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I. I NTRODUCTION

Protecting confidential information from improper disclo-
sure is a fundamental security goal, made more challenging
due to the practical difficulty of preventing all leakage of secret
information. For instance, a login program that rejects an in-
correct password unavoidably reveals that the secret password
differs from the one that was entered. One promising way to
address information leakage is to consider itquantitatively,
based on the intuition that a login program is acceptable in
practice because it leaks only a “small” amount of information
about the secret password. This viewpoint has led to the areaof
quantitative information flow, which has seen growing interest
in the past decade. (See, for example [1], [2], [3].)

Measures of information flow are based on the information-
theoretic notion ofchannel [4]. Channels capture the rela-
tionship between the inputs and the outputs of a system
through a channel matrix which specifies, for each input, the
conditional probability of observing each output of the system.
The leakage of a channel is then calculated based on the extent
to which observing the channel’s output helps an adversary
determine the value of the secret input.

Note that the amount of information that a channel leaks
depends on the adversary’s prior knowledge about the secret
input. For instance, if the adversary already knows what the
secret input is, then the channel cannot leak any additional
information. Moreover, given two channels with the same set
of secret inputs, which one is more secure in terms of infor-
mation flow also varies with the adversary’s prior knowledge.
Fortunately, it has been shown [3] that channels under the
composition refinementrelation preserve their leakage ordering
for all contexts. In light of these observations, in this poster
we present some current work on the mathematical structure of
channels under the composition refinement relation, showing
that composition refinement is a partial order up tosemantic
equivalence. As we explain in Section V, channels are seman-
tically equivalent if they are equivalent from the adversary’s
perspective.

II. M ODELING THE SYSTEM AS A CHANNEL

A channel is a triple (X ,Y, C), whereX is a finite set
of secret input values,Y is a finite set of observable output
values, andC is a |X |×|Y| matrix, called thechannel matrix.
The intent is thatC[x, y] is the probability of obtaining output
y when the input isx. Note that each entry ofC is between
0 and 1, and each row sums to 1. An important special case
is a deterministic channel, where each input yields a unique
output.

Following [5], given a prior distributionπ on X we can
define the joint distributionp on X × Y as pXY (x, y) =

π[x]C[x, y]. Then, by marginalization we get jointly dis-
tributed random variablesX andY with marginal probabilities
p(x) =

∑
y p(x, y) and p(y) =

∑
x p(x, y) respectively,

and conditional probabilitiesp(y|x) = p(x,y)
p(x) as well as

p(x|y) = p(x,y)
p(y) (provided that the denominators are nonzero).

The conditional probabilitiesp(x|y) can then be grouped into
posterior distributionspX|y of the secret for each outputy.
Hence, assuming an adversary that knowsC and π, after
observing outputy, the knowledge of the adversary aboutX
is updated fromπ to pX|y.

III. C OMPOSITION REFINEMENT

Back in 1993, Landauer and Redmond [6] noticed that we
can describe the information leakage of deterministic channels
by considering the partition that the channel induces on the
set of secret inputs. Each block in the partition contains all
the inputs that map to a particular output. For example, if
Ccountry is a channel that outputs the country of birth of an
individual, then it partitions the set of individuals according to
their country of birth. Moreover, partitions are partiallyordered
by the refinement relation. It is said that partition≈ is refined
by partition∼ if each block of∼ is contained within some
block of≈. To illustrate this, letCcity be a channel that outputs
both the country and city of birth of an individual. Hence,
since the information provided by the partition induced by
Ccity is finer grained than the information provided by that of
Ccountry we say that the partition ofCcity refines the partition
of Ccountry.

We remark that partitions under the refinement relation
form a complete lattice [6] which, in quantitative information
flow, is known as theLattice of Information. Furthermore,
given deterministic channelsC1 andC2, the partition induced
by C2 is finer than the partition induced byC1 iff C1 never
leaks more thanC2 for any given context [7], [3].

These results do not extend to probabilistic systems, for
probabilistic channels do not partition the set of secret inputs.
However, we can work around this issue by considering the
concept ofcascading. A cascade of two channels is a classic
construction where the output of the first channel is used as
input to the second. We writeC1 = C2C3 to indicate thatC1

is the cascade of channelsC2 andC3. Then, given channels
C1 andC2 with the same set of secret inputs, it may be thatC1

is equivalent toC2 followed by some post-processing; that is,
C1 = C2C3 for some channelC3. In this case we say thatC1

is composition refinedby C2, denoted byC1 ⊑◦ C2 [3]. An
important property of cascading is that, post-processing with
the second channel can only destroy information [4], [5], [3],
therefore, ifC1 ⊑◦ C2, thenC1 never leaks more information



than C2 for any given context. Moreover, in the case ofg-
leakage [3], such strong leakage ordering implies composition
refinement. For thecoriaceous conjectureof [3] follows from
techniques presented in [8]. Hence, composition refinementis
the only way for the strongg-leakage ordering to hold.

Composition refinement and partition refinement are
strongly connected. Given deterministic channelsC1 andC2,
the partition induced byC2 is finer than the partition induced
by C1 iff C1 = C2C3 for some channelC3. That is,
partition refinement and composition refinement coincide for
deterministic channels [3]. To illustrate this, consider now a
deterministic channelCfilter that given the city and country
of birth of an individual outputs only the country of birth.
Then, channelCcountry is equivalent to channelCcity followed
by post-processing with channelCfilter , that is,Ccountry =
CcityCfilter andCcountry ⊑◦ Ccity .

Because composition refinement is associated to a strong
leakage ordering and, for deterministic systems, coincides with
the Lattice of Information, it has been proposed as a candidate
for generalizing the Lattice of Information to probabilistic
systems [3].

IV. GENERALIZING THE LATTICE OF INFORMATION

We are interested in understanding the extent to which
composition refinement generalizes the Lattice of Information
to probabilistic systems. With respect to order-theoreticprop-
erties, the first thing to remark is that composition refinement
is a preorder, that is, it is a reflexive and transitive relation.
However, composition refinement is not antisymmetric since
there exist channel matrices such thatC1 ⊑◦ C2 andC2 ⊑◦ C1

and yetC1 6= C2. Hence, composition refinement is not a
partial order.

But, because any preorder gives rise to a partial order
on the quotient space, composition refinement can still be
seen as a partial order. The idea is that, instead of ordering
channels directly, we order classes ofcomposition equivalent
channels. ChannelsC1 and C2 are composition equivalent,
denotedC1 ≡◦ C2, if C1 ⊑◦ C2 and C2 ⊑◦ C1. We can
then say that composition refinement is a partial order up to
composition equivalence. Moreover, in Sections V and VI, we
will establish that it is also a partial order up to semantic
equivalence of channels.

We now wonder whether channels under composition re-
finement form a lattice. For deterministic channels, the least
upper bound ofC1 and C2 is the channel that on inputx
produces as output the pair(C1(x), C2(x)) [6]. Such channel
induces the coarsest partition that is finer than the partitions of
bothC1 andC2. However, this does not extend to the case of
probabilistic channels. For two runs of a probabilistic channel
carry more information than a single run.

V. SEMANTIC EQUIVALENCE OF CHANNELS

Since composition refinement orders classes of composi-
tion equivalent channels, it is important to understand what
are the structural properties of such classes of channels.

Note that, assuming that the adversary knowsC and π,
the posterior distributionspX|y and their probabilitiesp(y)
are whatC reveals to the adversary aboutX . Hence, following

McIver et al. [8], the leakage semantics of a channel(X ,Y, C)
is a mappingJCK : DX → DDX from prior distributions
on the set of secret inputsX to hyper-distributions, i.e.
distributions on posterior distributions. We have found that the
leakage of a channelC (under the leakage measures discussed
in the literature: mutual information [4], min-entropy leakage
[2] or g-leakage [3]) depends only onJCK.

We say that two channels are semantically equivalent
C1 ≡s C2 if they denote the same mapping, that is, if
JC1K = JC2K. It turns out that when some columns ofC are
scalar multiples of one another, they can be merged and the
result is a semantically equivalent channel. If we also sortthe
resulting columns lexicographically, we obtain a well-defined
reduced channel{C}r. ChannelsC and{C}r can be seen as
being equivalent from the point of view of the adversary.

We have found that semantic equivalence is simple to
check, in fact,C1 ≡s C2 iff {C1}r = {C2}r. Even more
remarkable, based on this property, we have been able to prove
that semantic equivalence and composition equivalence arethe
same relation.

VI. CONCLUDING REMARKS

Because semantic equivalence and composition equiva-
lence coincide, composition refinement can be seen as a
partial order, up to semantic equivalence. That is, composition
refinement partially orders semantic denotations of channels, or
equivalently, partially orders reduced channels. Hence, reduced
channels (or semantic denotations of channels) are to proba-
bilistic channels, as partitions are to deterministic channels.
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