold vs. the percentage of passwords cracked

curves, which we call probability-threshold graphs. In addition

to being much faster to compute, another advantage is that

such a curve shows the quality of passwords in the set all the

way to the point when all passwords are cracked (assuming

that the password model assigns a non-zero probability to each

allowed password).

A natural approach for password models is to use whole-

string Markov chains. Markov chains are used in the template-

based model in [21], for assigning probabilities to segments

that consists of letters. Castelluccia et al. [8] proposed to

use whole-string Markov models for evaluating password

strengths, without comparing these models with other models.

At the time of this paper’s writing, PCFGW is still considered

to be the model of choice in type-1 password research.

We find this current state of art unsatisfying. First, only

very simple Markov models have been considered. Markov

models are known as n-gram models in the statistical lan-

guage literature, and there exist a large number of techniques

developed to improve the performance of such models. In

particular, many smoothing techniques were developed to help

solve the sparsity and overfitting problem in higher-order

Markov models. Such techniques include Laplace smoothing,

Good-Turing smoothing [13], and backoff [16]. Password

modeling research has not taken advantage of such knowl-

edge and techniques. Second, passwords differ from statistical

language modeling in that passwords have a very definite

length distributions: most passwords are between lengths 6

and 12, and there are very few short and long passwords.

The n-gram models used in statistical language modeling

generally have the property that the probabilities assigned to

all strings of a fixed length add up to 1, implicitly assuming

that the length distribution is uniform. This is fine for natural

language applications, because often times one only needs

to compare probabilities of sentences of the same (or very

similar) length(s), e.g., when determining which sentence is

the most likely one when given a sequence of sounds in

speech recognition. For password models, however, assuming

uniform length distribution is suboptimal. Finally, different

password modeling approaches have not been systematically

evaluated or compared against each other. In particular, a

rigorous comparison of the PCFGW model with whole-string

Markov models has not been performed.

In this paper, we conduct an extensive empirical study of

different password models using 6 real-world plaintext pass-

word datasets totaling about 60 million passwords, including

3 from American websites and 3 from Chinese websites.

We consider three different normalization approaches: direct,

which assumes that strings of all lengths are equally likely,

distribution-based, which uses the length distribution in the

training dataset, and end-symbol based, which appends an

“end” symbol to each password for training and testing.

We consider Markov chain models of different orders, and

with different smoothing techniques. We compare whole-string

models with different instantiation of template-based models.

Some of the important findings are as follows. First and

foremost, whole-string Markov models, when done correctly,

significantly outperform the PCFGW model [25] when one

goes beyond the first million or so guesses. PCFGW uses

as input both a training dataset, from which it learns the

distribution of different templates, and a dictionary from which

it chooses words to instantiate segments consisting of letters.

In this paper, we considered 3 instantiations of PCFGW : the

first uses the dictionary used in [25]; the second uses the

OpenWall dictionary; and the third generates the dictionary

from the training set. We have found that the third approach

works significantly better than the first and the second; in

addition, all three instantiations significantly underperform the

best whole-string Markov models. Furthermore, higher orders

of Markov chains show different degrees of overfitting effect.

That is, they perform well for cracking the high-probability

passwords, but less so later on. The backoff approach, which

essentially uses a variable-order Markov chain, when com-

bined with end-symbol based normalization, suffers little from

the overfitting effect and performs the best.

In summary, the contributions of this paper are as follows:

• We introduce the methodology of using probability-

threshold graphs for password research, which has clear

advantages over the current standard approach of using

guess-number graphs for type-1 password research. They

are much faster to construct and also gives information

about the passwords that are difficult to crack. In our

experiments, it took about 24 hours to generate 1010

passwords for plotting guess-number graphs; which cover

between 30% and 70% in the dataset. On the other hand,

it took less than 15 minutes to compute probabilities for

all passwords in a size 107 testing dataset, giving strength

information of all passwords in the dataset. We note,

however, that for type-2 research, in which one compares

different password models, one needs to be careful to

interpret results from probability-threshold graphs and

should use guess-number graphs to corroborate these

results.

• We introduce knowledge and techniques from the rich

literature in n-gram models for statistical language mod-

eling into password modeling, as well as identifying

new issues that arise from modeling passwords. We also

identify a broad design space for password models.

• We conduct a systematic evaluation of many password

models, and made a number of findings. In particular, we



show that the PCFGW model, which has been assumed

to be the state of the art and is widely used in research,

does not perform as well as whole-string Markov models.

The rest of this paper is organized as follows. We introduce

probability-threshold graphs in Section II, and explore the de-

sign space of password models in III. Evaluation methodology

and experimental results are presented in Sections IV and V,

respectively. We then discuss related work in Section VI and

conclude in Section VII.

II. PASSWORD MODELS AND METRICS

We use Σ to denote the alphabet of characters that can be

used in passwords. We further assume that all passwords are

required to be of length between L and U for some values of

L and U ; thus the set of allowed passwords is

Γ =

U⋃

�=L

Σ�.

In the experiments in this paper, we set Σ to include the

95 printable ASCII characters, and L = 4 and U = 40.

Sometimes the alphabet Σ is divided into several subsets,

which we call the character categories. For example, one

common approach is to divide the 95 characters into four

categories: lower-case letters, upper-case letters, digits, and

special symbols.

Definition 1: A password probability model (password

model for short) is given by a function p that assigns a

probability to each allowed password. That is, a password

model p : Γ→ [0, 1] satisfies

∀s∈Γ p(s) ≥ 0
∧ ∑

s∈Γ

p(s) = 1.

We say that a password model p is complete if and only if

it assigns a non-zero probability to any string in Γ.

For a password model p to be useful in practice, it should be

efficiently computable; that is, for any s ∈ Γ, computing p(s)
takes time proportional to O(|Σ|·length(s)). For p to be useful

in cracking a password, it should be efficiently enumerable;

that is, for any integer N , it runs in time proportional to

O(N · |Σ| ·U) to output the N passwords that have the highest

probabilities according to p. If one desires to make a large

number of guesses, then the password generation also needs

to be space efficient, i.e., the space used for generating N

passwords should grow at most sub-linearly in N . Ideally, the

space usage (not counting the generated passwords) should be

independent from N .

We consider the following three methods/metrics when run-

ning a given password model with a testing password dataset.

Note that for type-1 research, we fix the model and compare

different datasets. For type-2 research, we fix a dataset and

compare different models.

Guess-number graphs. Such a graph plots the number of

guesses in log scale vs. the percentage of passwords cracked

in the dataset. A point (x, y) on a curve means that y percent

of passwords are included in the first 2x guesses (i.e., the 2x

passwords that have the highest probabilities). This approach is

logically appealing; however, it is also highly computationally

expensive, since it requires generating a very large number

of password guesses in decreasing probability. This makes it

difficult when we want to compare many different approaches.

Furthermore, because of the resource limitation, we are unable

to see the effect beyond the guesses we have generated. These

motivate us to use the following metrics.

Probability-threshold graphs. Such a graph plots the prob-

ability threshold in log scale vs. the percentage of passwords

above the threshold. A point (x, y) on a curve means that y

percent of passwords in the dataset have probability at least

2−x. To generate such a figure, one needs only to compute the

probabilities the model assigns to each password in the testing

dataset. For each probability threshold, one counts how many

passwords are assigned probabilities above the threshold. For

a complete password model, such a curve can show the effect

of a password model on the dataset all the way to the point

when all passwords in the dataset are included.

Figure 1 below shows a probability-threshold graph and the

corresponding guess number graph, for comparing the relative

strength of two datasets phpbb and yahoo using a Markov

chain model of order 5 trained on the rockyou dataset.

(a) Probability-threshold graph (b) Guess-number graph

Fig. 1: An example

An interesting question is how a probability-threshold graph

relates to the corresponding guess-number graph. If one draws

conclusions regarding two curves based on the former, do the

conclusions hold in the latter?

When comparing the strength of two password datasets

using a fixed model, the answer is “yes”. The relationship of

two guess-number curves (e.g., which curve is to the left of

the other, whether and when they cross, etc.) would be exactly

the same as that demonstrated by the beginning portions of

the corresponding probability-threshold curves; because for a

given threshold, exactly the same set of passwords will be

attempted. This effect can be observed from Figure 1. The only

information missing is that we do not know the exact guess

number corresponding to each probability threshold; however,

this information is not needed when our goal is to compare

two datasets. In addition to being much faster to compute,

the probability-threshold graph is able to show the quality

of passwords in the set all the way to the point when all

passwords are cracked (assuming that the password model

assigns a non-zero probability to each allowed password).



When comparing models with a fixed dataset, in general,

the answer is no. In the extreme case, consider a model that

assigns almost the same yet slightly different probabilities to

every possible password in Γ, while using the same ranking

as in the testing dataset. As a result, the probabilities assigned

to all passwords would all be very small. Such an unreal-

istic model would perform very well in the guess-number

graph; however, the probability-threshold graph would show

extremely poor performance, since no password is cracked

until a very low probability threshold is reached.

When comparing two password models, whether the con-

clusions drawn from a probability threshold graph can be

carried over to the guess number graph depends on whether

the two models have similar rank distributions. Given a

password model p, the rank distribution gives for each i ∈
{1, 2, 3, · · · }, the probability of the password that has the i’th

highest probability. Thus, if two password models are known to

generate very similar rank distributions, then any conclusion

drawn from the probability-threshold graph will also hold

on the guess number graph, because the same probability

threshold will correspond to the same guess number. When

two models generate somewhat different rank distributions,

then one needs to be careful when interpreting results obtained

from probability-threshold graphs. In particular, one may want

to also generate the guess number graphs to check whether

the results are similar at least for the beginning portion of the

probability-threshold graphs. There is the main limitation of

using probability-threshold graphs in type-2 research.

Average-Negative-Log-Likelihood (ANLL) and ANLLθ .

Information encoded in a probability-threshold curve can be

summarized by a single number that measures the area to the

left of the curve, which turns out to be exactly the same as the

Average Negative Log Likelihood (ANLL). ANLL has its root

in statistical language modeling. A statistical language model

assigns a probability to a sentence (i.e., a sequence of words)

by means of a probability distribution. Language modeling is

used in many natural language processing applications such

as speech recognition, machine translation, part-of-speech

tagging, parsing and information retrieval. Password modeling

can be similarly viewed as trying to approximate as accurately

as possible D, an unknown distribution of passwords. We do

not know D, and instead have a testing dataset D, which

can be viewed as sampled from D. We use pD to denote the

probability distribution given by the dataset D. Representing

the testing dataset D as a multi-set {s1, s2, . . . , sn}, where a

password may appear more than once, the ANLL metric is

computed as follows:

ANLL(D|p) =
1

|D|

∑

s∈D

− log2 p(s)

To see that ANLL equals the area to the left of the probability-

threshold curve, observe that when dividing the area into very

thin horizontal rows, the length of a row with height between

y and y + dy is given by the number of passwords with

probability p such that y ≤ − log2 p < y + dy. By summing

these areas up, one obtains the ANLL.

ANLL gives the same information as Empirical Perplexity,

which is the most widely used metric for evaluating statistical

language models, and is defined as 2ANLL(D|p).

While using a single number to summarize the information

in a probability-threshold curve is attractive, obviously one

is going to lose some information. As a result, ANLL has

some limitations. First, ANLL is applicable only for complete

password models, i.e., those that assign a non-zero probability

to each password. In the area interpretation, if a password

in the dataset is assigned probability 0, it is never guessed,

and the curve never reaches Y = 1, resulting in an infinite

area. Second, ANLL includes information about cracking 100

percent of the passwords, which may not be what one wants.

Since it may be infeasible to generate enough guesses to crack

the most difficult passwords, one may care about only the θ

portion of passwords that are easy to crack. In that case, one

could use ANLLθ , which we define to be the area to the left

of the curve below θ. In this paper, we use ANLL0.8 when

comparing different models using one single number.

III. DESIGN SPACE OF PASSWORD MODELS

We mostly consider approaches that construct password

models without relying on an external dictionary. That is,

we consider approaches that can take a training password

dataset and learn a password model from it. The performance

of approaches that rely on external dictionaries depends very

much on the quality of the dictionaries, and in particular,

how well the dictionaries match the testing dataset. Such

approaches are not broadly applicable, and it is difficult to

evaluate their effectiveness.

N -gram models, i.e., Markov chains, are the dominant

approach for statistical languages. It is natural to apply them

to passwords. A Markov chain of order d, where d is a positive

integer, is a process that satisfies

P (xi|xi−1, xi−2, . . . , x1) = P (xi|xi−1, . . . , xi−d)

where d is finite and x1, x2, x3, . . . is a sequence of random

variables. A Markov chain with order d corresponds to an

n-gram model with n = d+ 1.

We divide password models into two classes, whole-string

models and template-based models. A template-based model

divides a password into several segments, often by grouping

consecutive characters of the same category into one segment,

and then generates the probability for each segment indepen-

dently. A whole-string model, on the other hand, does not

divide a password into segments.

A. Whole-String Markov Models

Whole-string Markov models are used in John the Rip-

per (JTR) [3] and Castelluccia et al.’s work on password

strength estimation [8]. JTR in Markov mode uses a 1-order

Markov chain, in which the probability assigned to a password

“c1c2 · · · c�” is

P (“c1c2 · · · c�”) = P (c1|c0)P (c2|c1)P (c3|c2) · · ·P (c�|c�−1),



where c0 �∈ Σ denotes a start symbol that is prepended to the

beginning of all passwords, and

P (ci|ci−1) =
count(ci−1ci)

count(ci−1·)
(1)

where count(ci−1·) denotes the number of occurrences of ci−1
where it is followed by another character (i.e., where it is not

at the end of password), and count(ci−1ci) gives the number

of occurrences of the substring ci−1ci. By definition, we have

count(ci−1·) =
∑

ci∈Σ
count(ci−1ci). When we use Markov

chains of order d > 1, we can prepend d copies of the start

symbol c0 to each password.

There are many variants of whole-string Markov models.

Below we examine the design space.

Need for Normalization. We note that models used in [3],

[8] are not probability models because the values assigned to

all strings do not add up to 1. In fact, they add up to U−L+1,

where U is the largest allowed password length, and L is the

smallest allowed password length, because the values assigned

to all strings of a fixed length add up to 1. To see this, first

observe that

∑

c1∈Σ

P (“c1”) =

∑
c1∈Σ

count(c0c1)

count(c0·)
= 1,

and thus the values assigned to all length-1 strings add up to

1. Assume that the values assigned to all length-� strings sum

up to 1. We then show that the same is the case for length

�+ 1 as follows.
∑

c1c2···c�+1∈Σ�+1 P (“c1c2 · · · c�+1”)

=
∑

c1c2···c�∈Σ� P (“c1c2 · · · c�”)×
∑

c�+1∈Σ
P (c�+1|c�)

=
∑

c1c2···c�∈Σ� P (“c1c2 · · · c�”) = 1

The same analysis holds for Markov chains of order d > 1.

To turn such models into probability models, several normal-

ization approaches can be applied:

Direct normalization. The approach of using the values

directly in [3], [8] is equivalent to dividing each value by

(U − L + 1). This method, however, more or less assumes

that the total probabilities of passwords for each length are the

same. This is clearly not the case in practice. From Table II(c),

which gives the password length distributions for the datasets

we use in this paper, we can see that passwords of lengths

between 6 and 10 constitute around 87% of all passwords, and

passwords of lengths 11 and 12 add an additional 7%, with the

remaining 30 lengths (lengths 4,5,13-40) together contributing

slightly less than 6%.

Distribution-based normalization. A natural alternative to

direct normalization is to normalize based on the distribution

of passwords of different lengths. More specifically, one

normalizes by multiplying the value assigned to each password

of length m with the following factor:

# of passwords of length m in training

total # of passwords in training

This approach, however, may result in overfitting, since the

training and testing datasets may have different length distri-

butions. From Table II(c), we can see that the CSDN dataset

includes 9.78% of passwords of length 11, whereas the PhpBB

dataset includes only 2.1%, resulting in a ratio of 4.66 to 1, and

this ratio keeps increasing. At length 14, CSDN has 2.41%,

while PhpBB has only 0.21%.

End-symbol normalization. We propose another normaliza-

tion approach, which appends an “end” symbol ce to each

password, both in training and in testing. The probability

assigned by an order-1 Markov chain model to a password

“c1c2 · · · c�” is

P (c1|c0)P (c2|c1)P (c3|c2) · · ·P (c�|c�−1)P (ce|c�),

where the probability of P (ce|c�) is learned from the training

dataset. For a string “c1c2 · · · cU” of the maximal allowed

length, we define P (ce|cU ) = 1.

In this approach, we also consider which substrings are

more likely to occur at the end of passwords. In Markov

chain models using direct normalization, the prefix of a

password is always more likely than the actual password,

which may be undesirable. For example, “passwor” would

be assigned a higher probability than “password”. The end

symbol corrects this situation, since the probability that an end

symbol following “passwor” is likely to be significantly lower

than the product of the probability that “d” follows “passwor”

and that of the end symbol following “password”.

Such a method can ensure that the probabilities assigned to

all strings sum up to 1 when the order of the Markov chain is

at least as large as L, the smallest allowed password length. To

see this, consider the case when L = 1. Envision a tree where

each string corresponds to a node in the tree, with c0 being

the root node. Each string “c0c1 · · · c�” has “c0c1 · · · c�−1” as

its immediate parent. All the leaf nodes are strings with ce as

the last symbol, i.e., they are actual passwords. Each edge is

assigned the transition probability; thus, the values assigned

to all edges leaving a parent node add up to 1. Each node in

the tree is assigned a value. The root is assigned 1, and every

other node is assigned the value of the parent multiplied by

the transition probability of the edge from its parent to the

node. Thus, the value assigned to each leaf node equals its

probability under the model. We note that the value assigned

to each node equals the sum of values assigned to its children.

It follows that the total probabilities assigned to all leaves add

up to be the same as those assigned to the root, which is 1.

When the order of Markov chain, d, is less than L, the

minimal required password length, we may have the situation

that the total probabilities add up to less than 1, because non-

zero probabilities would be assigned to illegal passwords of

lengths less than L. The effect is that this method is slightly

penalized when evaluated using probability-threshold graphs

or ANLLs. We note that when a model wastes half of the

total probability of 1 by assigning them to passwords that are

too short, the ANLLθ is increased by θ.

Choice of Markov Chain Order, Smoothing, and Spar-



sity. Another challenging issue is the choice of the order

for Markov chains. Intuitively, a higher-order Markov chain

enables the use of deeper history information than lower-

order ones, and thus may be more accurate. However, at

the same time, a higher-order Markov chain runs the risk of

overfitting and sparsity, which causes reduced performance.

Sparsity means that one is computing transition probabilities

from very small count numbers, which may be noisy.

In Markov chain models, especially higher order ones, many

calculated conditional probabilities would be 0, causing many

strings assigned probability 0. This can be avoided by apply-

ing the technique of smoothing, which assigns pseudocounts

to unseen strings. Pseudocounts are generally motivated on

Bayesian grounds. Intuitively, one should not think that things

that one has not yet seen have probability 0. Various smoothing

methods have been developed for language modeling. Additive

smoothing, also known as Laplace smoothing, adds δ to the

count of each substring. When δ is chosen to be 1, this is

known as add-one smoothing, which is problematic because

the added pseudo counts often overwhelm the true counts. In

this paper, we choose δ to be 0.01; the intuition is that when

encounting a history “c1c2c3c4”, all the unseen next characters,

after smoothing come up to slightly less 1, since there are 95
characters.

A more sophisticated smoothing approach is Good-Turing

smoothing [13]. This was developed by Alan Turing and his

assistant I.J. Good as part of their efforts at Bletchley Park to

crack German Enigma machine ciphers during World War II.

An example illustrating the effect of Good-Turing smoothing is

in [5], where Bonneau calculated the result of applying Good-

Turing smoothing to the Rockyou dataset. After smoothing, a

password that appears only once has a reduced count of 0.22,

a password that appears twice has a count of 0.88, whereas

a password that appears k ≥ 3 times has a reduced count of

approximately k−1. The “saved” counts from these reduction

are assigned to all unseen passwords. Intuitively, estimating the

probability of a password that appears only a few times using

its actual count will overestimate its true probability, whereas

the probability of a password that appears many times can be

well approximated by its probability in the dataset. The key

observation underlying Good Turing smoothing is that the best

estimation for the total probability of items that appear exactly

i times is the total probability of items that appear exactly i+1
times. In particular, the total probability for all items unseen

in a dataset is best estimated by the total probability of items

that appear only once.

Grouping. Castelluccia et al. [8] proposed another approach

to deal with sparsity. They observed that upper-case letters and

special symbols occur rarely, and propose to group them into

two new symbols. Here we use Υ for the 26 upper-case letters

and Ω for the 33 special symbols. This reduces the size of the

alphabet from 95 to 38 (26 lower case letters, 10 digits, and

Υ and Ω), thereby reducing sparsity. This approach treats all

uppercase letters as exactly the same, and all special symbols

as exactly the same. That is, the probability that any upper-

case letter follows a prefix is the probability that Υ follows

the prefix divided by 26. For example, P [“aF?b”] for an order

2 model is given by

P [a|s0s0]
P [Υ|s0a]

26

P [Ω|aΥ]

33
P [b|ΥΩ].

We call this the “grouping” method.

We experimented with an adaptation of this method. When

encountering an upper-case letter, we assign probabilities in

proportion to the probability of the corresponding lower-case

letter, based on the intuition that following “swor”, “D” is

much more likely than Q, just as d is much more like than

q. When encountering a special symbol, we use the order-

1 history to assign probability proportionally, based on the

intuition that as special symbols are rare, a shorter history is

likely better. In the adaptation, the probability of the above

string will be computed as:

P [a|s0s0]
P [Υ|s0a]P [f |s0a]∑

α P [α|s0a]

P [Ω|aΥ]P [?|F ]∑
ω P [ω|F ]

P [b|ΥΩ],

where α ranges over all lower-case letters, and ω ranges over

all special symbols.

Backoff. Another approach that addresses the issue of order,

smoothing, and sparsity together is to use variable order

Markov chains. The intuition is that if a history appears

frequently, then we would want to use that to estimate the

probability of the next character. For example, if the prefix

is “passwor”, using the whole prefix to estimate the next

character would be more accurate than using only “wor”. On

the other hand, if we observe a prefix that rarely appears,

e.g., “!W}ab”, using only “ab” as the prefix is likely to be

more accurate than using longer history, which likely would

assign equal probability to all characters. One way to do this

is Katz’s backoff model [16]. In this model, one chooses a

threshold and stores all substrings whose counts are above the

threshold. Let πi,j denote the substring of s0s1s2 · · · s� from

si to sj . To compute the transition probability from π0,�−1 to

π0,�, we look for the smallest i value such that πi,�−1 has a

count above the threshold. There are two cases. In case one,

πi,�’s count is also above the threshold; thus, the transition

probability is simply
count(πi,�)

count(πi,�−1)
. In case two, where πi,�

does not have a count, we have to rely on a shorter history to

assign this probability. We first compute b, the probability left

after assigning transition probabilities to all characters via case

one. We then compute the probabilities for all other characters

using the shorter prefix πi+1,�−1, which are computed in a

recursive fashion. Finally, we normalize these probabilities so

that they add up to b.

Backoff models are significantly slower than other Markov

models. The backoff models used in experimentation are

approximately 11 times slower than the plain Markov models,

both for password generation and for probability estimation.

B. Template-based Models

In the template-based approach, one divides passwords into

different templates based on the categories of the characters.



For example, one template is 6 lower-case letters followed by

3 digits, which we denote as α6β3. Such a template has two

segments, one consisting of the first 6 letters and the other

consisting of last 3 digits. The probability of the password

using this template is computed as:

P (“passwd123”) = P (α6β3)P (“passwd”|α6)P (“123”|β3),

where P (α6β3) gives the probability of the template α6β3,

P (“passwd”|α6) gives the probability that “passwd” is used

to instantiate 6 lowercase letters, and P (“123”|β3) gives the

probability that “123” is used to instantiate 3 digits. To define

a model, one needs to specify how to assign probabilities

to templates, and to the different possible instantiations of a

given segment. Template-based models are used in [21] and

the PCFGW model [25].

Assigning probabilities to templates. In [21], the proba-

bilities for templates are manually chosen because this work

was done before the availability of large password datasets.

In [25], the probability is learned from the training dataset by

counting. That is, the probability assigned to each template is

simply the number of passwords using the template divided

by the total number of passwords. Using this approach means

that passwords that use a template that does not occur in the

training dataset will have probability 0.

We consider the alternative of applying Markov models to

assign probabilities to templates. That is, we convert pass-

words to strings over an alphabet of {α, β, υ, ω}, representing

lower-case letters, digits, upper-case letters, and symbols re-

spectively. We then learn a Markov model over this alphabet,

and assign probabilities to a template using Markov models.

Assigning probabilities to segments. In [21], the probabil-

ities of letter segments are assigned using a Markov model

learned over natural language, and the probabilities for digit

segments and symbol segments are assigned by assuming that

all possibilities are equally likely. In the PCFGW model [25],

the probabilities for digit segments and symbol segments are

assigned using counting from the training dataset, and letter

segments are handled using a dictionary. That is, for an α6

segment, all length-6 words in the dictionary are assigned an

equal probability, and any other letter sequence is assigned

probability 0. For a β3 template, the probability of “123” is

the number of times “123” occurs as a 3-digit segment in the

training dataset divided by the number of 3-digit segments in

the training dataset.

We consider template models in which we assign segment

instantiation probabilities via both counting and Markov mod-

els. Table I summarizes the design space of password models

we consider in this paper.

PCFGW model does not fit in the models in Table I, as it

requires as input a dictionary in addition to a training dataset.

In this paper, we considered 3 instantiations of PCFGW : the

first uses the dictionary used in [25]; the second uses the

OpenWall dictionary; and the third generates the dictionary

from the training set. We note that the last instantiation is

essentially the template-based model using counting both for

assigning template probabilities and for instantiating segments.

C. Password Generation

To use a password model for cracking, one needs to be able

to generate passwords in decreasing probability.

In whole-string Markov-based methods, the password

search space can be modeled as a search tree. As described

earlier, the root node represents the empty string (beginning of

the password), and every other node represents a string. Each

node is labeled with the probability of the string it represents.

One algorithm for password guess generation involves stor-

ing nodes in a priority queue. The queue, arranged in order of

node probabilities, initially contains the root node of the search

tree. We then iterate through the queue, popping the node with

the greatest likelihood at each iteration. If this is an end node

(any non-root node for uniform or length-based normalization,

or nodes with end symbol for end-symbol normalization), we

output the string as a password guess. Otherwise, we calculate

the transition probability of each character in the character

set and add to the priority queue a new child node with

that character and the associated probability. This algorithm

is guaranteed to return password guesses in decreasing order

of probability (as estimated by the model), due to the iteration

order and property that each node’s probability is smaller than

that of its parent. The algorithm terminates once the desired

number of guesses has been generated.

The priority-queue method, however, is not memory effi-

cient, and does not scale for generating a large number (e.g.,

over 50 million) of guesses. Since each node popped from the

queue can result in multiple nodes added to the queue, the

queue size is typically several times of the number of guesses

generated. To reduce the memory footprint, we propose a

threshold search algorithm.

The threshold search algorithm, similar to the iterative

deepening state space search method, conducts multiple depth-

first traversals of the search tree. In the i’th iteration, it

generates passwords with probabilities in a range (ρi, τi],
by performing a depth-first traversal of the tree, pruning

all nodes with probability less than ρi, and outputting all

passwords with probability in the target range. To generate

n password guesses, we start with a conservative range of

(ρ1 =
1
n , τ1 = 1]. After the i’th iteration, if we have generated

m < n passwords so far, we start another iteration with

(ρi+1 =
ρi

max(2,1.5n/m) , τi+1 = ρi]. That is, when m < 0.75n,

we halve the probability threshold. We have observed empiri-

cally that halving ρ result in close to twice as many passwords

being generated. We may overshoot and generally more than n

passwords, but are very unlikely to generate over 2n guesses.

The average runtime complexity of this algorithm as O(n),
or linear on n. The memory complexity (not including the

model data or generated passwords) is essentially constant, as

the only data structure needed is a stack of capacity U+1. We

use this framework to efficiently generate Markov model-based

guesses in the experiments. Slight adjustments need to be made

for distribution-based normalization. This method, however,



Whole-string Markov models

normalization methods: (1) direct, (2) distribution-based, (3) end symbol
order of Markov chain: 1, 2, 3, 4, · · · or variable (backoff)
dealing with sparsity: (1) plain, (2) grouping (3) adapted grouping
smoothing methods: (1) no smoothing, (2) add-δ smoothing, (3) Good-Turing smoothing

Template-based models
template probability assignment: (1) Counting, (2) Markov model
segment probability assignment: (1) Counting, (2) Markov model

TABLE I: Design space for password probability models

does not apply to template-based models. Through probability-

threshold graphs, we have found that unless Markov mod-

els are used to instantiate templates, template-based models

perform rather poorly. However, when Markov models are

used, efficient generation for very large numbers of passwords

appears quite difficult, as one cannot conduct depth-first search

and needs to maintain a large amount of information for each

segment. In this paper, we do not do password generation for

template-based models other than the PCFGW model.

IV. EXPERIMENTAL METHODOLOGIES

In this section, we describe our experimental evaluation

methodologies, including the dataset we use and the choice

of training/testing scenarios.

Datasets. We use the following six password datasets down-

loaded from public Web sites. We use only the password

information in these datasets and ignored all other information

(such as user names and/or email addresses included in some

datasets). The RockYou dataset [1] contains over 32 million

passwords leaked from the social application site Rockyou in

December 2009. The PhpBB dataset [1] includes about 250K

passwords cracked by Brandon Enright from MD5 hashes

leaked from Phpbb.com in January 2009. The Yahoo dataset

includes around 450K passwords published by the hacker

group named D33Ds in July 2012. The CSDN dataset includes

about 6 million user accounts for the Chinese Software Devel-

oper Network (CSDN), a popular IT portal and a community

for software developers in China [2]. The Duduniu dataset

includes about 16 million accounts for a paid online gaming

site in China. The 178 datasets includes about 10 million

passwords for another gaming website in China. All 3 chinese

dataset were leaked in December 2011.

The first 3 datasets are from American websites, and the

last 3 are from Chinese websites. The 6 datasets together have

approximately 60 million passwords. Information about these

datasets is presented in Table II.

Data cleansing. We performed the following data cleansing

operations. First, we removed any password that includes

characters beyond the 95 printable ASCII symbols. This step

removed 0.034% of all passwords. In the second step, we

removed passwords whose length were less than 4 or greater

than 40. As almost any system that uses passwords will have a

minimal length requirement and a maximum length restriction,

we believe that such processing is reasonable. In total we

removed 0.037% of passwords that are too short, and 0.002%

of passwords that are too long. Length-4 passwords account

for 0.225% of the datasets, and we chose not to remove them.

Table II(a) gives detailed information on cleansing.

Dataset statistics. Table II(b) shows the percentages of pass-

words that appeared 1, 2, 3, 4, 5+ times in the datasets. Recall

that the Good-Turing method estimates that the total proba-

bilities of unseen passwords to be that of unique passwords.

We see that the two smallest datasets, PhpBB and Yahoo,

have significantly higher percentages of unique passwords,

64.16% and 69.83% respectively, compared to 36.43% for

Rockyou. When combining all 6 datasets, approximately 40%

are unique.

Table II(c) shows the length distributions of the password

datasets, showing the most common password lengths are 6 to

10, which account for 87% of the whole dataset. One inter-

esting aspect is that the CSDN dateset has much fewer length

6 and 7 passwords than other datasets. One explanation is

that the website started enforcing a minimal length-8 password

policy early on, and only users who have accounts near the

beginning have shorter passwords.

Table II(d) shows the character distribution. It is interesting

to note that passwords in American datasets consist of about

27% digits and 69% lower-case letters, while those in Chinese

datasets are the opposite, with 68% digits and 30% lower-case

letters. This is likely due to both the fact that the Roman

alphabet is not native to Chinese, and the fact that digit

sequences are easier to remember in Chinese. For each digit,

there are many chinese characters that have similar sounds,

making it easy to find digit sequences that sound similar to

some easy-to-remember phrases. Indeed, we found many such

sequences occurring frequently in Chinese datasets.1

Table II(e) shows the frequencies of different patterns.

While all lower-case passwords are the most common in

American datasets (41.65%), they account for only 8.93%
of Chinese datasets. The overall most common pattern is

lowercase followed by digits (33.02%), due to the fact that

this is the most common in Chinese datasets (40.05%). This

is followed by all lower-case, all digits, and digits followed

by lower-case; these top-4 patterns account for close to 90%

of all passwords. Upper-case letters are most commonly seen

preceding a digit sequence, or in all-uppercase passwords. We

also note that the pattern distribution shows a lot of variation

across different datasets.

Training/Testing Scenarios. We now describe our selection

of the training and testing datasets. We decided against merg-

1One such sequence is “5201314”, which sounds similar to a phrase that
roughly means “I love you forever and ever”. Both “520” and “1314” are
extreme frequent in Chinese datasets.



TABLE II: Statistics information of the datasets

(a) Data Cleaning of the datasets

Size after cleansing Removed

Dataset Unique Total
non-ascii

Unique

non-ascii

Total

too-short

Unique

too-short

Total

too-long

Unique

too-long

Total

Percentage
of

All Removed

RockYou 14325681 32575584 14541 18038 2868 7914 1290 1346 0.08%
PhpBB 183400 253512 45 45 944 1864 0 0 0.75%
Yahoo 342197 442288 0 0 283 497 0 0 0.11%
CSDN 4037139 6427522 314 355 465 754 0 0 0.02%

Duduniu 6930996 10978339 1485 1979 3685 10881 28 28 0.12%
178 3462280 9072960 0 0 3 5 1 1 0.00%

(b) Password count & frequency information

All All American RockYou PhpBB Yahoo All Chinese CSDN Duduniu 178

all 59750205 33271384 32575584 253512 442288 26478821 6427522 10978339 9072960
Pecentage due to Unique 40.92% 37.09% 36.43% 64.16% 69.83% 45.74% 55.72% 51.83% 31.30%
Pecentage due to Twice 9.32% 8.15% 8.12% 9.79% 9.38% 10.73% 10.79% 14.20% 7.80%
Pecentage due to 3 Times 4.02% 3.58% 3.59% 3.86% 3.60% 4.46% 4.55% 5.96% 3.65%
Pecentage due to 4 Times 2.36% 2.25% 2.25% 2.31% 1.94% 2.47% 2.51% 3.18% 2.19%
Pecentage due to 5+ Times 43.38% 48.93% 49.61% 19.88% 15.25% 36.41% 29.84% 24.83% 55.07%

(c) Password length information

All All American RockYou PhpBB Yahoo All Chinese CSDN Duduniu 178

4 0.2253% 0.2444% 0.2164% 3.1833% 0.6215% 0.2013% 0.1041% 0.4226% 0.0023%
5 2.4012% 4.0466% 4.0722% 5.7110% 1.2028% 0.3338% 0.5142% 0.5035% 0.0006%
6 19.4561% 25.9586% 26.0553% 27.4212% 17.9994% 11.2856% 1.2954% 9.1683% 20.9249%
7 16.7693% 19.2259% 19.2966% 17.8169% 14.8313% 13.6824% 0.2696% 16.3914% 19.9063%
8 22.6479% 20.1374% 19.9886% 27.3967% 26.9336% 25.8024% 36.3793% 23.0194% 21.6768%
9 16.5047% 12.1343% 12.1198% 9.1562% 14.9125% 21.9962% 24.1479% 24.6739% 17.2318%
10 11.7203% 9.0805% 9.0650% 5.3276% 12.3795% 15.0372% 14.4810% 20.0710% 9.3403%
11 4.7320% 3.5711% 3.5659% 2.0985% 4.7976% 6.1907% 9.7820% 3.4728% 6.9350%
12 2.3497% 2.1347% 2.1053% 1.0611% 4.9124% 2.6199% 5.7475% 1.1962% 2.1269%
13 1.2445% 1.3008% 1.3170% 0.4307% 0.6005% 1.1738% 2.6106% 0.5061% 0.9638%
14 0.8673% 0.8490% 0.8609% 0.2142% 0.3373% 0.8902% 2.4105% 0.3003% 0.5269%
15 0.5062% 0.5431% 0.5515% 0.0935% 0.1890% 0.4598% 1.1719% 0.1895% 0.2822%
16 0.3128% 0.3870% 0.3931% 0.0505% 0.1286% 0.2195% 0.7716% 0.0255% 0.0633%
17 0.0815% 0.1208% 0.1225% 0.0142% 0.0592% 0.0320% 0.1090% 0.0124% 0.0013%
18 0.0550% 0.0759% 0.0770% 0.0110% 0.0283% 0.0287% 0.0918% 0.0107% 0.0058%
19 0.0322% 0.0486% 0.0494% 0.0036% 0.0199% 0.0115% 0.0356% 0.0060% 0.0013%
20 0.0331% 0.0412% 0.0415% 0.0032% 0.0400% 0.0229% 0.0782% 0.0082% 0.0015%
21-30 0.0575% 0.0947% 0.0964% 0.0056% 0.0067% 0.0110% 0.0000% 0.0191% 0.0090%
31-40 0.0034% 0.0053% 0.0055% 0.0012% 0.0000% 0.0012% 0.0000% 0.0029% 0.0000%

(d) Password characters information

All All American RockYou PhpBB Yahoo All Chinese CSDN Duduniu 178

all 490102135 262266576 256756616 1857611 3652349 227835559 60788099 93174301 73873159
digit 46.20% 27.28% 27.35% 23.12% 24.56% 67.99% 67.41% 64.74% 72.55%
lower 51.06% 68.87% 68.78% 73.65% 72.55% 30.55% 30.06% 33.79% 26.87%
special 0.48% 0.67% 0.68% 0.32% 0.49% 0.25% 0.62% 0.12% 0.13%
upper 2.26% 3.18% 3.19% 2.91% 2.39% 1.21% 1.91% 1.35% 0.46%

(e) Password pattern information: L denotes a lower-case sequence, D for digit sequence, U for upper-case sequence, and S for symbol sequence; patterns
differ from templates in that patterns do not record length of sequence

ALL Percentage of the patterns in American datasets Percentage of the patterns in Chinese datasets

Percentage of
the pattern

the most
popular string

All American rockyou phpbb yahoo All Chinese csdn duduniu 178

LD 33.22% a123456 27.79% 27.71% 19.26% 38.31% 40.05% 26.15% 55.57% 31.12%
L 27.15% password 41.65% 41.70% 50.08% 33.05% 8.93% 11.65% 7.29% 9.00%
D 24.50% 123456 15.77% 15.94% 11.94% 5.86% 35.48% 45.02% 19.48% 48.07%

DL 4.81% 123456aa 2.57% 2.54% 2.05% 5.32% 7.63% 5.89% 9.79% 6.25%
LDL 1.60% love4ever 1.66% 1.62% 3.66% 3.31% 1.53% 1.64% 1.68% 1.27%

UD 1.48% A123456 1.33% 1.35% 0.37% 0.56% 1.67% 1.62% 2.57% 0.62%
U 0.94% PASSWORD 1.48% 1.50% 0.73% 0.40% 0.26% 0.47% 0.21% 0.15%

ULD 0.64% Password1 0.96% 0.94% 1.04% 2.48% 0.24% 0.50% 0.26% 0.05%
DLD 0.43% 123aa123 0.43% 0.42% 0.79% 0.94% 0.44% 0.52% 0.44% 0.38%

LDLD 0.42% hi5hi5 0.43% 0.42% 1.03% 0.97% 0.40% 0.47% 0.31% 0.47%
UL 0.40% Password 0.65% 0.65% 1.22% 0.70% 0.09% 0.09% 0.15% 0.01%

LSD 0.40% xxx 01 0.66% 0.66% 0.33% 0.17% 0.27% 0.21% 0.05% 0.01%
LSL 0.40% rock you 0.50% 0.50% 0.17% 0.39% 0.08% 0.66% 0.21% 0.08%

LS 0.38% iloveyou! 0.64% 0.65% 0.16% 0.20% 0.07% 0.14% 0.05% 0.04%
DU 0.23% 123456A 0.15% 0.15% 0.11% 0.06% 0.34% 0.46% 0.46% 0.11%



TABLE III: Six experimental scenarios.

# name Training Testing

1 Rock→Ya+Ph Rockyou Yahoo+PhpBB
2 Du+178→CSDN Duduniu+178 CSDN
3 CS+178→Dudu CSDN+178 Duduniu
4 CS+Du→178 CSDN+Duduniu 178
5 Chin→Ya+Ph Three Chinese Yahoo+PhpBB
6 Rock→CSDN Rockyou CSDN

ing all datasets into one big dataset and then partitioning it into

training and testing, since we feel that represents unrealistic

scenarios in practice. For example, this causes similar length,

character, and pattern distributions in training and testing;

furthermore, any frequent password tends to appear both in

training and testing. Instead, in each scenario, we chose some

of the datasets for training, and another for testing. Table III

lists the 6 scenarios we use in this paper. Scenarios 1-4 have

training and testing from within the same group (American or

Chinese). We merge Yahoo and PhpBB together because they

are both small (containing less than one million passwords

when combined) when compared with other datasets (all

contain more than 6 million). Scenarios 2-4 resemble cross-

validation, rotating among the 3 Chinese datasets, each time

training with 2 and testing with the remaining 1. Scenario 5

trains on all Chinese datasets and test on the American datasets

Yahoo+PhpBB. Scenario 6 trains on Rockyou and tests on

the Chinese dataset CSDN. By comparing scenario 5 against

1, and scenario 6 against 2, one can observe the effect of

training on a mismatched dataset. We present detailed results

using graphs for scenario 1 and 2, and only ANLL0.8 for other

scenarios, because of space limitation.

V. EXPERIMENTAL RESULTS

Experimental results are presented using guess-number

graphs, probability-threshold graphs, and ANLL0.8 values. The

algorithm naming convention is as follows. Names for whole-

string models start with “ws”. For example, ws-mc-b10 is

Markov chain with backoff and frequency threshold 10, and

ws-mci is order-i Markov chain with add-δ smoothing for

δ = 0.01. The postfix -g is for grouping, -ag for grouping after

our adaption, -gts for Good-Turing smoothing, and -end, -dir,

and -dis are for the three normalization approaches. Names for

template-based models start with “tb”; for example, tb-co-mci
is the template-based model using the counting-based method

for assigning probabilities to templates and an order-i Markov

chain model for segment instantiation. We note that using this

notation, tb-co-co is PCFGW with dictionary generated from

the training dataset.

The Figures. Fig 2 gives 8 graphs for Scenario 1. Fig 2(a)

shows the rank vs. probability based on generated passwords.

One can see that for the three Markov models shown there,

one can translate log of rank into negative log of probability

via an additive factor in the range of 3 to 8. That is, a password

that has probability 1
2y is likely to have a rank of around

2y−a, which a is mostly between 3 and 8, and seems to gets

close to around 6 as x increases. We conjecture that this trend

will further hold as x increases, and the gap between different

curves would shrink as x increases. One support is that these

curves have to cross at some point due to the fact that the

probabilities for each model add up to 1. Analyzing such

Markov models to either prove or disapprove this conjecture is

interesting future research, since it affects to what extend one

can use probability threshold graphs instead of guess number

graphs to compare these models with each other.

Fig 2(b) shows the guess-number graph. We include results

from ws-mc5-end, three instantiations of PCFGW (using dic-

0294, the dictionary used in [25], using the Openwall dictio-

nary [4], and using a dictionary generated from the training

dataset), and JTR in three different modes (incremental brute-

force, markov chain, and wordlist/dictionary mode with open-

wall dictionary). We can see that the three PCFGW and the

three JTR methods clearly underperform the Markov model.

We note that jtr-mc1 seems to pick up rather quickly, which

matches the shape of ws-mc1 in 2(f). Another observation

is PCFGW with training dataset as dictionary (i.e., tb-co-co)

outperforms the other two instantiations.

Fig 2(c) plots both guess-number curves and probability

threshold curves for 3 password models on the same graph,

and one can see that the guess-number curve for any model

approximately matches the the probability threshold curve if

one shifts them to the right.

Fig 2(d) shows the probability threshold curves for all

template-based models and one whole-string model, namely

ws-mc-b10-end. Here, Laplace smoothing with δ = 0.01 is

applied to markov chains in all templeate models. PCFGW

with dic-0294 performs the worst, and PCFGW with Open-

wall dictionary performs slightly better. Compared with other

models, these two cover the least passwords at any probability

threshold. With probability threshold at 2−80, the former

covers slightly over 50% of all passwords, and the latter

covers close to 60%. The two curves that both use counting to

instantiate segments (tb-co-co and tb-mc5-co) almost overlap;

they perform better than PCFGW with external dictionaries.

On lower probability thresholds, they, together with ws-mc-

b10, are the best-performing methods At threshold 2−80, they

cover around 75% of passwords. This suggests that learning

from the dataset is better than using existing dictionaries in

PCFGW . When we replace counting with Markov models for

instantiating segments, we see another significant improvement

at higher probability threshold. The model tb-co-mc5 covers

more than 90% of passwords (at threshold 2−80), and tb-mc5-

mc5, which takes advantage of smoothing, covers close to

100% passwords. This improvement, however, comes at the

cost of slightly worse performance than tb-co-co and tb-mc5-

co at lower probability thresholds. In other words, whether

to use counting or Markov chains to generate probabilities

for templates shows a small difference. Using counting to

instantiate segments shows an overfitting effect, performing

well at low thresholds, but worse at higher ones. Whole-string

Markov with backup (ws-mc-b10-end) almost always has the

best performance at any threshold.

Fig 2(e) compares the effect of no smoothing, add-δ smooth-



ing, and Good-Turing smoothing on Markov models of order

4 and order 5. When x < 35, smoothing makes almost no

difference, one simply sees that order 5 outperforms order

4. This is to be expected, since the smoothing counts make

a difference only for strings of low probabilities. For larger

x values, however, smoothing makes a significant difference,

and the difference is much more pronounced for order 5 than

for order 4. The order 5 model without smoothing performs

the worst, due to overfitting. Good-Turing smoothing under-

performs add-δ smoothing, and results in significant overfitting

for order 5.

Fig 2(f) compares the effect of different orders in Markov

chain models. We see that higher-order chains perform better

for smaller x values, but are surpassed by lower-order chains

later; however, backoff seems to perform well across all ranges

of x.

Fig 2(g) demonstrates the effect of normalization. Direct

normalization performs the worst, while distribution based

normalization performs slightly better than end-symbol nor-

malization.

As can be seen from Table IIc, Yahoo+PhpBB have between

40% and 45% passwords that are of length less than 8. Since

many modern websites require passwords to be at least 8
characters long, one may question to what extent results from

the above figures are applicable. To answer this question,

we repeat figure Fig 2(d) by using only passwords that are

at least 8 characters for evaluation. The result is shown in

Fig 2(h). Note that while all curves are somewhat lower than

the corresponding ones in Fig 2(d); they tell essentially the

same story.

Fig 3 gives the same 8 graphs for scenario 2, which use

Chinese datasets for training and testing. The observations

made above similarly apply. One minor difference is that in

Fig 2(d), the performance of PCFG with external dictionaries

are worse than in Scenario 1. Since the Chinese datasets con-

sist of more passwords that use only digit sequences, and thus

are intuitively weaker, this may seem a bit counter-intuitive.

This is because PCFGW uses only digit sequences that appear

in the training dataset to instantiate password guesses, and thus

does perform well when lots of digits are used. When Markov

chains with smoothing are used to instantiate the segments, one

obtains a more significant improvement than in Scenario 1.

Fig 4 shows two of these graphs for each of the other 4 sce-

narios. These two are the graph (d) for a probability threshold

graph and graph (b) for a guess number graph. They mostly

give the same observations. We note that in Fig 4(f), we see

that PCFGW with dictionary from the training dataset starts

out-performing ws-mc5-end. Note that in scenario, we train on

the Chinese dataset and the use American datasets to evaluate,

thus, a higher-order Markov chain does not perform very well.

From Fig 4(e), however, we can see that the variable-order ws-

mc-b10 remains the best-performing method.

ANLL Table. ANLL0.8 values for all six scenarios are

given in Table IV. Using this format, we can compare more

models directly against each other, with the limitation that

these results need to be interpreted carefully. Some models

assign probability 0 to some passwords; their ANLLs are not

well-defined and thus not included. Results for those models

are presented using graphs. Because of space limitation, we

exclude some ANLL data for some other combinations (such

as grouping with Good Turing smoothing or template-based

with two different orders).

Many observations can be made from Table IV. First,

backoff with end-symbol normalization is gives the best result

overall, as it produces results that are among the best across

all scenarios. Especially, for Scenario 1, which we consider to

be the most important one, it produces the best overall result.

Several other models perform quite close. It seems that using a

Markoc-chain of an order that is high enough, but not too high,

and with some ways to deal with overfitting, would perform

reasonably well.

Second, for most other models, distribution-based normal-

ization performs the best, followed by end-symbol normaliza-

tion. Direct normalization, which was implicitly used in the

literature, performs the worst. Yet, for backoff, end-symbol

normalization performs the best. There seems to exist some

synergy between backoff and end-symbol normalization. One

possible reason is that as backoff uses variable-length Markov

chains, it can recognize long common postfixes of passwords

so that it can end a password appropriately, instead of depend-

ing only on the length of passwords for normalization. With

fixed-length Markov chains, one does not have this benefit.

Third, on the effect of smoothing, Good-Turing smooth-

ing performs unexpectedly poorly, especially for higher-order

Markov chains; it seems that they tend to cause more over-

fitting, a phenomenon also shown in Figure 2(e) and 3(e).

For higher orders Markov models, add-δ smoothing, grouping,

adapted grouping, and template-based models all perform

similarly; they are just slightly worse than backoff with end-

symbol normalization.

Fourth, for most models, the Markov chain order that

gives the best results varies from scenario to scenario. For

Scenario 1, order-5 appears to be the best. Yet for the scenarios

with Chinese datasets (2, 3, 4), order 3 and 4 generally

outperform order 5. One obvious reason is the slightly smaller

training dataset. Also, because the Chinese datasets use digits

much more than letters, they contain even non-digit sequences

for training, resulting in better performance for lower-order

Markoc chains. Again, this demonstrates the benefit of using

a variable-order model like backoff, since one does not need

to choose the appropriate order.

Fifth, comparing the pair of scenarios 5 and 1, and the pair

of 6 and 2, one can see a difference in ANLL0.8 of about 2 to

4 in each case; this demonstrates the importance of training

on a similar dataset.

Sixth, comparing scenarios 2, 3, and 4, we can see that 178

is clearly the weakest password dataset among the 3, which

is corroborated by evidence from Table II. In 178, 55% of

passwords are those appearing more than 5 times (compared

to 30% and 25% for CSDN and Duduniu); close to 21%
are length 6 (compared to 1.3% and 9%); 48% are all digits



TABLE IV: ANLL0.8 results; end, dir, and dis stand for end-symbol, direct, and distribution-based normalization, respectively.

We use boldface to highlight the best results within each of the first 4 scenarios. The last 2 scenarios represent mismatches

between training and testing.

1: Rock→Ya+Ph 2: Du+178→CSDN 3: CS+178→Dudu 4: CS+Du→178 5: Chin→Ya+Ph 6: Rock→CSDN
Algorithm end dir dis end dir dis end dir dis end dir dis end dir dis end dir dis

ws-mc-b10 22.9 25.5 23.6 19.6 21.3 20.0 21.5 23.2 21.6 12.9 14.2 13.2 27.0 28.8 27.1 22.5 23.9 22.9
ws-mc-b25 23.3 25.8 23.9 19.7 21.4 20.1 21.6 23.4 21.7 12.9 14.2 13.2 27.6 29.3 27.5 22.6 24.1 23.0

ws-mc1 28.4 29.3 27.3 22.2 22.6 21.3 24.0 24.5 22.8 14.9 15.3 14.1 31.1 31.9 30.0 24.1 24.2 23.0
ws-mc2 26.9 28.0 26.1 20.9 21.5 20.2 22.8 23.5 21.9 13.7 14.5 13.3 30.2 31.1 29.2 23.3 23.6 22.5
ws-mc3 25.2 26.6 24.8 20.1 20.9 19.6 22.0 22.9 21.3 13.2 13.9 12.9 28.5 29.6 27.8 22.8 23.2 22.1
ws-mc4 23.9 25.6 23.7 19.9 20.8 19.5 21.7 22.8 21.1 12.9 13.8 12.8 28.1 29.3 27.6 22.9 23.4 22.4
ws-mc5 23.5 25.3 23.5 20.4 21.3 20.1 22.4 23.4 21.8 12.9 13.8 12.8 29.2 30.1 28.3 23.9 24.4 23.4

ws-mc1-g 28.4 29.4 27.4 22.3 22.8 21.4 24.0 24.5 22.8 14.9 15.3 14.1 31.1 31.9 30.0 24.1 24.2 23.1
ws-mc2-g 27.0 28.2 26.2 21.1 21.6 20.3 22.9 23.6 21.9 13.8 14.5 13.4 30.2 31.1 29.3 23.4 23.7 22.6
ws-mc3-g 25.3 26.8 24.9 20.3 21.0 19.7 22.1 23.0 21.4 13.3 14.0 12.9 28.6 29.6 27.8 22.9 23.3 22.2
ws-mc4-g 24.0 25.7 23.9 20.0 20.9 19.6 21.8 22.8 21.2 13.0 13.8 12.8 28.0 29.3 27.5 22.9 23.4 22.4
ws-mc5-g 23.5 25.3 23.4 20.3 21.3 20.0 22.4 23.4 21.8 13.0 13.9 12.9 28.5 29.6 27.8 23.6 24.2 23.1
ws-mc6-g 24.0 25.6 23.7 22.3 23.2 21.9 23.9 24.8 23.1 13.4 14.3 13.3 29.1 29.9 28.1 26.2 26.7 25.5
ws-mc1-ag 28.3 29.3 27.3 22.2 22.6 21.2 24.0 24.5 22.8 14.9 15.3 14.1 31.1 31.8 29.9 24.0 24.1 23.0
ws-mc2-ag 26.9 28.0 26.1 21.0 21.5 20.2 22.8 23.6 21.9 13.8 14.5 13.3 30.2 31.1 29.3 23.3 23.6 22.4
ws-mc3-ag 25.2 26.7 24.8 20.2 20.9 19.6 22.1 23.0 21.3 13.2 13.9 12.9 28.5 29.6 27.8 22.8 23.2 22.1
ws-mc4-ag 23.9 25.6 23.7 19.9 20.8 19.5 21.7 22.8 21.2 12.9 13.8 12.8 28.0 29.2 27.5 22.8 23.3 22.2
ws-mc5-ag 23.3 25.2 23.3 20.2 21.1 19.9 22.3 23.4 21.8 12.9 13.8 12.8 28.5 29.5 27.8 23.5 24.1 23.0
ws-mc6-ag 23.8 25.5 23.6 22.1 23.0 21.8 23.8 24.7 23.1 13.4 14.3 13.3 29.1 29.9 28.1 26.1 26.5 25.4
ws-mc1-gts 28.4 29.3 27.3 22.2 22.6 21.3 24.0 24.5 22.8 14.9 15.3 14.1 31.1 31.9 30.0 24.1 24.2 23.0
ws-mc2-gts 26.9 28.0 26.1 20.9 21.5 20.2 22.8 23.5 21.9 13.7 14.5 13.3 30.2 31.1 29.2 23.3 23.6 22.5
ws-mc3-gts 25.2 26.7 24.8 20.2 20.9 19.6 22.0 22.9 21.3 13.2 13.9 12.9 28.6 29.6 27.8 22.8 23.2 22.1
ws-mc4-gts 24.2 25.9 24.1 20.1 20.9 19.7 21.9 23.0 21.4 13.0 13.8 12.8 29.3 30.5 28.7 23.4 23.8 22.8
ws-mc5-gts 25.4 26.9 25.1 21.6 22.4 21.2 24.5 25.2 23.7 13.3 14.2 13.2 33.8 34.1 32.3 26.5 26.8 25.7
tb-mc1-mc1 28.5 29.4 27.4 22.3 22.7 21.3 23.9 24.5 22.8 14.9 15.3 14.1 31.1 31.9 30.0 24.0 24.2 23.0
tb-mc2-mc2 27.2 28.3 26.3 21.3 21.8 20.4 23.1 23.8 22.1 14.3 14.8 13.7 30.3 31.2 29.3 23.4 23.7 22.6
tb-mc3-mc3 25.8 27.1 25.2 20.6 21.2 19.9 22.3 23.2 21.6 13.6 14.2 13.1 28.8 29.8 28.0 22.9 23.3 22.2
tb-mc4-mc4 24.6 26.1 24.2 20.3 21.0 19.7 22.0 23.0 21.3 13.2 14.0 12.9 27.9 29.0 27.2 22.6 23.1 22.0
tb-mc5-mc5 23.9 25.6 23.7 20.1 21.0 19.7 21.7 22.9 21.2 13.0 13.8 12.8 27.6 28.9 27.1 22.6 23.3 22.1

(compared to 45% for CSDN and 19.5% for Duduniu; recall

that passwords in CSDN tend to be significantly longer).

VI. RELATED WORK

One active research area in recent years is to study the

quality of users’ password choices under different scenarios,

e.g., when facing different password policies [18], [17], when

presented with different password strength meters [23], [10],

when forced to change passwords due to organizational change

of password policies [22], when forced to change passwords

due to expiration [26], and when “persuaded” to include extra

randomness in their password choices [12]. In a similar study,

Mazurek et al. [20] collected over 25,000 real passwords from

CMU and studied passwords from different groups of users.

In this area, earlier work uses a combination of standard

password cracking tools such as John the Ripper (JTR) [3] and

ad hoc approaches for estimating the information entropy of a

set of passwords. One such approach is NIST’s recommended

scheme for estimating the entropy of one password, which is

mainly based on their length [7]. Florencio and Herley [11],

Forget et al. [12], and Egelman et al. [10] all use the formula

where the bit strength of a password is considered to be

log2((alpha. size)len ); for example, a 9-character password that

contains both upper and lower case characters and digits is

considered to have bit strength of log2(26+26+10)
9 ≈ 53.59.

This clearly overestimates the strength of passwords. A more

sophisticated approach, which considers how many numbers,

symbols, uppercase are used and where they appear when

computing the entropy, was developed in [22].

Weir et al. developed the PCFGW model [25] and argued

that entropy estimation methods such as that recommended

by NIST are inaccurate [24]. Instead, they propose to use the

guess number of passwords. The combination of the PCFGW

model or its variants and guess numbers becomes the standard

method in password security research in recent years [17],

[18], [15], [23], [20]. Our research suggests that probability-

threshold graphs are a better tool than guess number graphs,

and Markov chain based models are likely to offer better

choices than the PCFGW model.

John the Ripper [3], one of the most popular password

cracking tools, has several modes for generating password

guesses. The wordlist mode uses a dictionary plus various

mangling rules. The incremental mode uses trigraph frequen-

cies, i.e., frequencies for the triple of character, position, and

password length. The Markov mode uses Markov chains of

order 1. Narayanan and Shmatikov [21] proposed a template-

based model, with Markov chain being used for assign-

ing probability to letter-based segments. Experimental results

show that these approaches all significantly underperform

higher-order or variable-order Markov models.

Castelluccia et al. [8] proposed to use whole-string Markov

models for evaluating password strengths. Our work differs in

that we evaluate the performance of this model and compare



it with a large number of other models in a design space using

our methodology. Dell’Amico et al. [9] compared the cracking

effectiveness of Markov models on the “Italian”, “Finnish”,

and “MySpace” datasets by computing the estimated proba-

bilities for each password in the datasets and using an approx-

imation algorithm to compute the number of guesses for each

threshold. They did not consider normalization, smoothing,

etc. Furthermore, their results show very small search spaces

for higher Markov models, which seems to suggest that their

approximation algorithm underestimates the search space.

Malone and Maher [19] investigated how well password

distributions fit the zipf distribution. They fitted the Rockyou

dataset to a zipf distribution 1
rb

for b = 0.7878. Examining

the figures in [19] one can see that this fits well only for

passwords of rank between 26 and 220. Bonneau [5] also

explored the relationships between password distributions and

zipf distributions.

Bonneau [6] criticized the comparability and repeatability

of past password cracking results using tools such as John the

ripper and/or dictionaries. He proposed metrics for studying

the overall level of security in large password datasets, based

only on the distribution, and not on the actual password strings.

This work is thus largely orthogonal to ours. The metrics in [6]

cannot be effectively applied to evaluating the security of a

single, or a small dataset collected under a given scenario. We

believe that our approach of using standard Markov models

also corrects many of limitations identified in [6].

VII. CONCLUSIONS

We make three contributions in this paper. The first is to

introduce probability-threshold graphs for evaluating password

datasets. The second is to introduce knowledge and techniques

from the rich literature of statistical language modeling into

password modeling. We also identify new issues (such as nor-

malization) that arise from modeling passwords, and a broad

design space for password models, including both whole-string

models and template-based models. Third, we have conducted

a systematic study of many password models, and obtained a

number of findings. In particular, we show that the PCFGW

model, which has been assumed to be the state of the art and

has been widely used in password research, underperforms

whole-string Markov models in our experiments. We expect

that the new methodology and knowledge of effectiveness of

Markov models can benefit future password research.
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(a) Rank vs. probability: (x, y) denotes the 2x most likely password has

probability 1

2y
; dashed lines are y = x+ 3 and y = x+ 8

(b) Guess-number graph: (x, y) denotes 2x guesses cover y portion of the
dataset

(c) Superimposing guess number and prob. threshold: for guess-number
curves, x stands for 2x guesses; for threshold curves, x stands for probability
threshold 1

2x
; dic-0294 is used as dictionary for PCFGW

(d) Prob. threshold graph for comparing template-based models (including
PCFGW )

(e) Prob. threshold graph for comparing the effect of smoothing, all with
end-based normalization

(f) Prob. threshold graph for comparing Markov of different orders; with end-
based normalization and add-δ smoothing

(g) Prob. threshold graph for comparing the effect of normalization (h) Prob. threshold graph for passwords with length no less than 8; comparing
template-based models (including PCFGW )

Fig. 2: Experiment result of Scenario 1: Rock→Ya+Ph.



(a) Rank vs. probability: (x, y) denotes the 2x most likely password has

probability 1

2y
; dashed lines are y = x+ 3 and y = x+ 8

(b) Guess-number graph: (x, y) denotes 2x guesses cover y portion of the
dataset

(c) Superimposing guess number and prob. threshold: for cracking curve, x
stands for 2x guesses; for threshold curve, x stands for probability threshold
1

2x
; dic-0294 is used as dictionary for PCFGW

(d) Prob. threshold graph for comparing template-based models (including
PCFGW )

(e) Prob. threshold graph for comparing the effect of smoothing, all with
end-based normalization

(f) Prob. threshold graph for comparing Markov of different orders; with end-
based normalization and add-δ smoothing

(g) Prob. threshold graph for comparing the effect of normalization (h) Prob. threshold graph for passwords with length no less than 8; comparing
template-based models (including PCFGW )

Fig. 3: Experiment results for Scenario 2: Du+178→CSDN.



(a) Scenario 3: CS+178→Dudu: Prob. threshold graph for comparing
template-based models (including PCFGW )

(b) Scenario 3: CS+178→Dudu: Guess-number graph. (x, y) denotes 2x

guesses cover y portion of the dataset

(c) Scenario 4: CS+Du→178: Prob. threshold graph for comparing template-
based models (including PCFGW )

(d) Scenario 4: CS+Du→178: Guess-number graph. (x, y) denotes 2x

guesses cover y portion of the dataset

(e) Scenario 5: Chin→Ya+Ph: Prob. threshold graph for comparing template-
based models (including PCFGW )

(f) Scenario 5: Chin→Ya+Ph: Guess-number graph. (x, y) denotes 2x guesses
cover y portion of the dataset

(g) Scenario 6: Rock→CSDN: Prob. threshold graph for comparing template-
based models (including PCFGW )

(h) Scenario 6: Rock→CSDN: Guess-number graph. (x, y) denotes 2x

guesses cover y portion of the dataset

Fig. 4: Experiment result for Scenarios 3, 4, 5, 6.


