
Poster: Source Code Authorship Attribution

Aylin Caliskan Islam, PhD Student – Advisor: Dr. Rachel Greenstadt
Drexel University, Department of Computer Science, Philadelphia, PA 19104

Webpage: https://www.cs.drexel.edu/ ˜ac993 E-mail: ac993@drexel.edu

I. PROBLEM AND MOTIVATION

As information becomes widely available and easily ac-
cessible through the Internet and other sources, the trend
of plagiarism has been increasing. Plagiarism and copyright
infringement are issues that come up in both academic and
corporate environments. We need author classification tech-
niques to inhibit such unethical violations. Source code is also
intellectual property and reflects individual style. It is impor-
tant to be able to identify the author of source code. Building
a tool to detect the author of a program in an automated way
aids in resolving copyleft, copyright and plagiarism issues in
the programming fields. Making authorship attribution tools
available to the public will also raise consciousness and
decrease any possible tendency to plagiarize.

Code stylometry methods can also attribute authors to
malware or malicious code. De-anonymization techniques
could be used to identify where the malware originates and
link collaborating authors of malicious code. Obtaining this
information will enable us to analyze the interaction graphs of
malware authors. We could infer which author holds certain
tools and how malware spreads and evolves.

In this project, I perform authorship attribution on source
code that is written in C. I investigate how well we can
classify authors within and across projects. How much source
code, which machine learning classifier and which features
are required for an accurate analysis of this specific problem?
Answering these questions could provide proof of authorship
in court or automate the process of finding a cyber criminal
from the source code left in an infected system.

II. BACKGROUND AND RELATED WORK

Stylometry is a field that relies on linguistic information
found in a document to perform authorship recognition. Au-
thorship attribution is the problem of determining a text’s au-
thor, which could be accomplished using stylometric analysis.
A classifier is trained with the necessary features to detect
the authors’ footprints to attribute an author to anonymous
text. Source code authorship attribution could be called code
stylometry and performed in a similar manner.

There has been a great amount of work done on authorship
attribution of unstructured or semi-structured text. In this
research, we are interested in structured text, source code in
particular. Burrows and Tahaghoghi [1] classified source code
authors by looking at n-grams. Burrows et al. [2] also investi-
gated C code of 1,597 student programming assignments. Their
most successful approach reached 76.78% classification accu-
racy in a 10 class problem, which we outperform in this work.
Rosenblum et al. [3] present a novel program representation
and techniques that automatically detect the stylistic features of

binary code. Frantzeskou et al. [4] investigated the high-level
features that contribute to source code authorship attribution
in Java and Common Lisp. They determined the importance of
each feature by iteratively excluding one of the features from
the feature set. They showed that comments, layout features
and naming patterns have a strong influence on the author
classification accuracy. There is also a great deal of research
on plagiarism detection which is carried out by identifying the
similarities between different programs. For example, there is
a widely used tool called Moss that originated from Stanford
University for detecting software plagiarism. Moss [5] is able
to analyze the similarities of code written by different authors.

III. APPROACH

The experiments were automated by incorporating JStylo
[6] which is an authorship recognition analysis tool. JStylo
is free software open to improvements and it is available in
git. It allows for loading a training set of documents with
known authors to test a set of documents with unknown authors
extracting selected features of interest. JStylo uses a variety
of WEKA [7] classifiers to analyze the problem set, which
enables us to find out the optimum classifier for source code
authorship attribution. JStylo allows for the option of perform-
ing authorship attribution using a set of features as opposed to
a single feature in feature extraction and analysis stages. These
properties make JStylo a crucial tool for automating code
stylometry experiments. We analyze the different combinations
of classifiers and lexical, syntactic, and character features.

I cloned eleven git repositories in C on my local machine
and I formed three different problem sets. Forsyth and Holmes
[8] show that a minimum of 250 words are required to attribute
a document to an anonymous author. After combining all the
source code of a particular author in a text file, I re-chunk the
document into separate 500-word text files. In the first dataset,
I extracted the list of contributors and put them in descending
order by the number of commits they made in each project.
From each project, I took one author who had the highest
number of commits. I saved the contents of the commits of
each author in a file, including the comments they committed.
In this work, I am using a public dataset and I do not need to
exclude the comments, which potentially contain personally
identifiable information. Including the comments minimizes
the preprocessing efforts on such structured data. I excluded
the formerly written and then removed source code, removed
comments, as well as commit messages. The purpose of this
data selection was forming the first problem set to perform
authorship attribution on authors from different projects. In
this case, the content of the source code should be quite
different. The second problem set included all the C files
from all these projects. The C files were combined and then
re-chunked to 500-word documents as well. I wanted to see



how accurately we can attribute a project to its original git
repository. The third dataset was formed to perform source
code authorship attribution within one project. I listed the
number of contributors in each project. The github project
libgit2 had the highest number of contributor accounts, which
is 152. Some authors had more than one git account. I extracted
the commits of 11 unique contributors that had the highest
number of commits in libgit2. I limited the number of classes
to 11 in all the problem sets so that I can compare the accuracy
of the three datasets. The third dataset poses the most difficult
problem. I am trying to differentiate authors within one project
where the source code content is similar.

Previous stylometric research shows that authorship attri-
bution requires at least 5,000 words that belong to an author
in order to perform accurate authorship attribution. I use 10 to
40 of the re-chunked 500-word text files for each author to see
how much source code is required for the highest accuracy.

The classification step consists of 10-fold cross-validation.
The results of classification are evaluated by means of accuracy
which is the true-positive rate.

IV. RESULTS AND CONTRIBUTIONS:

Dataset Accuracy
11 authors across projects 85.91%
11 projects 90.91%
11 authors within projects 70.31%

TABLE I. SOURCE CODE AUTHORSHIP ATTRIBUTION IN 3 DATASETS

My first contribution is showing that using a support vector
machine with sequential minimal optimization leads to the
highest accuracy in code stylometry. My second contribution is
showing that code stylometry requires 15,000 words per author
for accurate analysis which can be observed in Figure-1. There
is no increase in classification accuracy if we use more than
15,000 words (the red toned bars in Figure-1) per author. This
is an interesting finding when compared to the 5,000 words
that are required per author for regular authorship attribution.

We train the classifier with a great variety of features and
show that a language independent feature set performs almost
as well as using the Writeprints Limited feature set which
is the gold standard for English stylometry. The ‘Language
Independent Feature Set’ consists of the features: characters,
punctuation, special characters, top character bigrams and
trigrams, words and word lengths. The fundamental compar-
isons are done by using this feature set. The ‘words’ feature
is used to represent reserved words in the C programming
language. Writeprints is the most effective feature set in
English stylometry and it was formed by Abbasi and Chen [9].
The Writeprints Limited feature set was designed by Zheng
et al. [10]. Using Writeprints Limited led to better accuracy
compared to using language independent features. This is
not surprising since the English is the common language
for coding and commenting in these projects. I extended the
Writeprints Limited feature set with a variety of n-grams and
keywords in C to form the ‘Source Code Feature Set’ and
to obtain the highest accuracy. Table IV reflects the correct
classification rate when the classifier was trained with the
‘Source Code Feature Set’. Incorporating these features led to
the highest accuracy in all three of the datasets, compared to

other feature combinations that were used. Considering the fact
that the chance of randomly attributing the 11 classes correctly
is 9.09%, the accuracy we see in Table IV is quite plausible.

Fig. 1. Number of 500-word documents required for code stylometry

I also show that source code authorship attribution across
projects is an easier problem than source code authorship
attribution within a project. The content across projects varies
greatly and the representative features of authors in different
projects become more distinct. The more diverse the feature
values, the easier it becomes to classify authors. Identifying
authors within a project is a more difficult task since the
content among the authors is similar. This makes the extracted
feature values from each author’s source code less distinct and
renders classification more challenging. As a result, there is
a 15% decrease in classification accuracy within a project. In
future work, we would like to study source code from varying
programming languages and binaries, with a focus on malware
of known authorship.

REFERENCES

[1] S. Burrows and S. Tahaghoghi, “Source code authorship attribution
using n-grams,” in Proceedings of the Twelth Australasian Document
Computing Symposium, Melbourne, Australia, RMIT University, 2007,
pp. 32–39.

[2] S. Burrows, R. L. Uitdenbogerd, and A. Turpin, “Application of
information retrieval techniques for source code authorship attribution.”

[3] N. Rosenblum, X. Zhu, and B. Miller, “Who wrote this code? identi-
fying the authors of program binaries,” Computer Security–ESORICS
2011, pp. 172–189, 2011.

[4] G. Frantzeskou, S. MacDonell, E. Stamatatos, and S. Gritzalis, “Ex-
amining the significance of high-level programming features in source
code author classification,” Journal of Systems and Software, vol. 81,
no. 3, pp. 447–460, 2008.

[5] A. Aiken et al., “Moss: A system for detecting software pla-
giarism,” University of California–Berkeley. See www. cs. berkeley.
edu/aiken/moss. html, vol. 9, 2005.

[6] A. McDonald, S. Afroz, A. Caliskan, A. Stolerman, and R. Greenstadt,
“Use fewer instances of the letter “i”: Toward writing style anonymiza-
tion,” in Privacy Enhancing Technologies. Springer, 2012, pp. 299–
318.

[7] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: an update,” ACM SIGKDD
Explorations Newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[8] R. S. Forsyth and D. I. Holmes, “Feature-finding for test classification,”
Literary and Linguistic Computing, vol. 11, no. 4, pp. 163–174, 1996.

[9] A. Abbasi and H. Chen, “Writeprints: A stylometric approach to
identity-level identification and similarity detection in cyberspace,”
ACM Transactions on Information Systems, vol. 26, no. 2, p. 7, 2008.

[10] R. Zheng, J. Li, H. Chen, and Z. Huang, “A framework for authorship
identification of online messages: Writing-style features and classifi-
cation techniques,” Journal of the American Society for Information
Science and Technology, vol. 57, no. 3, pp. 378–393, 2005.


