
Poster: OpenAPT – Open-Source Advanced

Persistent Threat for Academic Research
Mordehai Guri, Tom Sela, Yuval Elovici

Department of Information Systems Engineering

Ben-Gurion University of the Negev

Beer-Sheva, Israel

gurim@post.bgu.ac.il, tomse@post.bgu.ac.il, elovici@bgu.ac.il

Abstract— Modern advanced malware developers are always

adapting new techniques in order to evade security systems.

Typical Advanced Persistent Threat (APT) might utilize

sophisticated stealth mechanisms, polymorphism engines, anti-

forensic capabilities, unique covert channels, and new infection

vectors. Security companies such as AV vendors are constantly

updated with the state-of-the art threats, which allows them to

develop new defense mechanisms. However, academic security

research suffers from the lack of access to the latest APTs

information. Malware source-code, implementation details and

even binaries are commonly not available publicly, preventing

innovative research in the scientific community. In this paper we

present the work-in-progress of OpenAPT, a community

supported, open-source advanced malware development and

documentation framework. Providing researchers code-samples

and documentation of malware and set of APT mechanisms to

compile and test against their new security mechanisms. The

framework's contents are all available under the GPL license,

inviting the community to freely use and contribute to the

collaborative knowledge.

Keywords— Cyber Security; Academic Research; APT;

Malware; Datasets; Open Source; Advanced Persistent Threat

I. INTRODUCTION

The academic world of cyber security is at a constant race to

keep up with new threats encountered "in the wild". Modern

malware and APTs deploy an increasingly wide range of

mechanisms while executing their malicious actions. Attacker's

collaborations further increase the variety and the spread of

sophisticated and innovative malware mechanisms [1].

 Conducting an academic research in the field of cyber

security tends to rely on testing the theories on malicious code

found in the wild or on software created by the researcher

aimed to simulate the actions of the threat. For academic

research to reflect prudent and innovative science, the work

needs to address a number of concerns relating to the correct

use of the datasets, and presentation methodology in a fashion

sufficiently transparent to enable reproducibility.

 A research done in 2012 [2] tested 36 academic

publications from 2006–2011 that rely on malware execution.

They found frequent shortcomings, including problematic

assumptions regarding the use of execution-driven datasets

(25% of the papers), and often times insufficient description of

the experimental setup.

 Researchers face difficulties with:

 Obtaining information about latest malware and APTs

mechanisms.

 Obtaining code/binary samples executing the desired

mechanisms.

 Conducting scientific experiments reflecting practical

malware behavior.

 Presenting their experiments and evaluation in a

transparent reproducible fashion.

 The absence of an accessible and updatable source of

information for academic researchers is detrimental in the

quality, quantity and reliability of the academic work being

done. The OpenAPT Framework is designed to satisfy the

requirements of a prudent and innovative scientific research. A

framework updated by a collaboration of academic researchers,

white-hat hackers and black-hat hackers dedicated for creating

a single database of open-source code of various mechanisms

used by modern malware and APTs. Using the OpenAPT,

academic researchers could conduct research and test their

assumptions against the most updated malware techniques

currently known. Furthermore, by referring to the specific

modules used in the research, the experiment could be

reproduced and validated by other cyber security researchers

around the world.

II. OPEN SOURCE AND SECURITY

There's been a lot of debate about the impact of open source

approaches on security. One of the key issues is that open

source exposes the information to everyone, both the attackers

and defenders. Attackers already distribute information about

vulnerabilities and threats through a large number of channels;

secrecy would leave academic security defenders vulnerable,

while doing nothing to inhibit attackers. Moreover, as seen in

other open-source projects, having a community cooperative

can often lead to more diverse and cutting edge research [3].

III. DESIGN AND IMPLEMENTATION

OpenAPT project will be hosted in a dedicated website1,

consists of three main parts: project source-code, wiki

documentation and community forums. As Microsoft Windows

is the most malware targeted OS [4], OpenAPT currently

focuses on Windows OS.

1will be launched in "http://www.openapt.org"

mailto:gurim@post.bgu.ac.il
mailto:tomse@post.bgu.ac.il
mailto:elovici@bgu.ac.il

A. OpenAPT Source-Code

The source-code section is compound of eight different
modules. These modules represent mechanisms used in the
various stages of the APT lifecycle [5] divided into separated
groups. A module is a set of source code samples; each sample
is an implementation of a known technique. A researcher can
use these samples to test his work against the various known
techniques. Each module will be consistently updated by the
community to include newly discovered techniques.

The modules are:

1. Spreading and Infection Module – Techniques of
spreading in the file system and the network.
(Various APT lifecycle stages, particularly in
"Expansion" phase)

2. Code-Obfuscation Module - Techniques of
manipulating the code to conceal its purpose or its
logic, in order to prevent tampering and reverse
engineering. This module will be taking a place at
the pre-compilation phase using macros. (Various
APT lifecycle stages, particularly in
"Persistence" phase)

3. Anti-Forensic Module – Techniques of Anti-
Debugging, Virtualization/Sandboxing Detection,
Anti-Honeypot, Anti-Anti-Virus, and forensic
tools scanners. (Various APT lifecycle stages,
particularly in "Persistence" phase)

4. Polymorphism and Encryption Module –
Techniques of modifying the malware in order of
making detection by security programs difficult.
(Relevant to all APT lifecycle stages, particularly
"Internal compromise" and "Maintain Presence")

5. Reconnaissance Module - Techniques to collect
information on the surrounding infrastructure,
information assets and domain structure. (APT
lifecycle stage "Internal Reconnaissance")

6. Covert Channels Module – Techniques to
discover and leak information by using the
network in a manner that violate security policies.
(APT lifecycle stages "Initial intrusion" and
"Outbound connection initiated")

7. Exploits Module – Techniques of taking
advantage of vulnerabilities in order to cause
unintended or unanticipated behavior such as
acquiring administrator privileges, creating
backdoors, exporting stolen data, etc. (Relevant to
all stages of the APT's lifecycle)

8. Stealth Module – Techniques of Hiding Process,
Files, Objects, I/O Operations, Outgoing
Connection, CPU Activity etc. (Relevant to all
stages of the APT's lifecycle)

B. Wiki Documentation

Wiki Documentation regarding the various mechanisms
and techniques. The documentation pages contain
explanations and information such as: related academic

research, course of action, origin malware, discovery dates and
prevention techniques.

C. Forums

Open discussion boards on various subjects for all users
and researchers, to ask questions and share knowledge
regarding security research and development.

IV. USAGE SENARIOS

 Obtaining individual code snippet of mechanisms from the
framework, to integrate in the researcher's work. E.g.
using the code-obfuscation or encryption techniques to
test the researcher's newly developed detection methods.

 Using the framework to build an experimental malware to
evaluate the research.

Fig. 1. Abstract example of using the framework - choosing the components

of the expeimental malware.

 Updating the database by Researchers, black-hat and
white-hat hackers to enrich the modules with new
functionality and implementation methods.

REFERENCES

[1] A. Raff, "Citadel – An Open-Source Malware Project," Seculert, 8 Feb
2012. [Online]. Available:

http://www.seculert.com/blog/2012/02/citadel-open-source-malware-

project.html.

[2] C. Rossow, C. J. Dietrich, C. Grier, C. Kreibich, V. Paxson, N.

Pohlmann, H. Bos and M. Steen, "Prudent Practices for Designing

Malware Experiments: Status Quo and Outlook," in IEEE Symposium on
Security and Privacy (SP), San Francisco, CA, 2012.

[3] C. Raasch, C. Herstatt and N. Abdelkaf, "Creating Open Source

Innovation: Outside the Software Industry," in PICMET, Cape Town,
South Africa, 2008.

[4] Kaspersky, "Kaspersky Security Bulletin 2012. The overall statistics for

2012," 10 Dec 2012. [Online]. Available:
http://www.securelist.com/en/analysis/204792255/Kaspersky_Security_

Bulletin_2012_The_overall_statistics_for_2012

[5] SecureWorks, "Lifecycle of an Advanced Persistent Threat," Dell,
Counter Threat Unit research , 2012.

// Initialize Modules

1: SteslthModule* pSthealth = init_StealthModule();
2: AntiForensicModule* pAntiForensic= init_AntiForensicModule();

3: CovertChannels* pCovertChannels = init_CovetChannels();

4: int main() {

…

// check whether the malware is running inside sandbox using
// all implemented methods

5: If (pAntiForensic->detectSandbox(DETECT_VMWARE_ALL) ||

(pAntiForensic->detectSandbox(DETECT_VBOX_ALL))
5.1 terminateProcess(0);

…
// Set process, file and registry hiding using various methods

6: pStealth->setProcessHideMethod(PH_3);

7: pStealth->setFilesHideMethod(FH_FILTER_DRIVER_7);
8: pStealth->setRegistryHideMethod(RH_REGHOOK_1);

…

// hidden channel to C&C server using DNS requests
9: pCovertChannels->setMethod(CC_DNS_9);

10: pCovertChannels->sendMessage(buff, server_ip);

…
}

}

